Recent developments in QCD

Vittorio Del Duca INFN LNF

La Thuile 2 March 2010

QCD

Solution and confinement and confinement featuring asymptotic freedom and confinement asymptotic freedom asymptotic freedom asymptotic freedom asymptotic freedom and confinement asymptotic freedom a

In non-perturbative regime (low Q²) many approaches: lattice, Regge theory, X PT, large N_c, HQET

in perturbative regime (high Q²) QCD is a precision toolkit for exploring Higgs & BSM physics

QCD at LHC

Precise determination of

- parton distributions
- LHC parton luminosity

Precise prediction for

- Higgs production
- new physics processes
- their backgrounds

Goal: to make theoretical predictions of signals and backgrounds as accurate as the LHC data

LHC: present & future

calibrate the detectors, and re-discover the SM i.e. measure known cross sections: jets, $W, Z, t\bar{t}$

- understand the EWSB/find New-Physics signals (ranging from Z' to leptons, to gluinos in SUSY decay chains, to finding the Higgs boson)
 - constrain and model the New-Physics theories

in all the steps above (except probably Z' to leptons) precise QCD predictions play a crucial role

Tales from the past

B production in the 90's

discrepancy between Tevatron data and NLO prediction

B cross section in $p\bar{p}$ collisions at 1.96 TeV

use of updated fragmentation functions by Cacciari & Nason and resummation

good agreement with data

$$\longrightarrow$$

no New Physics

QCD at high Q²

- Parton model
- Perturbative QCD
 - factorisation
 - universality of IR behaviour
 - cancellation of IR singularities
 - IR safe observables: inclusive rates

🖲 jets

event shapes

 $c_{11}, c_{22} = LL$ $c_{10}, c_{21} = NLL$ $c_{20} = NNLL$

LHC kinematic reach

LHC opens up a new kinematic range

x range covered by HERA but Q² range must be provided by DGLAP evolution

100-200 GeV physics is large x physics (valence quarks) at Tevatron, but smaller x physics (gluons & sea quarks) at the LHC

rapidity distributions span widest *x* range

Feynman x's for the production of a particle of mass M

$$x_{1,2} = \frac{M}{14 \,\mathrm{TeV}} \,e^{\pm y}$$

Tuesday, March 2, 2010

PDF global fits

global fits

MRST, MSTW: Martin et al.

CTEQ: Pumplin et al. Alekhin (DIS data only)

method

Perform fit by minimising χ^2 to all data, including both statistical and systematic errors

Start evolution at some Q_0^2 , where PDF's are parametrised with functional form, e.g. $xf(x,Q_0^2) = (1-x)^{\eta}(1+\epsilon x^{0.5}+\gamma x)x^{\delta}$

Cut data at $Q^2 > Q^2_{\min}$ and at $W^2 > W^2_{\min}$ to avoid higher twist contamination

Allow $\bar{u} \neq \bar{d}$ as implied by E866 Drell-Yan asymmetry data

accuracy

NNLO evolution

J. Stirling, KITP collider conf 2004 H1, ZEUS $F_2^{e^+p}(x,Q^2)$, $F_2^{e^-p}(x,Q^2)$ **BCDMS** $F_2^{\mu p}(x, Q^2), F_2^{\mu d}(x, Q^2)$ NMC $F_2^{\mu p}(x,Q^2), F_2^{\mu d}(x,Q^2), (F_2^{\mu n}(x,Q^2)/F_2^{\mu p}(x,Q^2))$ **SLAC** $F_{2}^{\mu p}(x, Q^{2}), F_{2}^{\mu d}(x, Q^{2})$ E665 $F_2^{\mu p}(x,Q^2), F_2^{\mu d}(x,Q^2)$ **CCFR** $F_2^{\nu(\bar{\nu})p}(x,Q^2), F_3^{\nu(\bar{\nu})p}(x,Q^2)$

