

Flavor Physics at **BABAR**

STANFORD Jose Benitez for the **BABAR** Collaboration

UNIVERSITY

La Thuile March 3, 2010

The **BABAR** B-factory

• The BaBar experiment operated between 1999 and 2008.

 Collected a total of 531 fb⁻¹ of e⁺e⁻ collisions at center of mass energies corresponding to

• Y(4S) : 432 fb⁻¹ • Y(3S) : 30 fb⁻¹ • Y(2S) : 14 fb⁻¹

• Off-Peak: 54 fb⁻¹

~40MeV below the Y(nS)

$e^+e^- \rightarrow$	Cross-section (nb)	
$b\overline{b}$	1.10	
$c\overline{c}$	1.30	
$S\overline{S}$	0.35	
$u\overline{u}$	1.39	
$d\overline{d}$	0.35	
$\tau^+\tau^-$	0.94	
$\mu^+\mu^-$	1.16	
e^+e^-	~ 40	

Recent Results from **BABAR**

- $|V_{ub}|$ from $B^0 \rightarrow \pi^- \ell^+ \nu$
- f_{Ds} from $D_s^+ \rightarrow \tau^+ \nu ~(\tau^+ \rightarrow e^+ \nu \nu)$
- D⁰ Mixing using the $D^0 \rightarrow K^-\pi^+/D^0 \rightarrow K^-K^+$ lifetime ratio
- Search for CPV in $D^0 \rightarrow K^- K^+ \pi^- \pi^+$
- Search for Lepton Flavor Violation
 - $\tau^+ \rightarrow \ell^+ \gamma$
 - $Y(nS) \rightarrow \tau^{-} \ell^{+}$
- Test of Lepton Universality
 - $Y(1S) \rightarrow \tau^- \tau^+ / Y(1S) \rightarrow \mu^- \mu^+$

Measurement of $|V_{ub}|$ using $B \rightarrow \pi \ell v$

- Exclusive decays of $B \rightarrow \pi \ell \nu$ provide one of the best ways to extract the CKM element V_{ub}
- The decay rate depends on the momentum transfer and is proportional to $|V_{ub}|^2$

$$\frac{d\Gamma}{dq^2}(B \to \pi l\nu) = \frac{G_F^2}{24\pi^3} p_\pi^3 |V_{ub}|^2 |f_+(q^2)|^2$$

 The form factor f(q²) are obtained from Lattice QCD calculations

$$q^2 = (p_{\ell} + p_{\nu})^2$$

Reconstruct events by identifying a charged lepton (e,μ) and a hadron (π,ρ) in the following modes:
 B⁰→π⁻ ℓ⁺ ν B⁺→π⁰ ℓ⁺ ν B⁰→ρ⁻ ℓ⁺ ν B⁺→ρ⁰ ℓ⁺ ν

• The v is reconstructed as the missing 4-momentum in the event:

$$(ec{p}_{ ext{miss}}, E_{ ext{miss}}) = (ec{p}_{ ext{beams}}, E_{ ext{beams}}) - (\sum_i ec{p}_i\,, \sum_i E_i)$$

We use the difference in the B energy with respect to ½ the CM energy and the mass of the B to extract the signal yield:

$$\Delta E = \frac{P_B \cdot P_{e^+e^-} - s/2}{\sqrt{s}}$$

$$m_{ES} = \sqrt{\frac{(s/2 + \vec{p}_B \cdot \vec{p}_{e^+e^-})^2}{E_{e^+e^-}} - \vec{p}_B^2}$$

Determination of V_{ub}

- The decay rate of $B^0 \rightarrow \pi^- \ell^+ \nu$ is extracted in a simultaneous fit to the four channels. We use isospin symmetry to constrain the decay to $\pi^0 \ell^+ \nu$ and use the $\rho \ell^+ \nu$ modes to constrain the cross-feeding backgrounds.
- The decay rate is determined as a function of q² and then transformed into a form factor using:

$$\frac{d\Gamma}{dq^2}(B \to \pi l \nu) = \frac{G_F^2}{24\pi^3} p_\pi^3 |V_{ub}|^2 |f_+(q^2)|^2$$

- The normalization for such a transformation is proportional to |V_{ub}|
- The form factor values are then required to agree with the values calculated by theory
- We obtain

$$|V_{ub}| = (3.05 \pm 0.29) \times 10^{-3}$$

Jose Benitez

∆B/∆ q² (GeV⁻²) Data 10 ---BK --- BZ BGL (3 par.) BaBar Preliminary 15 20 10 25 q² (GeV²) ±0.035 BaBar ð o.03 Preliminary 0.025 0.02 0.015 Data (rescaled)

