TOP-MASS MEASUREMENTS: NLO+PS EFFECTS & RENORMALONS

Silvia Ferrario Ravasio* IPPP Durham

Laboratori Nazionali di Frascati

Seminario teorico, 19th March 2019

Based on

- S.F.R., T. Ježo, P. Nason and C. Oleari
- S.F.R., P. Nason and C. Oleari

[arxiv:1801.03944] [arxiv:1810.10931]

1/49

• t quark one of the most peculiar particles in the SM; e.g. $y_t \sim 1$.

- t quark one of the most peculiar particles in the SM; e.g. $y_t \sim 1$.
- t only quark that **decays** instead of hadronizing

- t quark one of the most peculiar particles in the SM; e.g. $y_t \sim 1$.
- t only quark that **decays** instead of hadronizing
- Accurate knowledge of m_t useful for
 - precision tests of the SM

Figure: Global fit to electroweak precision observables [arXiv:1407.3792]

 $\exists \rightarrow$

- t quark one of the most peculiar particles in the SM; e.g. $y_t \sim 1$.
- $\bullet\ t$ only quark that decays instead of hadronizing
- Accurate knowledge of m_t useful for
 - precision tests of the SM
 - addressing the issue of vacuum stability

- t quark one of the most peculiar particles in the SM; e.g. $y_t \sim 1$.
- t only quark that **decays** instead of hadronizing
- Accurate knowledge of m_t useful for
 - precision tests of the SM
 - addressing the issue of vacuum stability
 - exotic particle production

- t quark one of the most peculiar particles in the SM; e.g. $y_t \sim 1$.
- t only quark that **decays** instead of hadronizing
- Accurate knowledge of m_t useful for
 - precision tests of the SM
 - addressing the issue of vacuum stability
 - exotic particle production

We want a precise determination of \mathbf{m}_t in a given renormalization scheme

Top-quark mass

- Direct measurements give us the most precise determination, provided that the theoretical errors are small and under control.
 - CMS: $m_t = 172.44 \pm 0.13 \text{ (stat)} \pm 0.47 \text{ (syst)} \text{ GeV}$
 - ATLAS: $m_t = 172.51 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (syst)} \text{ GeV}$

Top-quark mass

- Direct measurements give us the most precise determination, provided that the theoretical errors are small and under control.
 - CMS: $m_t = 172.44 \pm 0.13 \text{ (stat)} \pm 0.47 \text{ (syst)} \text{ GeV}$
 - ATLAS: $m_t = 172.51 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (syst)} \text{ GeV}$
 - $\checkmark\,$ Direct measurements employ Monte Carlo (MC) generators: is the MC mass the pole mass?

Need for MC event generators able to handle with intermediate coloured resonances.

Top-quark mass

- Direct measurements give us the most precise determination, provided that the theoretical errors are small and under control.
 - CMS: $m_t = 172.44 \pm 0.13 \text{ (stat)} \pm 0.47 \text{ (syst)} \text{ GeV}$
 - ATLAS: $m_t = 172.51 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (syst)} \text{ GeV}$
 - $\checkmark\,$ Direct measurements employ Monte Carlo (MC) generators: is the MC mass the pole mass?

Need for MC event generators able to handle with intermediate coloured resonances.

 \checkmark Renormalon ambiguity:

$$c_n \alpha_s^n, \qquad c_n \to \Gamma(n)$$

Resummed series ambiguity $\propto \Lambda_{QCD}$.

- 110 MeV [Beneke, Marquad, Nason, Steinhauser 1605.03609].
- 250 MeV [Hoang, Lepenik, Preisser, 1706.08526].

Although not dramatic now, it is interesting to study the impact of the renormalons on top-mass related observables

つくで

Part I: Accurate NLO+PS predictions for top-pair production

Based on:

"A Theoretical Study of Top-Mass Measurements at the LHC Using NLO+PS Generators of Increasing Accuracy," with T. Ježo, P. Nason and C. Oleari, Eur.Phys.J. C78 (2018) no.6, 458

 $\bullet\,$ LHC: t mostly produced in pairs

- LHC: t mostly produced in pairs
- many ways to infer m_t , the most precise is the template method

-

- \bullet LHC: t mostly produced in pairs
- many ways to infer m_t, the most precise is the template method
 Top momentum reconstruction from its decay products.

- $\Rightarrow B\text{-jet};$
- $\Rightarrow W$ decay products:
 - \rightarrow charged lepton + neutrino

 \rightarrow two light jets

- LHC: t mostly produced in pairs
- many ways to infer m_t , the most precise is the template method
 - **①** Top momentum reconstruction from its decay products.
 - **②** Given a MC event generator, produce several templates varying the input mass m_t .

 $\exists \rightarrow$

- \bullet LHC: t mostly produced in pairs
- many ways to infer m_t , the most precise is the template method
 - Top momentum reconstruction from its decay products.
 - **②** Given a MC event generator, produce several templates varying the input mass m_t .
 - Solution Extract the parametric dependence on the input mass m_t .

ヨト・モート

-

- \bullet LHC: t mostly produced in pairs
- many ways to infer m_t , the most precise is the template method
 - Top momentum reconstruction from its decay products.
 - **②** Given a MC event generator, produce several templates varying the input mass m_t .
 - **(a)** Extract the parametric dependence on the input mass m_t .
 - **(4)** The m_t value that fits the data the best is the extracted mass.

- \bullet LHC: t mostly produced in pairs
- many ways to infer m_t , the most precise is the template method
 - **(**) Top momentum reconstruction from its decay products.
 - **②** Given a MC event generator, produce several templates varying the input mass m_t .
 - **(a)** Extract the parametric dependence on the input mass m_t .
 - **(4)** The m_t value that fits the data the best is the extracted mass.
 - m_t can depend on the MC used

⇒ if A is more accurate than B, use A ⇒ otherwise $|m_t^A - m_t^B|$ contributes to the systematic uncertanty;

Monte Carlo Event generators

• Current standard NLO+PS: hard process described with NLO accuracy, further emissions handled by the PS in the soft and collinear limit.

Monte Carlo Event generators

• Current standard NLO+PS: hard process described with NLO accuracy, further emissions handled by the PS in the soft and collinear limit.

• POWHEG BOX is an NLO event generator, based on the POWHEG method. It generates the hardest emission. The event is then completed by standard SMC that implements the PS. [arXiv: hep-ph/0409146]

Sudakov form factor:
$$\Delta(\mathbf{k}_{\perp}) = \exp\left\{-\frac{\int d\phi^{\mathrm{rad}} \,\theta(k_{\perp}^{\mathrm{rad}} - \mathbf{k}_{\perp}) \,R}{B}\right\}$$

Monte Carlo Event generators

• Current standard NLO+PS: hard process described with NLO accuracy, further emissions handled by the PS in the soft and collinear limit.

• POWHEG BOX is an NLO event generator, based on the POWHEG method. It generates the hardest emission. The event is then completed by standard SMC that implements the PS. [arXiv: hep-ph/0409146]

Sudakov form factor:
$$\Delta(\mathbf{k}_{\perp}) = \exp\left\{-\frac{\int d\phi^{\mathrm{rad}} \,\theta(k_{\perp}^{\mathrm{rad}} - \mathbf{k}_{\perp}) \,R}{B}\right\}$$

• Pythia8 and Herwig7 include radiation with a k_{\perp} smaller than the POWHEG emission one.