 $\rightarrow q$, \bar{q} at all x and g at medium, small x H1, ZEUS $F_{2,c}^{e^+p}(x,Q^2) \rightarrow c$ E605, E772, E866 Drell-Yan $pN \rightarrow \mu \bar{\mu} + X \rightarrow \bar{q}$ (g)

E866 Drell-Yan p,n asymmetry $\rightarrow \bar{u}, \bar{d}$

CDF W rapidity asymmetry $\rightarrow u/d$ ratio at high x

CDF, D0 Inclusive jet data $\rightarrow g$ at high x

CCFR, NuTeV Dimuon data constrains strange sea s, s

no prompt photon data included in the fits

PDF: recent developments

more systematic treatment of uncertainties in global fits

MSTW, CTEQ, Alekhin

- more accurate treatment of heavy flavours in the vicinity of the quark mass (few % effect on Drell-Yan at the LHC)
 - PDF's from neural network global fit (NNPDF), based on unbiased priors

gluon distribution

note the larger uncertainty in NNPDF at small *x*

NNPDF2.0 arXiv:1002.4407

NNPDF

Ubiali (NNPDF Coll.) DIS09

stop before over-training: NN fitting of statistical fluctuations

NNPDF

Ubiali (NNPDF Coll.) DIS09

Determination of unbiased PDFs with faithful estimation of their uncertainties.

$$\begin{split} \langle \mathcal{F}[f_i(x)] \rangle &= \int [\mathcal{D}f_i] \, \mathcal{F}[f_i(x)] \mathcal{P}[f_i(x)] \quad \to \quad \frac{1}{N_{\rm rep}} \sum_{k=1}^{N_{\rm rep}} \mathcal{F}[f_i^{(k)(\rm net)}(x)] \\ \\ \sigma_{\mathcal{F}[f(x)]} &= \sqrt{\langle \mathcal{F}[f(x)]^2 \rangle - \langle \mathcal{F}[f(x)] \rangle^2} \end{split}$$

- * The measure $\mathcal{P}[f_i(x)]$ in space of PDFs is determined with MC method.
- * Use all information contained in experiments.
- * Redundant parametrization of PDFs: reduce bias.
- Statistic estimators to assess errors, correlations, stability and size of systematics.

sort of path-integral method in the space of PDFs

Parton cross section

3 complementary approaches to $\hat{\sigma}$

	matrix-elem MC's	fixed-order x-sect	shower MC's
final-state description	hard-parton jets. Describes geometry, correlations,	limited access to final-state structure	full information available at the hadron level
higher-order effects: loop corrections	hard to implement: must introduce negative probabilities	straightforward to implement (when available)	included as vertex corrections (Sudakov FF's)
higher-order effects: hard emissions	included, up to high orders (multijets)	straightforward to implement (when available)	approximate, incomplete phase space at large angles
resummation of large logs	?	feasible (when available)	unitarity implementation (i.e. correct shapes but not total rates)

M.L. Mangano KITP collider conf 2004

Parton shower MonteCarlo generators

Generation HERWIG B. Webber et al. 1992

re-written as a C++ code (HERWIG++)

- **PYTHIA** T. Sjostrand 1994 (also re-written as a C++ code)
 - SHERPA F. Krauss et al. 2003
- model parton showering and hadronisation

Matrix-element MonteCarlo generators

- several automated codes to yield large number of (up to 8-9) final-state partons
 - can be straightforwardly interfaced to parton-shower MC's
 - ideal to scout new territory
 - large dependence on ren/fact scales example: Higgs (via gluon fusion) + 2 jets is $\alpha_s^4(Q^2)$
 - unreliable for precision calculations