12^{×10⁻⁶}

 $\begin{array}{c} \bullet \quad \text{Data (rescaled)} \\ \bullet \quad \text{Data (re$

Determination of f_{Ds} from $D_s^+ \rightarrow \tau^+ v$

 The purely leptonic decay of charged D mesons is a clean process in the SM:

$$\frac{G_F^2}{8\pi} M_{D_s^+}^3 \left(\frac{m_\ell}{M_{D_s^+}}\right)^2 \left(1 - \frac{m_\ell^2}{M_{D_s^+}^2}\right)^2 |V_{cs}|^2 f_{D_s}^2$$

- f_{Ds} characterizes the QCD interactions.
- Currently a discrepancy of ~2.5 σ exists between theory and experiment. Theory [HPQCD+UKQCD] predicts f_{Ds} =241 ± 3 MeV while the experimental average [HFAG] is 257 ± 7 MeV.
- f_D agrees well with theory

• Reconstruct events of the type $e^+e^- \rightarrow D_{Tag}KXD_s^*$ where $D_s^* \rightarrow D_s\gamma$, $D_s \rightarrow \tau v$ and $\tau \rightarrow evv$

- D_{Tag} consists of 11 high yield D⁰/D⁺ decay channels. K consists of a K_S/K⁺ to balance the quark flavor and X consists of additional reconstructed pions from fragmentation.
- Besides the DKX system, an e⁺ track must be identified in signal events.
- A similar reconstruction is done for the well known decay channel D_s⁺→K_SK⁺ and used for normalization.

Results

• We fit for the $D_s \rightarrow \tau v$ signal yield using the mass recoiling against the DKX γ system and the extra neutral energy in the event.

- We obtain a total of 448 ± 36 $D_s \rightarrow \tau v$ events.
- Similarly extract the $D_s \rightarrow K_s K$ yield: 333 ± 28 events.
- We obtain the following value for the branching fraction:

Result for f_{Ds}

- The decay constant is determined by inverting the formula for the partial width of $\Gamma(D_s \rightarrow \tau v)$ and using the PDG values for the additional parameters.
- We find a value which is consistent with the theoretical value and with the current world average.

$$f_{D_s^+} = \frac{1}{G_F m_\ell \left(1 - \frac{m_\ell^2}{M_{D_s^+}^2}\right) |V_{cs}|} \sqrt{\frac{8\pi B(D_s^+ \to \ell \nu)}{M_{D_s^+} \tau_{D_s^+}}}$$

 $f_{D_s} = (233.6 \pm 13.6 \pm 10.4 \pm 7.1) \text{ MeV}$

Errors are: statistical, systematic and PDG

Preliminary

Comparison with other measurements

Evidence of D⁰ Mixing using the D⁰ \rightarrow K⁻ π^+ /D⁰ \rightarrow K⁻K⁺ lifetime ratio

D⁰ mixing is characterized by a difference in masses and widths of the physical states:

$$\begin{array}{rcl} |D_1\rangle &=& p|D^0\rangle + q|\overline{D}{}^0\rangle \\ |D_2\rangle &=& p|D^0\rangle - q|\overline{D}{}^0\rangle \end{array}$$

$$\frac{\Delta m = m_1 - m_2}{\Delta \Gamma = \Gamma_1 - \Gamma_2}$$
$$\Gamma = (\Gamma_1 + \Gamma_2)/2$$

 $x \equiv \Delta m / \Gamma$ and $y \equiv \Delta \Gamma / 2\Gamma$ D⁰ mixing can be detected as a difference in the measured D⁰ lifetime with final states of different CP:

$$y_{CP} = \frac{\langle \tau_{K\pi} \rangle}{\langle \tau_{hh} \rangle} - 1$$

y_{cp}=y in the limit of no direct CP violation.

- We measure the D⁰ lifetime using decays to the CP mixed final state K⁻π⁺ and CP even final state K⁻K⁺.
- No D* parent is required in order to enhance the statistical power by ~4 with respect to our previous tagged analysis.

Sample	Signal Yield (x 10 ³)	Purity (%)
$K^-\pi^+$	2710.2 ± 3.4	94.2
K^+K^-	263.6 ± 1.0	80.9

PRD 80,071103 (2009)

 We measure the D⁰ decay time by measuring the displacement of D⁰ decay vertex from the e⁺e⁻ interaction point.