Interface between POWHEG BOX and Shower MC

• Pythia8 [Sjöstrand et al., arXiv:1410.3012] is a k_{\perp} -ordered shower.

 \Rightarrow Natural matching with POWHEG radiation.

Interface between POWHEG BOX and Shower MC

• Pythia8 [Sjöstrand et al., arXiv:1410.3012] is a k_{\perp} -ordered shower.

 \Rightarrow Natural matching with POWHEG radiation.

• Herwig7 [Bahr et al., arXiv:0803.0883], [Bellm et. al, arXiv:1512.01178] is an angular-ordered shower.

 \Rightarrow Truncated-vetoed showers are known to give a contribution; so only a vetoed shower is implemented.

• hvq is the first $t\bar{t}$ -production generator implemented in POWHEG BOX. [arXiv:0707.3088, Frixione, Nason, Ridolfi]

- \Rightarrow NLO corrections in production;
- \Rightarrow decay performed at LO using reweighting;
- \Rightarrow approximate spin correlation and offshell effects.
- Heavily used by the experimental community:
 - \Rightarrow arXiv:1803.10178, ATLAS
 - \Rightarrow arXiv:1803.09678, ATLAS
 - \Rightarrow arXiv:1803.06292, CMS
 - \Rightarrow arXiv:1803.03991, CMS

 $b\bar{b}4\ell$

• $b\bar{b}4\ell$ is the latest $t\bar{t}$ -production generator implemented in POWHEG BOX.

[arXiv:1607.04538, Ježo, Lindert, Nason, Oleari, Pozzorini].

- $\Rightarrow pp \rightarrow b\bar{b}\ell\bar{\nu}_{\ell}\bar{l}\nu_{l}$ at NLO;
- \Rightarrow exact spin correlation and offshell effects at NLO;
- \Rightarrow interference with process sharing the same final state at NLO;
- \Rightarrow interference of radiation in production and decay.

• $b\bar{b}4\ell$ is the latest $t\bar{t}$ -production generator implemented in POWHEG BOX.

[arXiv:1607.04538, Ježo, Lindert, Nason, Oleari, Pozzorini]. $\Rightarrow pp \rightarrow b\bar{b}\ell\bar{\nu}_{\ell}\bar{l}\nu_{l} \text{ at NLO};$

- \Rightarrow exact spin correlation and offshell effects at NLO;
- \Rightarrow interference with process sharing the same final state at NLO;
- \Rightarrow interference of radiation in **production and decay**.
- New resonance-aware formalism that generates emissions preserving the virtuality of the intermediate resonances. This new formalism also offers the opportunity to generate multiple emissions [Ježo, Nason, arXiv:1509.09071].

• $b\bar{b}4\ell$ is the latest $t\bar{t}$ -production generator implemented in POWHEG BOX.

[arXiv:1607.04538, Ježo, Lindert, Nason, Oleari, Pozzorini]. $\Rightarrow pp \rightarrow b\bar{b}\ell\bar{\nu}_{\ell}\bar{l}\nu_{l} \text{ at NLO};$

- \Rightarrow exact spin correlation and offshell effects at NLO;
- \Rightarrow interference with process sharing the same final state at NLO;
- \Rightarrow interference of radiation in **production and decay**.
- New resonance-aware formalism that generates emissions preserving the virtuality of the intermediate resonances. This new formalism also offers the opportunity to generate multiple emissions [Ježo, Nason, arXiv:1509.09071].
- Pythia8 and Herwig7 veto radiation in production harder than the POWHEG one. Radiation from resonances is left, by default, unrestricted.
- The user can implement the same veto algorithms acting on radiation off resonances.

イヨト・イヨト

-

ttb_NLO_dec

In this slides I will compare only $b\bar{b}4\ell$ and hvq, but there is also

• ttb_NL0_dec is the precursor of $b\bar{b}4\ell$, [arXiv:1412.1828], Compbell, Ellis, Nason and Re]

- \Rightarrow NLO corrections in production and decay using NWA.
- \Rightarrow Spin correlation and offshell effects exact at LO.
- \Rightarrow Interference with process sharing the same final state at LO.
- Most accurate generator for semi leptonic and hadronic top decay.

Soon semileptonic decay with full off-shell effects and $b\bar{b}4\ell$ -like non-resonant contributions (by Ježo, Pozzorini)

• NLO+PS interface analogous to $b\bar{b}4\ell$

Matrix Element Corrections

- If the *t* decay is generated at LO, Pythia8.2 and Herwig7.1 can modify the shower algorithm in order to generate the hardest emission using the exact Matrix Element for one additional real emission: MEC.
- In this way, also when using hvq, the t decay with an extra emission is described with exact LO matrix elements.

Part I A: comparison among POWHEG generators showered with Pythia8.2

Reconstructed-top mass

- We take m_{Wb_j} as a proxy for all top-mass sensitive observables that rely upon the mass of the decay products.
- Experimental resolution effects are simply represented as a Gaussian smearing ($\sigma = 15 \text{ GeV}$):

$$\tilde{f}(x) = \mathcal{N} \int \mathrm{d}y \, f(y) \exp\left(\frac{-(x-y)^2}{2\sigma^2}\right) \,.$$

• We fit the peak position $m_{Wb_i}^{\max}$ using a Skewed Lorentian.

•
$$\Delta m_t \simeq -\Delta m_{Wb_j}^{\max}$$

ㅋㅋ ㅋㅋㅋ

reconstructed-top mass: which NLO generator?

Brief look without smearing:

- Large shape differences with *hvq* if matrix elements corrections (MEC) are off.
- With MEC, differences among the generators of the order of 10-20 MeV.

reconstructed-top mass: which NLO generator?

1 GeV difference reduced to 150 MeV when MEC are turned on.

-

B-jet energy peaks

- Based on arxiv:1603.03445 (Agashe, Kim, Franceschini, Schulze).
- Investigated by CMS in [CMS-PAS-TOP-15-002], that finds

 $m_t = 172.29 \pm 1.17 \,(\text{stat}) \pm 2.66 \,(\text{syst}) \,\,\text{GeV}$.

- Purely hadronic observable, independent from the top production dynamics.
- At LO, neglecting off-shell effects, in the top frame we have:

$$E_{b_j} = \frac{m_t^2 - m_W^2}{2m_t}$$

- In the lab frame the distribution is squeezed, but the peak position does not vary.
- After the inclusion of perturbative and non-perturbative effects, for $m_t \approx m_{t,c}$, we have:

$$E_{b_j}^{\max} = O_{\rm c} + B(m_t - m_{t,c})$$

B-jet energy peaks

프 > 프

B-jet energy peaks: which NLO generator?

• Large difference between $b\bar{b}4\ell$ and hvq ($\Delta E_{b_j}^{\max} \approx -0.5 \text{ GeV}$, $\Delta m_t \approx 1 \text{ GeV}$), but still well below the systematic error quoted by CMS (**2.66 GeV**).

