SPARC scientific activities and plans

Massimo Ferrario on behalf of the SPARC team

39th LNF Scientific Committee Meeting - October 26, 2009

February

First Lasing @ 500 nm

March-April Velocity bunching

May – June

Cathode replacement & conditioning (& Und alignment after earthquake 04.06.09)

Veocity bunching & SASE

October

SASE Laser Comb THz

November

Seeding at 400, 266,160 nm

harmonic @162 nm

December

Laser Comb THz Velocity Bunching

FEL experiments: SASE at 500 nm

Shift of 24.07.09 (highest charge/current)

Energy	151.9 MeV					
Charge	420 pC					
I _{peak}	53 A					
$\epsilon_{\rm x}^{}/\epsilon_{\rm y}^{}$	2.5/2.9 mm mrad					
$\sigma_{ m z}$	2.65 ps					

The second

First experimental evidence of SASE at 500 nm on February 17th

5 undulator sections set at resonance, the 6° section gap is slowly tuned over the resonance

6UM

Vertical distribution

Wave Length

Comparison with simulations

- Third harmonic measured only with 6 undulators
- Perseo 1h & Perseo 3h represent 50 Perseo TD simulations
- Error bars represent 1 standard deviation

Spectral width vs z

Further Injector Improvements

Higher gradient 8 MW ==> 10 MW Gun Vacuum 10⁻⁹ mbar ==> 10⁻¹⁰ mbar New Gun Higher charge ==> 1 nC New Laser injection set up Cathode QE FEL experiments: seeding and synchronization

Optimization of the FEL process efficiency Brillance maximization and Laser seeding

Schematics of a seeded FEL process in a dedicated facility. **Stability required ≈ few 100s fs (... challenging!)**

Ti:Sa Regenerative amplifier 800 nm - 2.5 mJ – 1 kHz + High order harmonics 400 & 266 nm + High order armonics in gas: 266, 160, 114 nm High Energy

Short duration Spatial and temporal Coherence

Fig. 31. Lay-out of the harmonic chamber for the seeding experiment at SPARC. The first chamber is dedicated to the production of harmonics in gas. The second chamber is required for the opical mode adaptation.

1) The seeding laser system is a regenerative amplifier, making use of a sample of the optical IR pulse train produced by the oscillator of the photocathode laser system. This makes the two lasers 100% time correlated.

2) The pulse of the laser oscillator are spaced by 12.6 ns (79.33 MHz). An optical delay line with a dynamic range > 12.6 ns allows shifting in time the 2 laser systems (and therefore the seed respect to the beam).

3) The trigger system allows to select the same pulse in the 2 laser systems for amplification.
4) A coarse (few ps) superposition of the beam and seed can be obtained by looking at the relative position of the pulses at the same target on a strek camera. SASE light (with seeding off) is the best candidate to identify the beam arrival time.

5) Fine tuning will be driven by observation and optimization of the seeding process.

SPARC Bunch Arrival Monitor (BAM) based on the resonant pulse stretching method

Bunch arrival jitter measured with the RF deflector

SPARC RF deflector

Image of a SPARC bunch vertically streaked on a target

σ_t ≈ 150 fS_{RMS}

THz at SPARC

Optical setup for preliminary intensity measurements (october 2009)