Results

 The decay time distribution is fitted using an exponential signal PDF convoluted with a resolution model determined from the MC simulation.

We obtain a $K\pi$ lifetime which is significantly larger than the KK lifetime:

$\tau_{K\pi}$	= 4	10.39 ±	= 0	.38((stat)) fs
τ_{KK}	=	405.85	±	1.0	0(sta	t) f

• The calculation of y_{CP} shows evidence for D⁰ mixing at the level of 3.3 σ : $y_{CP}(\text{untagged}) = [1.12 \pm 0.26(\text{stat}) \pm 0.22(\text{syst})]\%$

• When combined with our previous Tagged analysis we obtain a significance of 4.1σ : [$1.16 \pm 0.22(\text{stat}) \pm 0.18(\text{syst})$]%

Search for CPV in $D^0 \rightarrow K^- K^+ \pi^- \pi^+$

- In the Standard Model CP violation in D mesons is predicted at the level of 10⁻³; B factories are now probing the 0.5% regime
- We use the "T-odd correlation" in 4-body decays of $D^0 \rightarrow K^- K^+ \pi^- \pi^+$ $C_T \equiv \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})$

to search for a T-violating signal within each CP eigenstate

 $\bar{C}_T \equiv \vec{p}_{K^-} \cdot (\vec{p}_{\pi^-} \times \vec{p}_{\pi^+})$

 $A_T \equiv \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)}$

$$\overline{A_T} \equiv \frac{\Gamma(-\bar{C}_T > 0) - \Gamma(-\bar{C}_T < 0)}{\Gamma(-\bar{C}_T > 0) + \Gamma(-\bar{C}_T < 0)}$$

 A true CPV signal can be detected in the difference between the D⁰ and D⁰ which is not sensitive to asymmetries due to final state interactions

$$\mathcal{A}_T = \frac{1}{2} (A_T - \overline{A_T})$$

Flavor Physics at BaBar

 We reconstruct D⁰'s inclusively and tag the flavor using the charge of the parent D*

$$e^+e^- \to X \ D^{*+}$$
$$\searrow D^{*+} \to \pi^+_s D^0$$
$$\bigtriangleup D^0 \to K^+K^-\pi^+\pi^-$$

 The signal yield is extracted from a 2 dimensional fit in the D⁰ mass and mass difference m(D⁰π⁺) - m(D⁰).

Results

• We divide the Data into the different CP and C_T components and fit for the yield in each sample:

 The asymmetry between D⁰ and D⁰ is consistent with zero with a sensitivity of 0.6%:

Subsample	Events			
(a) $D^0, C_T > 0$	10974 ± 117			
(b) $D^0, C_T < 0$	12587 ± 125			
(c) $\overline{D}{}^{0}, ar{C}_{T}>0$	10749 ± 116			
(d) $\overline{D}{}^{0}, ar{C}_{T} < 0$	12380 ± 124			

$$A_T = (1.0 \pm 5.1_{\text{stat}} \pm 4.3_{\text{syst}}) \times 10^{-3}$$

Preliminary

Search for Lepton Flavor Violation: • $\tau^+ \rightarrow \ell^+ \gamma$ ($\ell = e, \mu$) • $Y(nS) \rightarrow \tau^- \ell^+$ (n=2,3 $\ell = e, \mu$)

- Charged Lepton Flavor violation in the SM is unobservable
- The decays $\tau^+ \rightarrow \ell^+ \gamma$ and $Y(nS) \rightarrow \tau^- \ell^+$ are suppressed by a factor of $m_v^2/m_W^2 \sim 10^{-48}$
- New Physics scenarios predict rates as high as 10⁻⁷

SUSY Model

Flavor Physics at BaBar

- We search for τ⁺ → ℓ⁺ γ events by identifying an e⁺/μ⁺ track and a signal γ
 - We require the invariant mass of the $l^+ \gamma$ to be consistent with the τ mass and the $l^+ \gamma$ energy be consistent with half the beam energy
 - We also require a leptonic or hadronic τ decay on the other side of the event
- We search for Y(nS)→τ⁻ℓ⁺ signal events by requiring exactly two oppositely charged tracks:
 - a primary e⁺/µ⁺ with energy close to ½ the beam energy (x≡|p_ℓ|/E_B),
 - a charged lepton or pion from the τ decay

$\tau^+ \rightarrow \ell^+ \gamma$ Search Results

- The BaBar data-set consisting of 963 Million τ decays
- The reconstruction efficiency for signal events is 4-6%
- The number of candidates found in the signal region is consistent with expected background
- Upper limits are placed at 3-4 x10⁻⁸ at 90% CL

Y(nS) $\rightarrow \tau^{-} \ell^{+}$ Search Results

The BaBar Data sample contains

- 116 Million Y(3S) events
- 98 Million Y(2S) events
- The reconstruction efficiency for signal is 4-6%

 We find no evidence of a signal and place upper limits at 3-4x10⁻⁶ at 90% CL.