Leptonic observables

- Based on arXiv:1407.2763 (Frixione, Mitov).
- Independent from non-perturbative physics effects.
- Similar analysis performed by ATLAS in arXiv:1709.09407, that finds

 $m_t = 173.2 \pm 0.9 \,(\text{stat}) \pm 0.8 \,(\text{syst}) \pm 1.2 \,(\text{theo}) \,\,\text{GeV}$.

- Measure $\langle O_i \rangle$ for several O_i : $\left\{ p_{\perp}(\ell^+), p_{\perp}(\ell^+\ell^-), m(\ell^+\ell^-), (E(\ell^+) + E(\ell^-)), (p_{\perp}(\ell^+) + p_{\perp}(\ell^-)) \right\}$.
- Assume $\langle O_i \rangle = O_{c,i} + B_i(m_t m_{t,c})$, where $O_{c,i}$ and B_i can be determined with a MC generator.
- Assuming $\langle O_i \rangle^{\exp} = O_{c,i}^{b\overline{b}4\ell}$, we extract $m_{t,i}$ and $\Delta m_{t,i}$ (due to statistical, scale, PDF etc. variations).

Leptonic observables

$$\langle O \rangle = O_{\rm c}^{\rm MC} + B^{\rm MC}(m_t - m_{t,c}) \Rightarrow m_t^{\rm MC} = m_{t,c} + \frac{\langle O \rangle^{\rm exp} - O_{\rm c}^{\rm MC}}{B^{\rm MC}}$$

- Central $b\bar{b}4\ell$ prediction = $\langle O \rangle^{\exp}$

-hvq not able to describe obs depending on spin-correlation effects.

Realistic analyses

 $m_{bl}^{\min \max} = \min \left[\max \left(m_{b_1 l_1}, m_{b_2 l_2} \right), \max \left(m_{b_1 l_2}, m_{b_2 l_1} \right) \right]$ Phys. Rev. Lett. **121**, no. 15, 152002 (2018), **ATLAS**

- The generator explicitly including interference (Powheg-Pythia8 lvlvbb) shows excellent agreement over the full spectrum.
- hvq (+ Wt contribution) is not bad, but not as good as $b\bar{b}4\ell$.

The differences with the latest generators are large enough to justify their use but not enough to completely overturn the old measurements based on hvq. Part I B: comparison between Pythia8.2 and Herwig7.1 showers applied to POWHEG BOX events

reconstructed-top mass: $bb4\ell$

• Large shape-difference between Pythia8.2 and Herwig7.1 leads to a huge displacement after smearing: $\Delta m_t \approx 1$ GeV.

 $\exists \rightarrow$

reconstructed-top mass: hvq

• Modest difference between Pythia8.2 and Herwig7.1: $\Delta m_t \approx 0.2 - 0.4 \text{ GeV}.$

프 > 프

Leptonic observables

• Large difference arises also for purely leptonic observables.

Note: n^{th} Mellin Moment of the Observable O: $\frac{\int O^n d\sigma}{\int d\sigma} = \langle O^n \rangle$.

-

Jet radius dependence

Different R dependence: it is possible that, by tuning the MC in order to fit the data, the discrepancies between Pythia8.2 and Herwig7.1 can be reduced.

Summary (I B)

What we have found:

- Pythia8.2: fair consistency among the several NLO+PS predictions.
- Herwig7.1:
 - large difference from Pythia8.2, in particular for $b\bar{b}4\ell$, where vetoed showers are necessary to handle radiation in decay.
 - 2 large difference between $b\bar{b}4\ell$ and hvq.

3.2

Summary (I B)

What we have found:

- Pythia8.2: fair consistency among the several NLO+PS predictions.
- Herwig7.1:
 - large difference from Pythia8.2, in particular for $b\bar{b}4\ell$, where vetoed showers are necessary to handle radiation in decay.
 - **2** large difference between $b\bar{b}4\ell$ and hvq.

Can we dismiss Herwig7?

- Pythia8.2: MEC and POWHEG very similar for a k_{\perp} -ordered shower.
- Herwig7.1: MEC and POWHEG *technically* different for an angular ordered shower (MEC applied to the hardest emission found at each step of the shower). The difference may be due to higher-order corrections and thus it should be taken into account.

• E • • E •

-

Conclusions Part I

- Our analysis is really crude.
- Only a realistic analysis performed by a experimental collaboration, after a tuning procedure, can estimate errors on direct measurements of m_t .
- Using several shower generators is the correct way to estimate errors on standard measurements.

• The minimum p_{\perp} allowed in Herwig7.1 PS is 1.223 GeV [arXiv 1708.01491, Reichelt, Richardson, Siodmok]. Thus POWHEG BOX should not try to generate softer emissions:

$$p_{\perp,\min}^{pwhg} = \sqrt{0.8} \text{ GeV} \rightarrow 1.223 \text{ GeV}$$

• The minimum p_{\perp} allowed in Herwig7.1 PS is 1.223 GeV [arXiv 1708.01491, Reichelt, Richardson, Siodmok]. Thus POWHEG BOX should not try to generate softer emissions:

$$p_{\perp,\min}^{\text{pwhg}} = \sqrt{0.8} \text{ GeV} \rightarrow 1.223 \text{ GeV}$$

• Let's consider a FSR splitting $a \to bc$ performed by Herwig7.1 PS. When b or c radiate, the kinematic reconstruction preserves q_a^2 .

Not justified by any first principle. By preserving the **virtuality** instead of the transverse momentum, the PS does not overpopulate the dead region and the **agreement with data improves**.

Silvia Ferrario Ravasio — MARCH 19th, 201 TOP MASS: NLO+PS & RENORMALONS 30/49

 $\bullet\,$ When Herwig7.1 produces the first emission from a decayed top $t \to W \, b \to W \, b \, g$

the virtuality of the bg pair is preserved in the following steps.

 $\bullet~$ The $b\bar{b}4\ell$ generator already provides the first emission

 $t \to W b g$

Herwig7.1 is not instructed to preserve the bg-pair virtuality q_{bg}^2 .

WWWARN!!!

 q^2 is preserved in FSR, but we may have also ISR from the incoming t that can degrade the top mass. Here we are neglecting ISR.

ヨト・モート

 $\bullet\,$ When Herwig7.1 produces the first emission from a decayed top $t \to W \, b \to W \, b \, g$

the virtuality of the bg pair is preserved in the following steps.

• The $b\bar{b}4\ell$ generator already provides the first emission

 $t \to W b g$

Herwig7.1 is not instructed to preserve the bg-pair virtuality q_{bg}^2 .

WWWARN!!!

- q^2 is preserved in FSR, but we may have also ISR from the incoming t that can degrade the top mass. Here we are neglecting ISR.
 - If we want the same to happen when showering $b\bar{b}4\ell$, we can built the veto in such a way that

• Emissions with $p_{\perp} > p_{\perp}^{\text{pwhg}}$ are vetoed;

At the end of the showering phase, we accept it with probability

$$r = \frac{\sqrt{\lambda(q_t^2, q_W^2, q_{bg}^{2, \text{end}})}}{q_{bg}^{2, \text{end}} - m_b^2} \times \frac{q_{bg}^{2, \text{pwhg}} - m_b^2}{\sqrt{\lambda(q_t^2, q_W^2, q_{bg}^{2, \text{pwhg}})}}$$

ttdec generator (NLO accurate) plus PS becomes equivalent to hvq (LO accurate) + PS + MEC

WWWARN!!!