First THz signal on the piroelectrict detector observed Saturday 24th

Ele Edit Utility Window Help INSTRUMENTS TIME FREQ XY INSTRUMENTS TIME FREQ XY Instruments Time FREQ XY Instruments Time FREQ XY Instruments Time FREQ Y Instruments Time FREQ Y Instruments Time Freq Y Instruments Time Freq Y Instruments Freq Y Instruments Freq Instruments Freq Y Instruments Freq Y Instruments Freq Y Instruments Freq Y Instruments Freq Y Instruments Freq Y Freq Y Instruments Instruments <th>E 1</th> <th>: NI-</th> <th>SCOPE</th> <th>Soft F</th> <th>ront Pa</th> <th>nnel - F</th> <th>PCI-510</th> <th>)5 (D</th> <th>ev1)</th> <th></th> <th></th> <th></th> <th></th> <th>_ 🗆 🔀</th>	E 1	: NI-	SCOPE	Soft F	ront Pa	nnel - F	PCI-510)5 (D	ev1)					_ 🗆 🔀
NATIONAL INSTRUMENTS TIME FREQ XY Image: Structure of the structur	Eile	Edit	Utility	<u>W</u> indow	Help							2		
Image: Street of the street			NATION	AL	TIM	E	REO	X	7			Channel		Horizontal
Image: Solution of the second seco			NSTRUM	IEN IS								0	1	Ref Position
Volts/Div Volts/Div Volts/Div Volts/Div Volts/Div Volts/Div Volts/Div Volts/Div Volts/Div Volts/Div Volts/Div Volts/Div Coupling AC Volts/Div Coupling AC Volts/Div Vo												Enabled	Enabled	10 50 90
Image: Solution of the second seco												Volts/Div	Volts/Div	Time/Div
Image: Solution of the second seco												$\left(\right)$		
Image: Complex of the second seco			12									I I		-
Image: Solution of the second seco												20 mV	200	50 0 mm
Coupling AC Coupling Coupling AC AC Coupling AC Coupling AC Co											1	2.0 111	3.0 V	50.0 ms
Trigger Type Mode Mode Morm				اب وزايل	de la de la della de la della de la della del		1 1 1 1	11. CA		u)., Lu				TRIG?
Trigger OK	8	- 1							d in tra					2.00 kS/s
Trigger Trigger Type Mode Immed. Norm				ľ				ľ		1 ⁶ .				OK
Immed. Norm		-r										Trigger	Mada	- CK
												Immed.	Norm 🗸	
		_	C									L		
🕨 Run 🚺 Pause 🔳 Stop 📼 Measure 🕂 Cursors 🕂 Auto Setup			Run			Pause	•		Sto	P	וההנינו	Measure	Cursors	Auto Setup
								-					4	

Task #1: SPARC beam diagnostics

Inverse Fourier transform of the CTR power spectrum provides $\mbox{-the bunch length }\sigma$

•the bunch longitudinal form factor f_{λ} .

Example from Brookhaven:

High Brightness beam experiments: Velocity Bunching

Velocity bunching concept

If the beam injected in a long accelerating structure at the crossing field phase and it is slightly slower than the phase velocity of the RF wave, it will slip back to phases where the field is accelerating, but at the same time it will be chirped and compressed.

The key point is that compression and acceleration take place at the same time within the same linac section, actually the first section following the gun, that typically accelerates the beam, under these conditions, from a few MeV (> 4) up to 25-35 MeV.

Electron beam parameters at the linac exit

C-factor versus injection phase

Measurement results with compression 3

	No Compression	Compression 3
Bunch Charge	280 pC	280 pC
Injection phase	0 deg	-89 deg
Beam Energy	148 MeV	100 MeV
Total energy spread	0.1 %	1.0 %
Rms Bunch Length	3.1 ps	0.97 ps
Norm emittances x-plane	1.85 µm	2.12 μm
	1.4 μm	6.2 μm
	solenoids off	solenoids off
Norm emittances y-plane	1.65 <mark>µ m</mark>	1.45 μm
	1.5 μm	4.0 μm
	solenoids off	solenoids off
Geometric mean $\sqrt{\varepsilon_{nx}\varepsilon_{ny}}$	1.75 μm	1.75 μm
Solenoid field	450 Gauss	450 Gauss
	0	0

Slice Emittance

No Compression ----- Compression

Low charge - extreme compression 17

Laser Comb

Laser Comb: a train of THz bunches

- P.O.Shea et al., Proc. of 2001 IEEE PAC, Chicago, USA (2001) p.704.

- M. Ferrario. M. Boscolo et al., Int. J. of Mod. Phys. B, 2006 (Taipei 05 Workshop)

IR laser beam induced modulation

A. Bacci - RETAR

Laser IR 0.8 micron E0 = 500 MV/m @ 72 Deg Bunch radius = 5 micron Laser pulse length = 2 ps Injection phase= 29.1 Deg

Gun table

IR optical transfer line

m = hr mirror 45 deg 266 nm bs = thin beam splitter

SPARC next runs

Seeding

Velocity Bunching => SASE Single Spike THz radiation

Laser Comb

Laser IR beam induced modulation