Matrix-element MonteCarlo generators

- multi-parton LO generation: processes with many jets (or V/H bosons)
 - ALPGEN M.L.Mangano M. Moretti F. Piccinini R. Pittau A. Polosa 2002
 - MADGRAPH/MADEVENT W.F. Long F. Maltoni T. Stelzer 1994/2003
 - COMPHEP A. Pukhov et al. 1999
 - GRACE/GR@PPA T. Ishikawa et al. K. Sato et al. 1992/2001
 - HELAC C. Papadopoulos et al. 2000
 - processes with 6 final-state fermions
 - PHASE E. Accomando A. Ballestrero E. Maina 2004

merged with parton showers

all of the above, merged with HERWIG or PYTHIA

MonteCarlo interfaces

CKKW S. Catani F. Krauss R. Kuhn B. Webber 2001

MLM L. Lonnblad 2002 M.L. Mangano 2005

procedures to interface parton subprocesses with a different number of final states to parton-shower MC's

MC@NLO S. Frixione B. Webber 2002

P. Nason 2004

procedures to interface NLO computations to parton-shower MC's

POWHEG

Single top in MC@NLO

Frixione Laenen Motylinski Webber 2005

at low p_T , parton shower models collinear radiation

at high *p*₇, NLO models hard radiation

Tuesday, March 2, 2010

Matrix-element MonteCarlo generator at NLO

desirable to have a multi-parton NLO generator interfaced to a parton shower: a sort of MadGraph cum MC@NLO

a step in this direction: automation of subtraction of IR divergences Frederix Frixione Maltoni Stelzer 2009

MadGraph provides real amplitude user inputs virtual amplitude procedure provides subtraction counterterms

Next to Leading Order

- Jet structure: final-state collinear radiation
- PDF evolution: initial-state collinear radiation
- Opening of new channels
- Θ Reduced sensitivity to fictitious input scales: μ_R , μ_F
 - predictive normalisation of observables
 - first step toward precision measurements
 - accurate estimate of signal and background for Higgs and new physics
- Matching with parton-shower MC's:
 MC@NLO POWHEG

NLO cross sections: experimenter's wishlist 2005 Les Houches

QCD, EW & Higgs working group hep-ph/0604210

Table 42: The LHC "priority" wishlist for which a NLO computation seems now feasible.

process $(V \in \{Z, W, \gamma\})$	relevant for
1. $pp \rightarrow VV$ jet	$t\bar{t}H$, new physics
2. $pp \rightarrow t\bar{t}b\bar{b}$	$t\bar{t}H$
3. $pp \rightarrow t\bar{t} + 2$ jets	$t\bar{t}H$
4. $pp \rightarrow VVb\bar{b}$	VBF $\rightarrow H \rightarrow VV$, $t\bar{t}H$, new physics
5. $pp \rightarrow VV + 2$ jets	VBF $\rightarrow H \rightarrow VV$
6. $pp \rightarrow V + 3$ jets	various new physics signatures
7. $pp \rightarrow VVV$	SUSY trilepton

High (EXP) demand for cross sections of Y + n jets
Y = vector boson(s), Higgs, heavy quark(s), ...
Big TH community effort

To compute the cross section of Y + n jets, we need:
I) tree-level amplitude for Y + (n+3) partons
2) one-loop amplitude for Y + (n+2) partons
3) a method to cancel the IR divergences and so to compute the cross section

3: until the mid 90's, we did not have systematic methods to cancel the IR divergences
2: until 2007-8, we did not have systematic methods to compute the one-loop amplitudes