This study is very preliminary, and possibly wrong, what really happens when showering a resonance is currently subject of investigation.

イロト イヨト イヨト イヨト

э

Part II: Renormalons effects in top-mass sensitive observables

Based on: "All-orders behaviour and renormalons in top-mass observables" with P. Nason and C. Oleari, arXiv:1801.10931

IR Renormalons

• QCD is affected by **infrared slavery**:

Silvia Ferrario Ravasio — March 19th, 201 Top Mass: NLO+PS & RENORMALONS 34/49

3.5 3

IR Renormalons

• QCD is affected by **infrared slavery**:

$$\alpha_s(\mathbf{k}) = \frac{\alpha_s(Q)}{1 + 2b_0\alpha_s(Q)\log\left(\frac{k}{Q}\right)} = \frac{1}{2b_0\log\left(\frac{k}{\Lambda_{\rm QCD}}\right)}; \quad b_0 = \frac{11C_{\rm A}}{12\pi} - \frac{n_t T_{\rm R}}{3\pi} > 0$$

• All orders contribution coming from low-energy region

IR Renormalons

• QCD is affected by **infrared slavery**:

$$\alpha_s(\mathbf{k}) = \frac{\alpha_s(Q)}{1 + 2b_0\alpha_s(Q)\log\left(\frac{k}{Q}\right)} = \frac{1}{2b_0\log\left(\frac{k}{\Lambda_{\rm QCD}}\right)}; \quad b_0 = \frac{11C_{\rm A}}{12\pi} - \frac{n_t T_{\rm R}}{3\pi} > 0$$

• All orders contribution coming from low-energy region

$$\underbrace{\int_{0}^{Q} \mathrm{d}k \, k^{p-1} \alpha_{s}(Q)}_{\text{NLO}} \Longrightarrow \underbrace{\int_{0}^{Q} \mathrm{d}k \, k^{p-1} \alpha_{s}(\boldsymbol{k})}_{\text{all orders}} = \boxed{Q^{p} \times \alpha_{s}(Q) \sum_{n=0}^{\infty} \left(\frac{2 \, b_{0}}{p} \, \alpha_{s}(Q)\right)^{n} \, \boldsymbol{n}!}$$

• Asymptotic series $\Rightarrow \text{ Minimum for } n_{\min} \approx \frac{p}{2b_0 \alpha_s(Q)}$ $\Rightarrow \text{ Size } Q^p \times \alpha_s(Q) \sqrt{2\pi n_{\min}} e^{-n_{\min}} \approx \boxed{\Lambda_{QCD}^p}$ We are interested in p = 1, i.e. in linear renormalons

-

Large n_f limit

• All-orders computation can be carried out exactly in the large number of flavour n_f limit

프 > 프

Large n_f limit • All-orders computation can be carried out exactly in the large

number of flavour n_f limit

$$\begin{array}{l} & \overbrace{-ig^{\mu\nu}}{k^2 + i\eta} \rightarrow \frac{-ig^{\mu\nu}}{k^2 + i\eta} \times \frac{1}{1 + \Pi(k^2 + i\eta, \mu^2) - \Pi_{\rm ct}} \\ & \\ & \\ \Pi(k^2 + i\eta, \mu^2) - \Pi_{\rm ct} = \alpha_s(\mu) \left(-\frac{n_f T_{\rm R}}{3\pi} \right) \left[\log\left(\frac{|k^2|}{\mu^2}\right) - i\pi\theta(k^2) - \frac{5}{3} \right] \end{array}$$

• naive non-abelianization at the end of the computation

$$\Pi(k^{2} + i\eta, \mu^{2}) - \Pi_{ct} \rightarrow \alpha_{s}(\mu) \underbrace{\left(\frac{11C_{A}}{12\pi} - \frac{n_{l}T_{R}}{3\pi}\right)}_{b_{0}} \left[\log\left(\frac{|k^{2}|}{\mu^{2}}\right) - i\pi\theta(k^{2}) - C\right]$$

프 > 프

Single-top production

 $W^* \to t \bar{b} \to W b \bar{b}$ at all orders using the (complex) pole scheme

Integrated cross section

Integrated cross section (with cuts $\Theta(\Phi)$):

$$\begin{aligned} \sigma &= \int \mathrm{d}\Phi \; \frac{\mathrm{d}\sigma(\Phi)}{\mathrm{d}\Phi} \,\Theta(\Phi) \\ &= \sigma_{_{\mathrm{LO}}} - \frac{1}{\pi b_0} \int_0^\infty \mathrm{d}\lambda \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{T(\lambda)}{\alpha_s(\mu)} \right] \arctan\left[\pi \, b_0 \, \alpha_s \left(\lambda e^{-C/2}\right) \right] \end{aligned}$$

 $\lambda =$ gluon mass

•
$$T(0) = \sigma_{_{\mathrm{NLO}}}$$

• $T(\lambda) = \overline{\sigma_{_{\mathrm{NLO}}}(\lambda)} + \frac{3\lambda^2}{2\mathrm{T}_{\mathrm{R}}\alpha_s} \int \mathrm{d}\Phi_{g^*} \mathrm{d}\Phi_{\mathrm{dec}} \frac{\mathrm{d}\sigma_{q\bar{q}}^{(2)}(\lambda,\Phi)}{\mathrm{d}\Phi} \left[\Theta(\Phi) - \underbrace{\Theta(\Phi_{g^*})}_{q\bar{q} \to q^*}\right]$

•
$$T(\lambda) \xrightarrow{\lambda \to \infty} \frac{1}{\lambda^2}$$

•
$$\alpha_s(\lambda e^{-C/2}) \approx \alpha_s(\lambda) \left[1 + \frac{K_g}{2\pi}\alpha_s(\lambda)\right] + \mathcal{O}(\alpha_s^3) = \alpha_s^{\mathrm{MC}}(\lambda)$$

1

Integrated cross section

Integrated cross section (with cuts $\Theta(\Phi)$):

$$\begin{aligned} \sigma &= \int \mathrm{d}\Phi \; \frac{\mathrm{d}\sigma(\Phi)}{\mathrm{d}\Phi} \,\Theta(\Phi) \\ &= \sigma_{_{\mathrm{LO}}} - \frac{1}{\pi b_0} \int_0^\infty \mathrm{d}\lambda \; \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{T(\lambda)}{\alpha_s(\mu)} \right] \arctan\left[\pi \, b_0 \, \alpha_s \left(\lambda e^{-C/2}\right) \right] \end{aligned}$$

So, if

$$\frac{\mathrm{d}T(\lambda)}{\mathrm{d}\lambda}\Big|_{\lambda=0} = A \neq 0$$

the low- λ contribution takes the form

$$\langle O \rangle \sim -A \sum_{n=0}^{\infty} \int_0^m \mathrm{d}\lambda \left[-2b_0 \,\alpha_s(m) \log\left(\frac{\lambda^2}{m^2}\right) \right]^n = -Am \sum_{n=0}^{\infty} \left(2 \, b_0 \,\alpha_s(m)\right)^n n!$$

Linear λ term \leftrightarrow Linear renormalons

Total cross section

 \Rightarrow If a complex mass is used, the top can never be on-shell and the only term that can develop a linear λ sensitivity is the mass counterterm.

