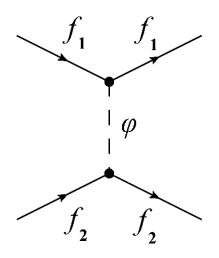
New Probes of Ultra-Low-Mass Dark Matter and Dark Sectors

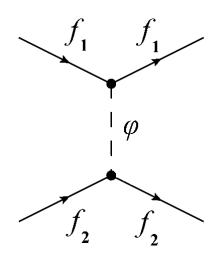
Yevgeny Stadnik

Humboldt Fellow

Johannes Gutenberg University, Mainz, Germany


Collaborators (Theory):

Victor Flambaum group (UNSW)
Peter Wolf group (SYRTE)


Collaborators (Experiment):

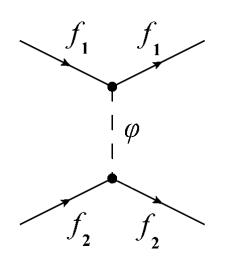
Dmitry Budker group (Mainz)
nEDM collaboration at PSI and Sussex
BASE collaboration at CERN and RIKEN

General Seminar, INFN Frascati, February 2019

New forces

New forces

Atomic spectroscopy:


Leefer, Gerhardus, Budker, Flambaum, Stadnik, *PRL* **117**, 271601 (2016) Ficek, Fadeev, Flambaum, Kimball, Kozlov, Stadnik, Budker, *PRL* **120**, 183002 (2018)

Atomic PNC:

Dzuba, Flambaum, Stadnik, *PRL* **119**, 223201 (2017)

Atomic and molecular EDMs:

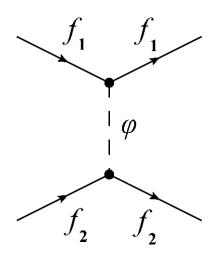
Stadnik, Dzuba, Flambaum, *PRL* **120**, 013202 (2018) Dzuba, Flambaum, Samsonov, Stadnik, *PRD* **98**, 035048 (2018)

Potentials revisited:

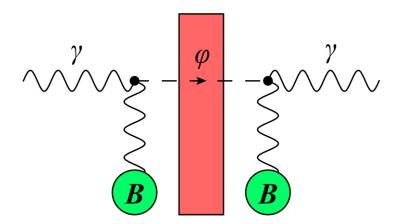
Fadeev, Stadnik, Ficek, Kozlov, Flambaum, Budker, *PRA* **99**, 022113 (2019)

New forces

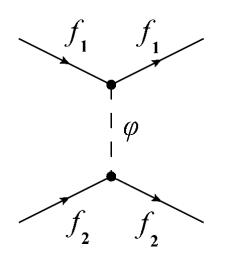
Atomic spectroscopy:

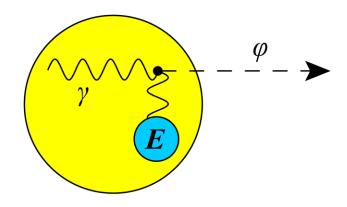

Leefer, Gerhardus, Budker, Flambaum, Stadnik, *PRL* **117**, 271601 (2016) Ficek, Fadeev, Flambaum, Kimball, Kozlov, Stadnik, Budker, *PRL* **120**, 183002 (2018)

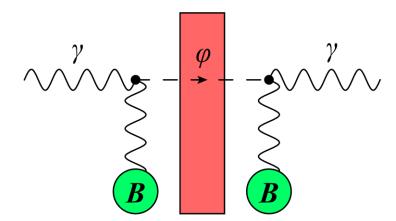
Atomic PNC:

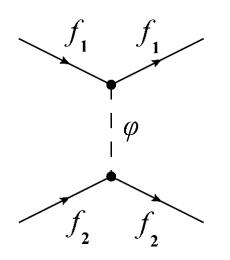

Dzuba, Flambaum, Stadnik, *PRL* **119**, 223201 (2017)