NLO history of final-state distributions				
G	$e^+e^- \rightarrow 3 \text{ jets}$	K. Ellis Ross Terrano 1981		
	$e^+e^- \rightarrow 4 \text{ jets}$	Bern et al.; Glover et al.; Nagy Trocsanyi 1996-97		
9	$e^+e^- \to 4 \text{ fermions}$	5 Denner Dittmaier Roth Wieders 2005		
G	$pp \rightarrow 1, 2 \text{ jets}$	K. Ellis Sexton 1986 Giele Glover Kosower 1993		
	$pp \rightarrow 3 \text{ jets}$	Bern Dixon Kosower; Kunszt Signer Trocsanyi 1993-1995 Nagy 2001		
Q	$pp \rightarrow V + 1$ jet	Giele Glover Kosower 1993		
-	$pp \rightarrow V + 2 \text{ jet}$ ^B	ern Dixon Kosower Weinzierl; Campbell Glover Miller 1996-97 Campbell K. Ellis 2003		
	$pp \rightarrow V + 3$ jet	Berger et al. (BlackHat); K. Ellis Melnikov Zanderighi 2009		
9	$pp \rightarrow V b \overline{b}$	Campbell K. Ellis 2003		
G	$pp \rightarrow VV$	Ohnemus Owens, Baur et al. 1991-96; Dixon et al. 2000		
•	$pp \rightarrow VV + \text{jet}$	Dittmaier Kallweit Uwer; Campbell K. Ellis Zanderighi 2007		
9	$pp \rightarrow VVV$	Lazopoulos Melnikov Petriello; Hankele Zeppenfeld 2007 Binoth Ossola Papadopoulos Petriello 2008		
G	$pp ightarrow \gamma \gamma$	Bailey et al. 1992; Binoth et al. 1999		
	$pp \rightarrow \gamma \gamma + 1 \text{ jet}$	Bern et al. 1994 Del Duca Maltoni Nagy Trocsanyi 2003		

NLO history of final-state distributions

2	$pp \to Q\bar{Q}$	Dawson K. Ellis Nason 1989 Mangano Nason Ridolfi 1992
	$pp \rightarrow Q\bar{Q} + 1$ jet	Brandenburg Dittmaier Uwer Weinzierl 2005-7 Dittmaier Kallweit Uwer 2007-8
	$pp \rightarrow Q\bar{Q} + 2 \text{jets}$	van Hameren Papadopoulos Pittau 2009 Bevilacqua Czakon Papadopoulos Worek 2010
	$pp \to t \overline{t} Z$	Lazopoulos McElmurry Melnikov Petriello 2008
	$pp ightarrow t \overline{t} b \overline{b}$	Bredenstein Denner Dittmaier Pozzorini 2009
2	$pp \to t (+ W)$	Harris Laenen Phaf Sullivan Weinzierl 2002 Campbell K. Ellis Tramontano 2004; Cao Yuan et al. 2004-5 W: Campbell Tramontano 2005
	$pp \rightarrow H + 1$ jet	(GGF; ∞ m _t) C. Schmidt 1997 De Florian Grazzini Kunszt 1999
	$pp \rightarrow H + 2$ jets	 (GGF; ∞ mt) Campbell K. Ellis Zanderighi 2006 (WBF) Campbell K. Ellis; Figy Oleari Zeppenfeld 2003 Ciccolini Denner Dittmaier 2007 (includes s channel)
	$pp \rightarrow H + 3$ jets	(WBF) Figy Hankele Zeppenfeld 2007
2	$pp \to HQ\bar{Q}$	Beenakker et al.; Dawson et al. 2001
2	$pp \to HQ$	t: Maltoni Paul Stelzer Willenbrock 2001 b: Campbell, K. Ellis Maltoni Willenbrock 2002

... summarising

in the past, long time span to add one more jet to a x-section

2 → 2 and 2 → 3 processes: almost all computed and included into NLO packages

$$2 \rightarrow 4$$
 processes: very few computed $e^+e^- \rightarrow 4$ fermionsDenner Dittmaier Roth Wieders 2005 $pp \rightarrow t \bar{t} b \bar{b}$ Bredenstein Denner Dittmaier Pozzorini 2009 $pp \rightarrow V + 3$ jetBerger et al. (BlackHat); K. Ellis Melnikov Zanderighi 2009 $pp \rightarrow Q\bar{Q} + 2$ jetsBevilacqua Czakon Papadopoulos Worek 2010