Total cross section in NWA

For $\Gamma_t \to 0$ the cross section factorizes

$$\sigma(W^* \to W \, b \, \bar{b}) = \sigma(W^* \to t \bar{b}) \times \frac{\Gamma(t \to W \, b)}{\Gamma_t}$$

Since both terms are free from linear renormalons, also $\sigma(W^* \to W \, b \, \bar{b})$ is free from linear renormalons.

Total cross section with cuts

Cuts: a *b* jet and a separate \bar{b} jet with $k_{\perp} > 25$ GeV (anti- k_{\perp} jets).

Small $R: \left. \frac{\mathrm{d}T(\lambda)}{\mathrm{d}\lambda} \right|_{\lambda=0} \propto \frac{1}{R} \Rightarrow \mathbf{jet} \ \mathbf{renormalon};$

Large R: small slope for $\overline{\text{MS}}$.

Reconstructed-top mass in NWA

- For $\Gamma_t \to 0$, we can define the "top-decay products"
- For large R, $\langle M \rangle \approx m_{\text{pole}}$ and T'(0) = 0: no linear renormalon
- If we move to $\overline{\text{MS}}$ we add $-\frac{C_{\text{F}}}{2} \frac{\partial \langle M \rangle_b}{\partial \text{Re}(m)} \approx -0.67$: physical linear renormalon

Reconstructed-top mass

For the blind analysis, restoring $\Gamma_t = 1.3279$ GeV only slightly changes this picture

20

10

0

0.4

 $1/\alpha_{\rm s}\,\mathrm{d}\,\widetilde{T}(k^2)/\mathrm{d}k\Big|_{k=0}$

pole 🛶

MS -

1.4

42/49

Reconstructed-top mass: some numbers

$$M = \sum_{i=0}^{\infty} c_i \alpha_s^i$$

	$c_i \alpha_s^i [{ m MeV}]$				
i	$\operatorname{Re}(m_{\operatorname{pole}} - \overline{m}(\mu))$	$\langle M \rangle_{\rm pole}, R = 1.5$	$\langle M \rangle_{\overline{\mathrm{MS}}}, R = 1.5$		
5	+89	-10(1)	+79(1)		
6	+60	-11(1)	+49(1)		
7	+47	-11(1)	+35(1)		
8	+44	-12(1)	+31(1)		
9	+46	-15(1)	+31(1)		
10	+55	-19(1)	+36(1)		

More accurate estimates of $m_{\text{pole}} - \overline{m}(\mu)$ (e.g. inclusion of b and c mass effects) can be found in

- [Beneke, Marquad, Nason, Steinhauser, arXiv:1605.03609]: $\Delta m = 110 \text{ MeV}$
- [Hoang, Lepenik, Preisser, arXiv:1802.04334]: $\Delta m = 250$ MeV

Energy of the W boson, pole scheme (lab frame)

When the **pole scheme** is used we always have renormalons

- Vanishing Γ_t (left): slope ≈ 0.5 near 0;
- Large Γ_t (right): slope ≈ 0.06 near 0;

Energy of the W boson, $\overline{\text{MS}}$ scheme (lab frame)

 $\mathbf{E}_{\mathbf{W}} =$ simplified **leptonic observable**. In absence of cuts, is this observable free from physical renormalons?

Γ_t	slope (pole)	$\frac{\partial \langle E_W \rangle_b}{\partial \operatorname{Re}(m)}$	$-\frac{\mathcal{C}_{\mathcal{F}}}{2}\frac{\partial \langle E_W \rangle_b}{\partial \operatorname{Re}(m)}$	slope ($\overline{\rm MS}$)
NWA	0.53(2)	0.10(3)	-0.066(4)	0.46(2)
$10 { m GeV}$	0.058(8)	0.0936(4)	-0.0624(3)	0.004(8)
$20 { m GeV}$	0.061(2)	0.0901(2)	-0.0601(1)	0.001(2)

Yes, if a **finite width** is used, but ...

Energy of the W boson (lab frame)

But $\mathcal{O}(\alpha_s^n)$ corrections are dominated by scales of the order $\mu = m_t e^{1-n}$: we can see the presence of Γ_t only for $\mathbf{n} \geq \mathbf{1} + \log(\mathbf{m_t}/\Gamma_t) \approx \mathbf{6}$

	$\langle E_W angle - [\text{GeV}]$					
	pole scheme		$\overline{\mathrm{MS}}$ scheme			
i	c_i	$c_i lpha_{ m S}^i$	c_i	$c_i lpha_{ m S}^i$		
0	121.5818	121.5818	120.8654	120.8654		
1	$-1.435(0) \times 10^{1}$	$-1.552(0) \times 10^{0}$	$-7.192(0) \times 10^{0}$	$-7.779(0) \times 10^{-1}$		
2	$-4.97(4) \times 10^{1}$	$-5.82(4) \times 10^{-1}$	$-3.88(4) \times 10^{1}$	$-4.54(4) \times 10^{-1}$		
3	$-1.79(5) \times 10^{2}$	$-2.26(6) \times 10^{-1}$	$-1.45(5) \times 10^2$	$-1.84(6) \times 10^{-1}$		
4	$-6.9(4) \times 10^2$	$-9.4(6) \times 10^{-2}$	$-5.7(4) \times 10^2$	$-7.8(6) \times 10^{-2}$		
5	$-2.9(3) \times 10^3$	$-4.4(5) \times 10^{-2}$	$-2.4(3) \times 10^3$	$-3.5(5) \times 10^{-2}$		
6	$-1.4(3) \times 10^4$	$-2.2(4) \times 10^{-2}$	$-1.0(3) \times 10^4$	$-1.7(4) \times 10^{-2}$		
7	$-8(2) \times 10^4$	$-1.3(4) \times 10^{-2}$	$-5(2) \times 10^4$	$-8(4) \times 10^{-3}$		
8	$-5(2) \times 10^5$	$-9(4) \times 10^{-3}$	$-2(2) \times 10^5$	$-4(4) \times 10^{-3}$		
9	$-3(2) \times 10^{6}$	$-7(4) \times 10^{-3}$	$-1(2) \times 10^{6}$	$-2(4) \times 10^{-3}$		
10	$-3(2) \times 10^7$	$-6(5) \times 10^{-3}$	$0(2) \times 10^{6}$	$-1(5) \times 10^{-4}$		
11	$-3(3) \times 10^{8}$	$-7(6) \times 10^{-3}$	$0(3) \times 10^{6}$	$0(6) \times 10^{-5}$		
12	$-4(3) \times 10^9$	$-9(9) \times 10^{-3}$	$0(3) \times 10^{8}$	$1(9) \times 10^{-3}$		

