germano bonomi - university of brescia & INFN pavia

on behalf of the FINUDA collaboration

39th LNF scientific committee - 26/10/2009

FINUDA COLLABORATION

INTRODUCTION

Trieste University & INFN Trieste

L.N.F. / INFN Frascati

FINUDA data takings

data taking	oct 2003 - jan 04	nov 2006 jun 07
int. luminosity	220 pb ⁻¹	960 pb ⁻¹
daily luminosity	6 pb ⁻¹	10 pb ⁻¹
Total events (M)	30	200
Targets	⁶ Li, ⁷ Li, ¹² C, ²⁷ Al, ⁵¹ V	⁶ Li, ⁷ Li, ⁹ Be, ¹³ C, D ₂ O

Shahid Beheshty University

OUTLINE

hypernuclear spectroscopy

key features of the spectrometer

very thin targets (0.1 ÷ 0.3 g/cm²) transparency → high resolution spectroscopy

coincidence measurement with large acceptance complete event 🛏 decay mode study

different targets in the same run

➡ high degree of flexibility

simultaneous tracking of μ^{*} from the K^+ decay $K^+ \to \mu^+ \nu_{\mu} \leftrightarrows$ energy and rate calibration

the "strangeness exchange" reaction **it's not** the only mechanism for a production of a **negative pion** in the **K-N interaction**

$$\begin{split} & 1K^{-} + n \to \Lambda + \pi^{-} \\ & 2K^{-} + p \to \Sigma^{-} + \pi^{+} \\ & 3K^{-} + (np) \to \Sigma^{-} + p \\ & 4K^{-} \to \mu^{-} + \overline{\nu}_{\mu} \\ \end{split}$$
 backgrounds

1) fit the experimental distribution with the sum of N gaussians (for the signal) and 4 histograms for the background - the mean and the sigma of the gaussians are free to move around the input values

2) we repeat the fit with a more sophisticated fit tool fixing also the mean values and the sigma of the gaussians (*)

Fits MC fractions to data histogram (a la HMCMLL, see R. Barlow and C. Beeston, Comp. Phys. Comm. 77 (1993) 219-228, and http://www.hep.man.ac.uk/~roger/hfrac.f).

B_{Λ} energy measurements

- absolute scale of the energy known at the level of $\ensuremath{\text{O.2}}$ MeV

- possible systematic of the fit of 0.2-0.3 MeV formation probability

> capture Rate per stopped K #1: 0.041 ± 0.006 ± 0.005 % #2: 0.058 ± 0.008 ± 0.006 % #3: 0.043 ± 0.006 ± 0.005 % #4: 0.052 ± 0.007 ± 0.006 %

FIRST WORLD MEASUREMENT

Total in the bound region: 0.14 ± 0.01 ± 0.02 %

formation probability

capture Rate per stopped K #1: 0.006 ± 0.001 ± 0.001 % #2: 0.014 ± 0.002 ± 0.002 % #3: 0.018 ± 0.002 ± 0.002 % #4: 0.024 ± 0.003 ± 0.003 % #5: 0.035 ± 0.005 ± 0.004 %

Total in the bound region: 0.062 ± 0.005 ± 0.008 %

FIRST WORLD MEASUREMENT

PHYSICAL REVIEW C, VOLUME 65, 034607

¹³_AC hypernucleus studied with the ¹³C($K^-, \pi^-\gamma$) reaction gion. The excitation energies of the $1/2^-$ and $3/2^-$ states were obtained as 10.982 ± 0.031 (stat) ± 0.056 (syst) and 10.830 ± 0.031 (stat) ± 0.056 (syst) MeV, respectively. The

> excitation energies are referred to the ground state $B_{\Lambda} = -11.22 \pm 0.08 \text{ MeV}$

> > [M. Juric et al. Nucl. Phys. B 52 (1973) 1]

HYPERNUCLEAR SPECTROSCOPY

-20

per stopped $K^{-}(\%)$

 0.013 ± 0.004

 0.030 ± 0.005

 0.056 ± 0.008

 0.112 ± 0.014

-30

Formation Probability

per $\Lambda\pi^{-}(\%)$

 0.37 ± 0.13

 0.86 ± 0.30

 2.0 ± 0.7

 3.2 ± 1.1

CAPTURE RATE (PER STOPPED KAON) VS A

in theory and experiment

14 October 2009

mesonic & non-mesonic weak decays

39th LNF scientific committee 26/10/2009

MESONIC WEAK DECAY

FINUDA Coll., PLB 681 (2009) 139 New results on mesonic weak decay of p-shell A-hypernuclei

Correspondence with the calculated strenght functions T. Motoba et al, Nucl. Phys. A 489 (**1988**) 683. A. Gal, Nucl. Phys. A 828 (**2009**) 72.

 $^{15}\Lambda N_{g.s}$ spin not known. $J^{\pi}[^{15}\Lambda N_{g.s.}] = 3/2^+$ D.J.Millener, A.Gal, C.B.Dover Phys. Rev. C 31 (1985) 499.

Spin ordering not obtained from γ -rays of $^{16}\Lambda O$ M.Ukai et al. Phys. Rev.C 77 (2008) 054315.