$$2 \rightarrow 5$$
 processes: none

 $pp \rightarrow t \, \overline{t} + 2 \, \text{jets}$ at NLO

 ${old P}$ reducible background to $pp
ightarrow H\,t\,\overline{t}$

$$\mathbb{O}$$
 NLO/LO = K factor = 0.89

Reduced theoretical error: 40-70% at LO; 12-13% at NLO

W + 3-jet cross section at NLO

A C++ code based on generalised unitarity, and on-shell recursion for the rational parts BlackHat: Berger et al. 2008

computes

- one-loop 6-gluon (and MHV 7- and 8-gluon) amplitudes
- one-loop W + 5-parton amplitudes
- NLO W + 3-jet cross section

one-loop amplitudes

- one-loop *n*-point amplitudes A_n are IR divergent
 - 1 IR divergences are universal Kunszt Signer Trocsanyi 1994; Catani 1998
 - ↓ IR finite terms are process dependent:
 many final-state particles → many scales → lengthy expressions
- An can be reduced to boxes, triangles and bubbles with rational coefficients

I: master integrals b, c, d: rational functions of kinematic variables higher polygons contribute only to O(ε)

NLO progress: unitarity method Cutkovsky rule $\frac{1}{p^2 + i0} \rightarrow 2\pi i \,\delta^+(p^2)$ use unitarity cuts: to factorise coefficients of A_n into products of tree amplitudes compute *b*, *c*, *d* with D=4: cut-constructible terms $O(\varepsilon)$ part of b, c, d: rational term R_n Bern Dixon Dunbar Kosower 1994 $A_n = \sum_{i_1 i_2 i_3 i_4} d_{i_1 i_2 i_3 i_4} I^4_{i_1 i_2 i_3 i_4} + \sum_{i_1 i_2 i_3} c_{i_1 i_2 i_3} I^4_{i_1 i_2 i_3} + \sum_{i_1 i_2} b_{i_1 i_2} I^4_{i_1 i_2} + R_n$ R_n computable through on-shell recursion Berger Bern Dixon Forde Kosower 2006 generalized unitarity: Britto Cachazo Feng 2004

quadruple cuts with complex momenta box coefficient *d_i* determined by product of 4 tree amplitudes

however, c_i , b_i still difficult to extract from triple and double cuts because terms already included in d_i must be subtracted

NLO progress: OPP method

Ossola Papadopoulos Pittau 2006

reduction of one-loop amplitude at integrand level

 $A(q') = \frac{N(q)}{\bar{D}_1 \cdots \bar{D}_m} \qquad \bar{D}_i = (q' + p_i)^2 - m_i^2 \qquad q' = q + \tilde{q} \qquad q \cdot \tilde{q} = 0$

q lives in D dimensions; q lives in 4 dimensions ϵ part of numerator treated separately

partial fraction the numerator into terms with 4, 3, 2, 1 denominator factors

$$N(q) = \sum_{i_1 i_2 i_3 i_4} (d_{i_1 i_2 i_3 i_4} + \tilde{d}_{i_1 i_2 i_3 i_4}) \prod_{i \neq i_1 i_2 i_3 i_4} D_i$$

+
$$\sum_{i_1 i_2 i_3} (c_{i_1 i_2 i_3} + \tilde{c}_{i_1 i_2 i_3}) \prod_{i \neq i_1 i_2 i_3} D_i + \sum_{i_1 i_2} (b_{i_1 i_2} + \tilde{b}_{i_1 i_2}) \prod_{i \neq i_1 i_2} D_i$$

$\tilde{d}, \tilde{c}, \tilde{b}$ vanish upon integration

reduced to problem of fitting d, c, b by evaluating N(q) at different values of q, e.g. singling out choices of q such that 4, 3, 2, 1 among all D_i vanish, and then inverting the system. First find all possible 4-pt functions, then 3-pt functions, etc.