(ロト (母) (ヨト (ヨ) 三日) のへの

Silvia Ferrario Ravasio — March 19th, 201 Top Mass: NLO+PS & RENORMALONS 46/49

Despite the fact the energy of the W boson is not affected by linear renormalons, an accurate determination of the top mass is limited by the reduced sensitivity on the top-mass value:

$$2\operatorname{Re}\left[\frac{\partial \langle E_W \rangle_{\mathrm{LO}}}{\partial m}\right] = 0.1$$
$$2\operatorname{Re}\left[\frac{\partial \langle M \rangle_{\mathrm{LO}}}{\partial m}\right] = 1$$

for E = 300 GeV, $m_W = 80.4$ GeV, $m_t = 172.5$ GeV ($\beta = 0.5$)

-
Conclusions

- We devised a simple method that enables us to investigate the presence of linear infrared renormalons in **any infrared safe observable**.
- The inclusive cross section and $\mathbf{E}_{\mathbf{W}}$ are free from physical renormalons if $\Gamma_t > 0$ (for σ also in NWA).
- Once jets requirements are introduced, the **jet renormalon** leads to an unavoidable ambiguity.
- For large R, $\langle \mathbf{M} \rangle \approx \mathbf{m}_{\text{pole}}$. This observable has a **physical** renormalon.

THANK YOU FOR THE ATTENTION!

The Wt and $t\bar{t}$ contribution do interfere at NLO in the 5f scheme. In Ref. arXiv:1009.2450, (E. Re), two subtraction strategies have been implemented to remove the $t\bar{t}$ contribution from the Wtb predictions, so that we can sum them directly to the hvq generator.

- Diagram Subtraction: $\mathcal{R}^{DS} = |M_{Wt}|^2$. It is NOT gauge invariant.
- O Diagram Removal: $\mathcal{R}^{\text{DS}} = |M_{Wt} + M_{t\bar{t}}|^2 C^{\text{sum}}$, with $C^{\text{sum}} = \frac{(m_t \Gamma_t)^2}{[(p_W + p_g) m_t^2]^2 + (m_t \Gamma_t)^2} |M^{t\bar{t}}(\Phi_{\text{dd}})|^2$, with Φ_{dd} a point in the phase space, obtained with reshuffled from the regular real phase space, such as $(p_W + p_b)^2 = m_t^2$.

This trick is not necessary for $b\bar{b}4\ell$, that does include both contributions exactly (in the 4fs, where the quantum interference effects start at LO). Herwig7.1 = angular-ordered parton-shower.

For $b\bar{b}4\ell$ we can use two different vetoing algorithms:

- on-the-fly: each time an emission is generated. The momenta of the emitted particles have not been generated yet, we must rely on Herwig7.1 definition of p⊥ (our default);
- e before the hadronization: we have access to the momenta of all the particles. These have been reshuffled to ensure 4-momentum conservation.

For hvq, we can improve the PS description of the hardest emission off the resonances using:

- $\bullet MEC (default);$
- Herwig7.1 internal implementation of POWHEG.

reconstructed-top mass: $b\bar{b}4\ell$

- Large difference between Pythia8.2 and Herwig7.1.
- Small difference between the two matching procedures in Herwig7.1.

3.2

reconstructed-top mass: hvq

- The difference between Pythia8.2 and Herwig7.1 is comparable with the one between Herwig7.1+MEC and Herwig7.1+POWHEG.
- hvq+Herwig7.1+POWHEG quite similar to $b\bar{b}4\ell$ +Herwig7.1 $(m_{Wb_i}^{\max} = 172.727 \text{ GeV}, \text{ smeared } m_{Wb_i}^{\max} = 171.626 \text{ GeV}).$

3.0

B-jet energy peaks

- Based on arxiv:1603.03445 (Agashe, Kim, Franceschini, Schulze).
- Investigated by CMS in [CMS-PAS-TOP-15-002], that finds

 $m_t = 172.29 \pm 1.17 \,(\text{stat}) \pm 2.66 \,(\text{syst}) \,\,\text{GeV}$.

- Purely hadronic observable, independent from the top production dynamics.
- At LO, neglecting off-shell effects, in the top frame we have:

$$E_{b_j} = \frac{m_t^2 - m_W^2}{2m_t}$$

- In the lab frame the distribution is squeezed, but the peak position does not vary.
- After the inclusion of perturbative and non-perturbative effects, for $m_t \approx m_{t,c}$, we have:

$$E_{b_j}^{\max} = O_{\rm c} + B(m_t - m_{t,c})$$

글 네 글 네 글 네 크

B-jet energy peaks

프 > 프

B-jet energy peaks: which NLO generator?

• Large difference between $b\bar{b}4\ell$ and hvq ($\Delta E_{b_j}^{\max} \approx -0.5$ GeV, $\Delta m_t \approx 1$ GeV), but still well below the systematic error quoted by ATLAS (**2.66 GeV**).

Technical details

• $pp \rightarrow b\bar{b}e^+\nu_e\mu^-\bar{\nu}_\mu$ + NLO + PS + underlying event + hadronization.

• $\sqrt{s} = 8$ TeV.

•
$$\mu = \sqrt[4]{(E_t^2 - p_{z,t}^2)(E_{\bar{t}}^2 - p_{z,\bar{t}}^2)}$$
. For $Zb\bar{b}$ events $\mu = \frac{\sqrt{p_z^2}}{2}$.

- MSTW2008nlo68cl PDF set.
- FastJet implementation of anti- k_{\perp} jet algorithm, R = 0.5.
- $b(\bar{b})$ -jet: jet containing the hardest $b(\bar{b})$ -flavoured hadron.
- W^+ = hardest e^+ + hardest ν_e .
- $W^- = \text{hardest } \mu^- + \text{hardest } \bar{\nu}_{\mu}.$
- Selection cuts to suppress the Wt background: \Rightarrow distinct b- and \bar{b} -jets with $p_{\perp} > 30$ GeV, $|\eta| < 2.5$; $\Rightarrow e^+$ and μ^- with $p_{\perp} > 20$ GeV, $|\eta| < 2.4$.

= 990

Matrix Element Corrections

- If the *t* decay is generated at LO, Pythia8.2 and Herwig7.1 can modify the shower algorithm in order to generate the hardest emission using the exact Matrix Element for one additional real emission: MEC.
- In this way, also when using hvq, the t decay with an extra emission is described with exact LO matrix elements.