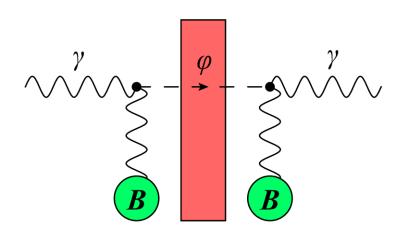
Atomic and molecular EDMs:

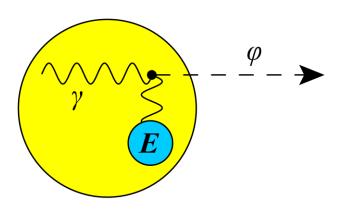

Stadnik, Dzuba, Flambaum, *PRL* **120**, 013202 (2018) Dzuba, Flambaum, Samsonov, Stadnik, *PRD* **98**, 035048 (2018)

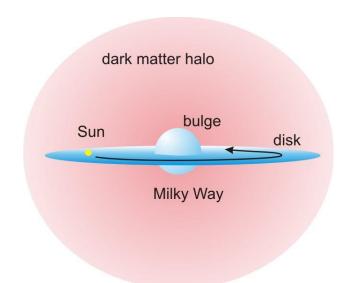

New forces

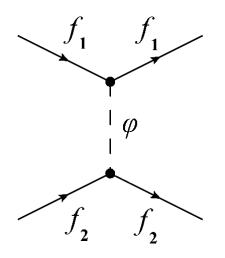

Interconversion with ordinary particles

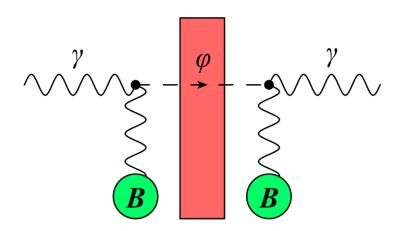

New forces

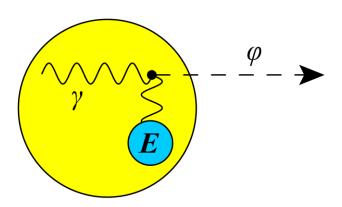

Stellar emission

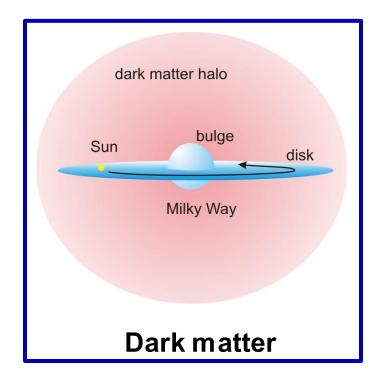

Interconversion with ordinary particles


New forces

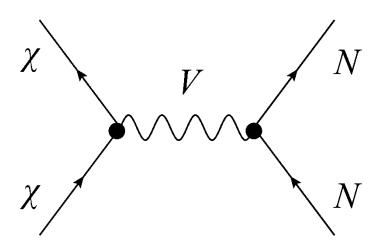

Interconversion with ordinary particles

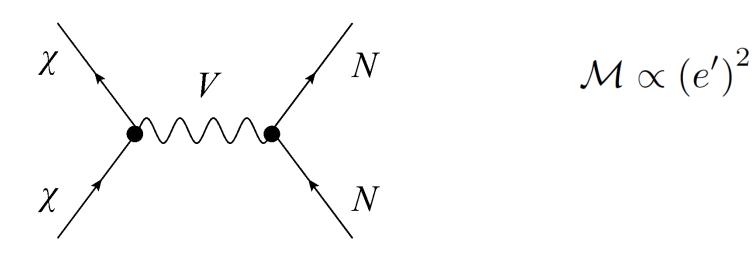

Stellar emission


Dark matter


New forces

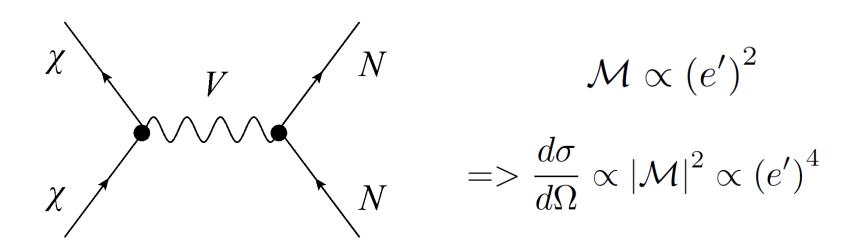

Interconversion with ordinary particles


Stellar emission


Strong astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter).