for quadruple cuts, similar to BCF, but algorithmic: can be automated

NLO progress: integer dimensions

Giele Kunszt Melnikov 2008

in **D** dimensions the one-loop amplitude A_n can be reduced to pentagons, boxes, triangles and bubbles

$$A_{n} = \sum_{i_{1}i_{2}i_{3}i_{4}i_{5}} e_{i_{1}i_{2}i_{3}i_{4}i_{5}} I^{D}_{i_{1}i_{2}i_{3}i_{4}i_{5}} + \sum_{i_{1}i_{2}i_{3}i_{4}} d_{i_{1}i_{2}i_{3}i_{4}} I^{D}_{i_{1}i_{2}i_{3}i_{4}}$$
$$+ \sum_{i_{1}i_{2}i_{3}} c_{i_{1}i_{2}i_{3}} I^{D}_{i_{1}i_{2}i_{3}} + \sum_{i_{1}i_{2}} b_{i_{1}i_{2}} I^{D}_{i_{1}i_{2}}$$

take $D_s = #$ of spin states of internal particles

in D_s dimensions, gluons have D_s-2 spin states, quarks have $2^{(D_s-2)/2}$ spin states

$$A_n^{(D,D_s)} = \int d^D q \frac{N^{(D_s)}(q)}{d_1 \cdots d_n} \qquad \text{with } \mathbf{D} \le \mathbf{D}_s$$

G

dependence of A on D_s is linear $N^{(D_s)}(q) = N_0(q) + (D_s - 4)N_1(q)$

- compute N_0 , N_1 numerically separately through 2 different integer values of D_s

- on D_s -dimension cuts, spin density matrix is well defined

- choose basis of master integrals with no explicit D dependence in the coefficients
- after reduction to master integrals, continue D to 4-2 ϵ

procedure can be completely automated

Is NLO enough to describe data ?

Total cross section for inclusive Higgs production at LHC

NNLO prediction stabilises the perturbative series

Tuesday, March 2, 2010

Drell-Yan Z production at LHC

C. Anastasiou L. Dixon K. Melnikov F. Petriello 2003

Scale variations in Drell-Yan Z production

Tuesday, March 2, 2010

World average of $\alpha_S(M_Z)$ $\alpha_s(M_Z) = 0.1184 \pm 0.0007$

S. Bethke arXiv:0908.1135

vertical line and shaded band mark the world average

9

first time that shapes are included at NNLO

NNLO corrections may be relevant if

- the main source of uncertainty in extracting info from data is due to NLO theory: α_S measurements
- NLO corrections are large:
 Higgs production from gluon fusion in hadron collisions
- NLO uncertainty bands are too large to test theory vs. data: b production in hadron collisions
- NLO is effectively leading order: energy distributions in jet cones

NNLO state of the art

Drell-Yan W, Z production

total cross sectionHamberg van Neerven Matsuura 1990
Harlander Kilgore 2002fully differential x-sectionMelnikov Petriello 2006

Higgs production total cross section

fully differential x-section

Harlander Kilgore; Anastasiou Melnikov 2002 Ravindran Smith van Neerven 2003

Catani Cieri Ferrera de Florian Grazzini 2009

Anastasiou Melnikov Petriello 2004 Catani de Florian Grazzini 2007

$e^+e^- \rightarrow 3 \text{ jets}$

event shapes, α_s

de Ridder Gehrmann Glover Heinrich 2007 Weinzierl 2008

 $\alpha_s(M_Z^2) = 0.1224 \pm 0.0009 \,(\text{stat}) \pm 0.0009 \,(\text{exp}) \pm 0.0012 \,(\text{had}) \pm 0.0035 \,(\text{theo})$ Dissertori et al. 2009

 $\alpha_s(M_Z^2) = 0.1224 \pm 0.0039$ combined in quadrature

NNLO + NLL accuracy TH uncertainty much reduced

Tuesday, March 2, 2010

NNLO cross sections

Analytic integration

first method

Hamberg, van Neerven, Matsuura 1990 Anastasiou Dixon Melnikov Petriello 2003

flexible enough to include a limited class of acceptance cuts by modelling cuts as ``propagators''

- G
- Sector decomposition

Denner Roth 1996; Binoth Heinrich 2000 Anastasiou, Melnikov, Petriello 2004

flexible enough to include any acceptance cuts

cancellation of divergences is performed numerically

→ can it handle many final-state partons ?