pole- $\overline{\mathrm{MS}}$ mass relation

$$\begin{split} \overline{m}(\mu) &\Rightarrow \text{UV-divergent contribution of self-energy corrections} \\ m_{\text{pole}} &\Rightarrow \text{UV-divergent} + \underbrace{\text{IR (finite)}}_{\alpha_s^{n+1}n!} \text{ contributions} \\ \bullet \text{ At } \mathcal{O}(\alpha_s): & & \\ m_{\text{pole}} - \overline{m}(\mu) = \text{Fin} \left[i \times \underbrace{\int_{p^2 = m^2}}_{p^2 = m^2} \right] = \text{Fin} \left[i \Sigma^{(1)}(\epsilon) \right] \\ i \Sigma^{(1)}(\epsilon) &= -i \, g^2 \, \text{C}_{\text{F}} \left(\frac{\mu^2}{4\pi} \mathrm{e}^{\Gamma_E} \right)^{\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\gamma^{\alpha}(\not p + \not k + m) \gamma_{\alpha}}{[k^2 + i\eta] \left[(k+p)^2 - m^2 + i\eta \right]} \bigg|_{\not p = m} \end{split}$$

pole- $\overline{\mathrm{MS}}$ mass relation

 $\overline{m}(\mu) \Rightarrow$ UV-divergent contribution of self-energy corrections $m_{\text{pole}} \Rightarrow \text{UV-divergent} + \text{ IR (finite) contributions}$ • At $\mathcal{O}(\alpha_s)$: $\alpha^{n+1}_{2}n!$ $m_{\text{pole}} - \overline{m}(\mu) = \operatorname{Fin} \left[i \times \underbrace{6^{000}}_{2} \right] = \operatorname{Fin} \left[i \Sigma^{(1)}(\epsilon) \right]$ • At all-orders: $i\Sigma(\epsilon) = -ig^2 \operatorname{C}_{\mathrm{F}} \left(\frac{\mu^2}{4\pi} \mathrm{e}^{\Gamma_E}\right)^{\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\gamma^{\alpha}(\not\!\!\!p + \not\!\!k + m)\gamma_{\alpha}}{[k^2 + i\eta] \left[(k+p)^2 - m^2 + i\eta\right]} \bigg|_{\not\!\!p=\pi}$ $\times \frac{1}{1 + \Pi(k^2 + i\eta, \mu^2, \epsilon) - \Pi_{\rm ct}}$ Ravasio — March 19th, 201 Top mass: NLO+PS & renormalons 59/49

$pole-\overline{MS}$ mass relation

• At all-orders:

$$i\Sigma(\epsilon) = -\frac{1}{\pi} \int_{0^{-}}^{+\infty} \frac{\mathrm{d}\lambda^{2}}{2\pi} \left[i \underbrace{\Sigma^{(1)}(\epsilon, \lambda)}_{\lambda = \text{gluon mass}} \right] \operatorname{Im} \left[\frac{1}{\lambda^{2} + i\eta} \frac{1}{1 + \Pi(\lambda^{2} + i\eta, \mu^{2}, \epsilon) - \Pi_{\text{ct}}} \right]$$

Fin $[i\Sigma(\epsilon)] = -\frac{1}{\pi b_{0}} \int_{0}^{\infty} \lambda \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{r_{\text{fin}}(\lambda)}{\alpha_{s}(\mu)} \right] \arctan \left[\pi b_{0} \alpha_{s}(\lambda e^{-C/2}) \right] + \dots$
where $r_{\text{fin}}(\lambda) \xrightarrow{\lambda \ll 1} -\alpha_{s}(\mu) \frac{C_{\text{F}}}{2} \lambda$, $r_{\text{fin}}(\lambda) \xrightarrow{\lambda \to \infty} \mathcal{O}\left(\frac{m^{2}}{\lambda^{2}}\right)$

E

pole- $\overline{\mathrm{MS}}$ mass relation

• At all-orders:

$$i\Sigma(\epsilon) = -\frac{1}{\pi} \int_{0^{-}}^{+\infty} \frac{\mathrm{d}\lambda^{2}}{2\pi} \left[i \underbrace{\Sigma^{(1)}(\epsilon, \lambda)}_{\lambda = \text{gluon mass}} \right] \operatorname{Im} \left[\frac{1}{\lambda^{2} + i\eta} \frac{1}{1 + \Pi(\lambda^{2} + i\eta, \mu^{2}, \epsilon) - \Pi_{\text{ct}}} \right]$$

Fin $[i\Sigma(\epsilon)] = -\frac{1}{\pi b_{0}} \int_{0}^{\infty} \lambda \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{r_{\text{fin}}(\lambda)}{\alpha_{s}(\mu)} \right] \arctan \left[\pi b_{0} \alpha_{s}(\lambda e^{-C/2}) \right] + \dots$
where $r_{\text{fin}}(\lambda) \xrightarrow{\lambda \ll 1}{\longrightarrow} -\alpha_{s}(\mu) \frac{\operatorname{CF}}{2} \lambda$, $r_{\text{fin}}(\lambda) \xrightarrow{\lambda \to \infty} \mathcal{O}\left(\frac{m^{2}}{\lambda^{2}}\right)$

• Small λ contribution (independent from C):

$$\frac{C_{\rm F}}{2} \sum_{n=0}^{\infty} \int_0^m \mathrm{d}\lambda \left[-2b_0 \,\alpha_s(m) \log\left(\frac{\lambda^2}{m^2}\right) \right]^n = \frac{C_{\rm F}}{2} m \sum_{n=0}^{\infty} \left(2 \,b_0 \,\alpha_s(m)\right)^n n!$$

The resummed series has an ambiguity proportional to Λ_{QCD} :

Linear k term \leftrightarrow Linear renormalons

Silvia Ferrario Ravasio — March 19th, 201 Top Mass: NLO+PS & RENORMALONS 60/49

pole- $\overline{\text{MS}}$ mass relation

• In the pure n_f limit: arxiV:hep-ph/9502300, Ball et all

$$b_0 = -\frac{n_f \mathrm{T}_{\mathrm{R}}}{3\pi}, C = \frac{5}{3}, \qquad \frac{m - \overline{m}(\overline{m})}{m} = \frac{4}{3}\alpha_s(\overline{m}) \left[1 + \sum_{i=1}^{\infty} d_i \left(b_0 \alpha_s(\overline{m})\right)^i\right]$$

i	1	2	3	4	5	6	7	8
d_i	5×10^{0}	2×10^1	1×10^2	9×10^2	$9{ imes}10^3$	1×10^{5}	1×10^{6}	2×10^7

• "Realistic" large b_0 approximation:

$$\alpha_s(\lambda e^{-C/2}) = \frac{\alpha_s(\lambda)}{1 - b_0 C \alpha_s(\lambda)} \approx \underbrace{\alpha_s(\lambda) \left[1 + b_0 C \alpha_s(\lambda)\right] = \alpha_s^{\text{CMW}}(\lambda)}_{b_0 C = \frac{1}{2\pi} \left[\left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_{\text{A}} - \frac{10}{9} n_l T_{\text{R}} \right]}$$

$Pole-\overline{MS}$ mass relation

$$\begin{split} m_0 &= 172.5 \text{ GeV}, \qquad \Gamma = 1.3279 \text{ GeV}, \qquad m^2 = m_0^2 - im_0\Gamma, \qquad \mu = m_0 \\ m - \overline{m}(\mu) &= m \sum_{i=1}^n c_i \alpha_s^i(\mu) \end{split}$$