First experimental determination J^π (¹⁵ N_{g.s.}) = 3/2⁺ from spectrum shape

and decay rate value

$$\Gamma_{\pi^{-}}/\Gamma_{\Lambda} = 0.108 \pm 0.038^{+0.014}_{-0.013}$$

NON-MESONIC WEAK DECAY

THE METHOD

FINUDA Coll., NPA 804 (2008) 151

Measurement of the proton spectra from non-mesonic weak decay of $_{\Lambda}$ He5 $_{\Lambda}$ Li7 and $_{\Lambda}$ C12

39th LNF scientific committee 26/10/2009

NON-MESONIC WEAK DECAY

two body non-mesonic rare decays

NON-MESONIC RARE DECAY

⁴ **He hyperfragments** (from all targets)

$^{4}\Lambda He \rightarrow dd$ - d momentum: 570 MeV/c

Total probability (yield) per stopped K⁻ Mean value: $(2.82 \pm 0.62) 10^{-5}/K_{\text{stop}}$ For ⁶Li targets: $(5.22 \pm 1.90) 10^{-5}/K_{\text{stop}}$

based on the capture rate per K⁻ at rest measured for ${}^{4}\Lambda$ He in 4 He (Tamura et al.)

Γ_{dd} (⁶Li) = (0.3 ± 0.1)% Γ_{Λ}

⁴∧He → pt - p momentum: 508 MeV/c Total probability (yield) per stopped K⁻ Mean value: $(5.42 \pm 3.43) \ 10^{-5}/K^{-}_{stop}$

For ⁶Li targets: (18.53 ± 14.80) 10^{-5} /K⁻_{stop}

Under the above assumption

 $\Gamma_{\rm pt}$ (⁶Li) = (1.1 ± 0.9)% $\Gamma_{\Lambda^{:}}$

 ${}^{4}\Lambda He \rightarrow dd$ 16 complete events + 43 semi-inclusive events with a missing π

 ${}^{4}\Lambda He \rightarrow pt$ 21 events selected with (unfortunately) high S/N ratio

dd/pt ratio: the pt decay channel is the favoured one

39th LNF scientific committee 26/10/2009

K⁻ absorption by few nucleons

229

669 (2008)

FINUDA Coll., PLB

Study of hypernuclei and their decays:

One nucleon absorption (pion-emission)

 $K^- N \rightarrow \pi Y$ $K \to \Lambda(\Sigma) \pi X$

elementary reaction

nuclear reaction

Search for possible deeply bound kaon states:

Two nucleon absorption (no-pion emission)

 $K^{-}(2N) \rightarrow NY$ elementary reaction $K^{-}A \rightarrow \Lambda[\Sigma] pX$

 $K^{-}A \rightarrow \Lambda[\Sigma] nX$

nuclear reaction

nuclear reaction

FINUDA Coll., PRL 94 (2005) 212303 Evidence for a Kaon-Bound State K⁻pp Produced in K⁻ Absorption Reactions at Rest

Three nucleon absorption (no-pion emission)

 $K^{-}(3N) \rightarrow NNY$ elementary reaction

 $K^{-}A \rightarrow \Lambda[\Sigma] dX$

nuclear reaction

FINUDA Coll., PLB 654 (2007) 80 Correlated Λd pairs from the $K^{-}(stop)A \rightarrow \Lambda dA'$ reaction

Four nucleon absorption (no-pion emission)

 $K^{-}(4N) \rightarrow NNNY$

elementary reaction

 $K \to \Lambda[\Sigma] tX$

nuclear reaction

FINUDA Coll., PLB 669 (2008) 229 Correlated Λt pairs from the apsorption of K⁻ at rest in light nuclei

A bump has been observed

Two nucleon absorption

 $K^- + (pp) \to \Lambda p$

peak expected at 2.34 GeV

$$K^- + (pp) \to \Sigma^o p \to \Lambda \gamma p$$

74 MeV lower distribution, and broadened

Kaon nuclear bound state formation
$$\begin{split} K^- + (pp) &\to X \to \Lambda p \\ K^- + (pp) \to X \to \Sigma^o p \to \Lambda \gamma p \end{split}$$

Alternative interpretations of the Λp bump were suggested in the meanwhile

39th LNF scientific committee 26/10/2009

FINUDA Coll., PRL 94 (2005) 212303

Evidence for a Kaon-Bound State K⁻pp Produced in K⁻ Absorption Reactions at Rest

K ABSORPTION BY FEW NUCLEONS

K⁻ ABSORPTION BY FEW NUCLEONS

Λd invariant mass to measure K⁻ ppn absorption

At invariant mass to measure K⁻ ppnn absorption (A = ⁶Li,⁷Li,⁹Be)

Only one measurement existed so far, from bubble chamber: 3 events by kin fit

40 events observed in FINUDA - Capture rate: $\sim 1 \times 10^{-3} / K^{-1}$

Conclusions

FINUDA is committed to complete its analysis on important topics such as:

- hypernuclear spectroscopy
- mesonic and non-mesonic weak
- non-mesonic rare decays
- K absorption with few nucleons
- ... others ...

- limited by statistics
- FINUDA is exploiting the data collected in the 2 (short) data taking

FINUDA @ hypX

Recent results on mesonic and non-mesonic weak decays - E. Botta (Plenary session)

Recent results on K- absorption by few nucleons and the Bound Kaonic Nuclear State Puzzle S. Piano (Plenary session)

FINUDA hypernuclear spectroscopy - G. Bonomi (Parallel session)

Study of two-body non mesonic decays of light hypernuclei with FINUDA *A. Filippi (Parallel session)*

A study of the K-(stop) A -> Sigma (+-) pi)-+) A' reaction - N. Grion (Parallel session)

Inclusive proton spectra from stopped K- absorption in nuclei with FINUDA *P. Genova (Parallel session)*

Summary talk - T. Bressani (Plenary session)

POSTERS:

Search for neutron rich hypernuclei with FINUDA - L. Benussi Study of Λ production on different nuclei with FINUDA - P. Gianotti

FINUDA was the single experiment with the largest number of accepted contributions, and the largest community (excluding the organizer's one)