■ Y(1S)→ $\tau^-\tau^+$ / Y(1S)→ $\mu^-\mu^+$

• In the Standard Model the rate for decays of Y(1S) to two leptons is approximately the same for all lepton flavors:

$$\Gamma_{\Upsilon(nS)\to ll} = 4\alpha^2 Q_b^2 \frac{|R_n(0)|^2}{M_{\Upsilon}^2} (1 + 2\frac{M_l^2}{M_{\Upsilon}^2}) \sqrt{1 - 4\frac{M_l^2}{M_{\Upsilon}^2}} \sqrt{1 - 4\frac{M_l^2}{M_{\Upsilon}^2}}$$

•The ratio of Y(1S) $\rightarrow \tau \tau$ and Y(1S) $\rightarrow \mu \mu$ has the following value (assuming $g_{\tau}/g_{\mu}=1$):

$$R_{\tau\mu}(\mathbf{Y}(1S)) = \frac{\Gamma(\mathbf{Y}(1S) \to \tau^+ \tau^-)}{\Gamma(\mathbf{Y}(1S) \to \mu^+ \mu^-)} = 0.992$$

•The presence of a light scalar Higgs can cause this ratio to deviate by as much as 4% [JHEP 0901, 061 (2009)]

$$\Upsilon(1S)
ightarrow A^0 \gamma
ightarrow l^+ l^- \gamma$$

Jose Benitez

The analysis method uses events where e⁺e⁻ → Y(3S)→Y(1S)π⁺π⁻ We require 4 charged tracks in each event the π⁺π⁻ and two oppositely charged tracks The Y(1S) is identified through the recoil mass against the π⁺π⁻ system:

$$M_{\pi^{+}\pi^{-}}^{reco} = \sqrt{s + M_{\pi\pi}^2 - 2 \cdot \sqrt{s} \cdot E_{\pi\pi}^*}$$

•In the case of the $Y(1S) \rightarrow \mu^- \mu^+$ channel the $\mu\mu$ mass is also used

 The Signal distributions are modeled using a bifurcated Gaussian function:

$$\mathcal{F}(x) = exp\Big\{-\frac{(x-\mu)^2}{2\sigma_{L,R}^2 + \alpha_{L,R}(x-\mu)^2}\Big\}$$

Flavor Physics at BaBar

Results

• We use 121.8±1.2 Million Y(3S) events with a reconstruction efficiency of 44.6% in the $\mu^+\mu^-$ channel and 16.8% in the $\tau^+\tau^-$ channel.

• We perform a simultaneous fit to the $\mu^+\mu^-$ and $\tau^+\tau^-$ data where $R_{\tau\mu}$ is varied and obtain the following value:

Preliminary

$$R_{\tau\mu}(\Upsilon(1S)) = 1.005 \pm 0.013(stat.) \pm 0.022(syst.)$$

• This measurement is consistent with SM expectation.

Summary and Conclusions

- Using 377 Million $\overline{B}B$ events we measure $|V_{ub}|=(3.05\pm0.29)\%$ using the $B^0 \rightarrow \pi^- \ell^+ \nu$ q²-dependent branching fraction and the LQCD predictions for the form factor.
- We measure $f_{Ds} = 233 \pm 18$ MeV using $D_s^+ \rightarrow \tau^+ \nu$ decays; this measurement is consistent with the current world average.
- Our measurement of the lifetime ratio of D⁰→Kπ/D⁰→KK shows evidence of D⁰ mixing at 3.3σ; 4.1σ when combined with our previous tagged measurement.
- We have searched for CP violation using T-odd correlations in 4-body D⁰ decays and find no evidence with a sensitivity of 0.6%.
- We place limits on the lepton flavor violating processes τ⁺ → ℓ⁺ γ and Y(nS)→τ⁺ℓ⁻ at the level of 3x10⁻⁸ and 3x10⁻⁶ respectively.
- Finally, our test of Lepton Universality is consistent with SM expectations ($R_{\tau\mu}$ =1.005 ± 0.025) with a sensitivity of 2.5%.