$m-\overline{m}(\mu)$					
i	$\operatorname{Re}\left(c_{i}\right)$	$\operatorname{Im}(c_i)$	$\operatorname{Re}\left(mc_{i}\alpha_{s}^{i} ight)$	$\operatorname{Im}\left(mc_{i}\alpha_{s}^{i}\right)$	
1	4.244×10^{-1}	2.450×10^{-3}	$7.919 \times 10^{+0}$	$+1.524 \times 10^{-2}$	
2	6.437×10^{-1}	2.094×10^{-3}	$1.299 \times 10^{+0}$	-7.729×10^{-4}	
3	$1.968 \times 10^{+0}$	8.019×10^{-3}	4.297×10^{-1}	$+9.665 \times 10^{-5}$	
4	$7.231 \times 10^{+0}$	2.567×10^{-2}	1.707×10^{-1}	-5.110×10^{-5}	
5	$3.497 \times 10^{+1}$	1.394×10^{-1}	8.930×10^{-2}	$+1.240 \times 10^{-5}$	
6	$2.174 \times 10^{+2}$	8.164×10^{-1}	6.005×10^{-2}	-5.616×10^{-6}	
7	$1.576 \times 10^{+3}$	$6.133 \times 10^{+0}$	4.709×10^{-2}	$+2.009 \times 10^{-6}$	
8	$1.354 \times 10^{+4}$	$5.180 \times 10^{+1}$	4.376×10^{-2}	-1.031×10^{-6}	
9	$1.318 \times 10^{+5}$	$5.087 \times 10^{+2}$	4.608×10^{-2}	$+4.961 \times 10^{-7}$	
10	$1.450 \times 10^{+6}$	$5.572 \times 10^{+3}$	5.481×10^{-2}	-2.909×10^{-7}	

$Pole-\overline{MS}$ mass relation

$$\begin{split} m_0 &= 172.5 \text{ GeV}, \qquad \Gamma = 1.3279 \text{ GeV}, \qquad m^2 = m_0^2 - im_0 \Gamma, \qquad \mu = m_0 \\ m - \overline{m}(\mu) &= m \sum_{i=1}^n c_i \alpha_s^i(\mu) \end{split}$$

$m-\overline{m}(\mu)$					
i	$\operatorname{Re}\left(c_{i}\right)$	$\operatorname{Im}(c_i)$	$\operatorname{Re}\left(mc_{i}\alpha_{s}^{i} ight)$	$\operatorname{Im}\left(mc_{i}\alpha_{s}^{i}\right)$	
5	$3.497 \times 10^{+1}$	1.394×10^{-1}	8.930×10^{-2}	$+1.240 \times 10^{-5}$	
6	$2.174 \times 10^{+2}$	8.164×10^{-1}	6.005×10^{-2}	-5.616×10^{-6}	
7	$1.576 \times 10^{+3}$	$6.133 \times 10^{+0}$	4.709×10^{-2}	$+2.009 \times 10^{-6}$	
8	$1.354 \times 10^{+4}$	$5.180 \times 10^{+1}$	4.376×10^{-2}	-1.031×10^{-6}	
9	$1.318 \times 10^{+5}$	$5.087 \times 10^{+2}$	4.608×10^{-2}	$+4.961 \times 10^{-7}$	
10	$1.450 \times 10^{+6}$	$5.572 \times 10^{+3}$	5.481×10^{-2}	-2.909×10^{-7}	

More accurate estimates of $m_{\rm pole}-\overline{m}(\mu)$ (e.g. inclusion of b and c mass effects) can be found in

- [Beneke, Marquad, Nason, Steinhauser, arXiv:1605.03609]: $\Delta m = 110 \text{ MeV}$
- [Hoang, Lepenik, Preisser, arXiv:1802.04334]: $\Delta m = 250$ MeV

NB: Actual systematic uncertainty is 500 MeV!

ヨト・モヨト

E

Reconstructed-top mass in NWA

- For $\Gamma_t \to 0$, we can define the "top-decay products"
- For large R, $\langle M \rangle \approx m_{\text{pole}}$ and T'(0) = 0: no linear renormalon
- If we move to $\overline{\text{MS}}$ we add $-\frac{C_{\text{F}}}{2} \frac{\partial \langle M \rangle}{\partial \text{Re}(m)} \approx -0.67$: physical linear renormalon

IR-safe observables

Average value of an observable O (e.g. reconstructed-top mass, $W\text{-}\mathrm{boson}$ energy, $\ldots)$

$$\begin{split} \langle O \rangle &= \frac{1}{\sigma} \int \mathrm{d}\Phi \; \frac{\mathrm{d}\sigma(\Phi)}{\mathrm{d}\Phi} \, O(\Phi) \\ &= \langle O \rangle_{\scriptscriptstyle \mathrm{LO}} \; - \frac{1}{\pi b_0} \int_0^\infty \mathrm{d}\lambda \; \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[\frac{\widetilde{T}(\lambda)}{\alpha_s(\mu)} \right] \arctan\left[\pi \, b_0 \, \alpha_s \left(\lambda e^{-C/2}\right) \right] \end{split}$$

•
$$\widetilde{T}(0) = \langle O \rangle_{\text{NLO}}$$

• $\widetilde{T}(\lambda) = \left[\langle O(\lambda) \rangle_{\text{NLO}} \right] + \frac{3\lambda^2}{2n_f T_R \alpha_s} \int d\Phi_{g^*} d\Phi_{dec} \frac{d\sigma_{q\bar{q}}^{(2)}(\lambda, \Phi)}{d\Phi} \left[\overline{O}(\Phi) - \underbrace{\overline{O}(\Phi_{g^*})}_{q\bar{q} \to g^*} \right]$
with $\lambda = \text{gluon mass}, \quad \overline{O}(\Phi) = \left[O(\Phi) - O_{\text{LO}} \right] \Theta(\Phi) / \sigma_{\text{LO}}$

•
$$\widetilde{T}(\lambda) \xrightarrow{\lambda \to \infty} \frac{1}{\lambda^2}$$

프 > 프

Reconstructed-top mass

$$M = \sum_{i=0}^{\infty} c_i \alpha_s^i$$

	$c_i \alpha_s^i [{ m MeV}]$				
i	$\operatorname{Re}(m_{\operatorname{pole}} - \overline{m}(\mu))$	$\langle M \rangle_{\rm pole}, R = 1.5$	$\langle M \rangle_{\overline{\mathrm{MS}}}, R = 1.5$		
5	+89	-10(1)	+79(1)		
6	+60	-11(1)	+49(1)		
7	+47	-11(1)	+35(1)		
8	+44	-12(1)	+31(1)		
9	+46	-15(1)	+31(1)		
10	+55	-19(1)	+36(1)		

More realistic estimate in Beneke et al, 1605.03609:

- neglecting b and c masses: 70 MeV
- \bullet including b and c masses: 110 MeV

э

Interface between POWHEG BOX and Shower MC

• Pythia8 [Sjöstrand et al., arXiv:1410.3012] is a k_{\perp} -ordered shower.

 \Rightarrow Natural matching with POWHEG radiation.

Interface between POWHEG BOX and Shower MC

• Pythia8 [Sjöstrand et al., arXiv:1410.3012] is a k_{\perp} -ordered shower.

 \Rightarrow Natural matching with POWHEG radiation.

• Herwig7 [Bahr et al., arXiv:0803.0883], [Bellm et. al, arXiv:1512.01178] is an angular-ordered shower.

 \Rightarrow Truncated-vetoed showers are known to give a contribution; so only a vetoed shower is implemented.