- Subtraction
 - process independent

Kosower 1998, 2003; Weinzierl 2003 Frixione Grazzini 2004 de Ridder Gehrmann Glover 2004-5 Somogyi Trocsanyi VDD 2005-6

cancellation of divergences is semi-analytic can it be fully automatised ?

NNLO assembly kit

Tuesday, March 2, 2010

Two-loop matrix elements

two-jet production $qq' \rightarrow qq', \ q\bar{q} \rightarrow q\bar{q}, \ q\bar{q} \rightarrow gg, \ gg \rightarrow gg$ C.Anastasiou N. Glover C. Oleari M. Tejeda-Yeomans 2000-01 Z. Bern A. De Freitas L. Dixon 2002 photon-pair production $q\bar{q} \rightarrow \gamma\gamma, \ gg \rightarrow \gamma\gamma$ C.Anastasiou N. Glover M. Tejeda-Yeomans 2002 Z. Bern A. De Freitas L. Dixon 2002 $e^+e^- \rightarrow 3 \text{ jets} \qquad \gamma^* \rightarrow q\bar{q}g$ L. Garland T. Gehrmann N. Glover A. Koukoutsakis E. Remiddi 2002 $\bigcirc V+1 ext{ jet }$ production $q \overline{q} \rightarrow V g$ T. Gehrmann E. Remiddi 2002 Drell-Yan V production $q\bar{q} \rightarrow V$ R. Hamberg W. van Neerven T. Matsuura 1991 Higgs production $gg \to H$ (in the $m_t \to \infty$ limit) R. Harlander W. Kilgore; C. Anastasiou K. Melnikov 2002

Resummations: Higgs production from gluon fusion

- I gluon density is rapidly increasing as x → 0
 ⇒ Higgs production occurs near partonic threshold
- total energy of gluons in the final state is need to resum soft-gluon emission

$$E_X = \frac{\hat{s} - m_H^2}{2m_H} \to 0$$

At small q_T, NLO blows up

Factorisation of a multi-leg amplitude

Tuesday, March 2, 2010

Soft anomalous dimension

evolution equation for reduced soft anomalous dimension

$$\sum_{j \neq i} \frac{\partial}{\partial \ln \rho_{ij}} \Gamma^{\bar{\mathcal{S}}}(\rho_{ij}, \alpha_s) = \frac{1}{4} \gamma_K^{(i)}(\alpha_s)$$

Becher Neubert; Gardi Magnea 2009

solution

$$\Gamma^{\bar{\mathcal{S}}}(\rho_{ij},\alpha_s) = -\frac{1}{8}\hat{\gamma}_K(\alpha_s)\sum_{i\neq j}\ln(\rho_{ij})T_i\cdot T_j + \frac{1}{2}\hat{\delta}_{\bar{\mathcal{S}}}(\alpha_s)\sum_{i=1}^n C_i$$

with

$$\gamma_K^{(i)} = C_i \hat{\gamma}_K(\alpha_s) \qquad \hat{\gamma}_K = 2 \frac{\alpha_s(\mu^2)}{\pi} + K \left(\frac{\alpha_s(\mu^2)}{\pi}\right)^2 + K^{(2)} \left(\frac{\alpha_s(\mu^2)}{\pi}\right)^3 + \cdots$$

- only 2-eikonal-line correlations
- generalises 2-loop solution

Are there any 3(or more)-line correlations ? Gardi Magnea say maybe; Becher Neubert say no

Conclusions

- QCD is an extensively developed and tested gauge theory
- a lot of progress in the last few years in
 - MonteCarlo generators
 - NLO computations with many jets
 - NNLO computations
 - resummations
- better and better approximations of signal and background for Higgs and New Physics