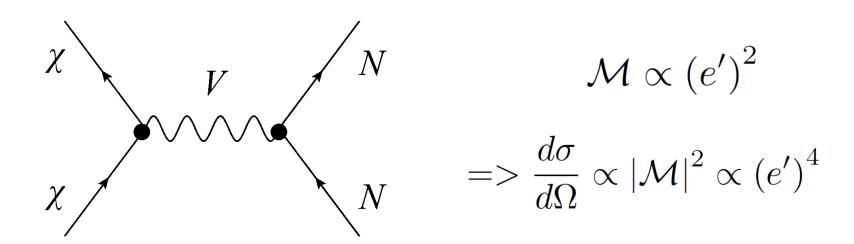
Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

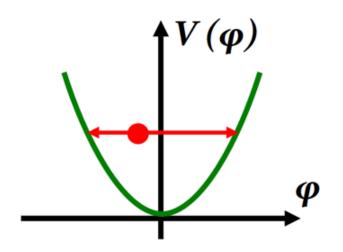


Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

$$N \qquad \mathcal{M} \propto (e')^{2}$$


$$\chi \qquad \qquad N \qquad = > \frac{d\sigma}{d\Omega} \propto |\mathcal{M}|^{2} \propto (e')^{4}$$

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.


Challenge: Observable is fourth power in a small interaction constant (e^r << 1)!

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles (m_{χ} ~ GeV) have not yet produced a strong positive result.

Question: Can we instead look for effects of dark matter that are **first power** in the interaction constant?

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$

$$V(\phi) = \frac{m_{\phi}^2 \phi^2}{2}$$

$$\tau_{\rm coh} \sim \frac{2\pi}{m_{\phi} \langle v_{\rm DM}^2 \rangle} \sim 10^6 T_{\rm osc}$$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for m_{φ} << 1 eV, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3$ >> 1

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for m_{φ} << 1 eV, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3$ >> 1
- Coherent + classical DM field = "Cosmic laser field"

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} << 1$ eV, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser field"
- $10^{-22} \text{ eV} \le m_{\varphi} << 1 \text{ eV} <=> 10^{-8} \text{ Hz} \le f << 10^{14} \text{ Hz}$

$$\lambda_{\mathrm{dB},\varphi} \leq L_{\mathrm{dwarf\ galaxy}} \sim 1\ \mathrm{kpc}$$
 Classical field

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- Classical field for $m_{\varphi} << 1$ eV, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser field"
- $10^{-22} \text{ eV} \le m_{\varphi} << 1 \text{ eV} <=> 10^{-8} \text{ Hz} \le f << 10^{14} \text{ Hz}$

$$\lambda_{\mathrm{dB},\varphi} \leq L_{\mathrm{dwarf\ galaxy}} \sim 1\ \mathrm{kpc}$$
 Classical field

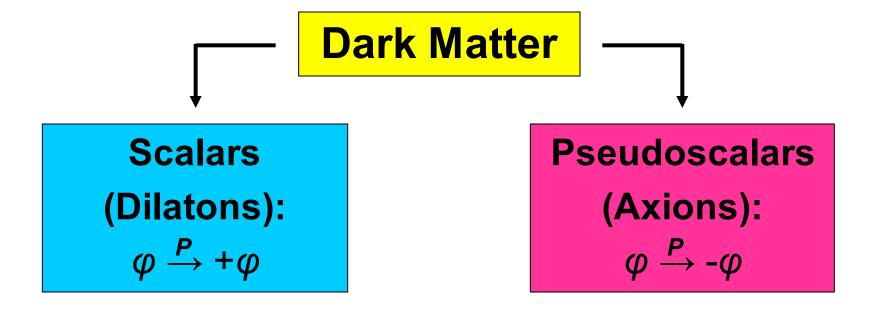
• $m_{\varphi} \sim 10^{-22} \text{ eV} <=> T \sim 1 \text{ year}$

Scalars

(Dilatons):

$$\varphi \xrightarrow{P} + \varphi$$

→ Time-varying

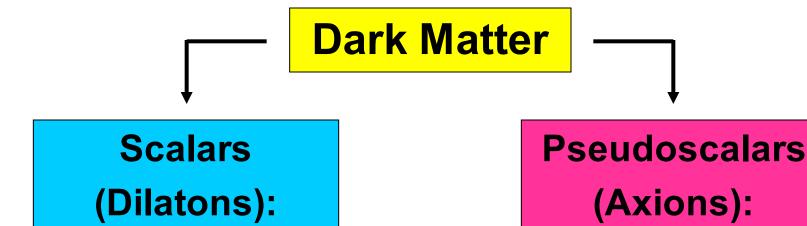

fundamental constants

- Atomic clocks
- Optical cavities
- Fifth-force searches
- Astrophysics (e.g., BBN)

Pseudoscalars (Axions): $\varphi \xrightarrow{P} -\varphi$

→ Time-varying spindependent effects

- Co-magnetometers
- Nuclear magnetic resonance
 - Torsion pendula


→ Time-varying fundamental constants

→ Time-varying spindependent effects

Atomic clocks

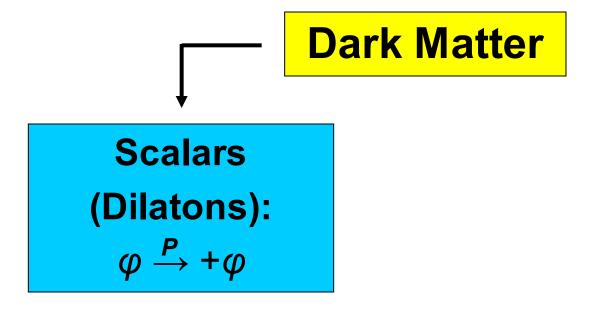
Co-magnetometers

"Thou shall measure frequency."

→ Time-varying fundamental constants

 $\varphi \xrightarrow{P} + \varphi$

Atomic clocks


→ Time-varying spindependent effects

 $\varphi \xrightarrow{P} -\varphi$

Co-magnetometers

 $f \sim 10^{15} \text{ Hz}, \ \Delta f \sim 10^{-3} \text{ Hz}, \ \Delta f / f \sim 10^{-18}$

 $f \sim 100 \text{ Hz}, \Delta f \sim 10^{-9} \text{ Hz}, \Delta f/f \sim 10^{-11}$

→ Time-varying

fundamental constants

- Atomic clocks
- Optical cavities
- Fifth-force searches
- Astrophysics (e.g., BBN)

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

^{*} Linear couplings may be eliminated by a Z_2 symmetry (invariance under $\varphi \to -\varphi$)

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda_f')^2} m_f \bar{f} f$$

^{*} Linear couplings may be eliminated by a Z_2 symmetry (invariance under $\varphi \rightarrow -\varphi$)

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f$$
 c.f. $\mathcal{L}_f^{\mathrm{SM}} = -m_f \bar{f} f$

^{*} Linear couplings may be eliminated by a Z_2 symmetry (invariance under $\varphi \rightarrow -\varphi$)

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f$$
 c.f. $\mathcal{L}_f^{\text{SM}} = -m_f \bar{f} f = > m_f \to m_f \left[1 + \frac{\phi^2}{(\Lambda'_f)^2} \right]$

^{*} Linear couplings may be eliminated by a Z_2 symmetry (invariance under $\varphi \rightarrow -\varphi$)

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

Consider <u>quadratic couplings</u> of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_{\varphi}t)$, with SM fields.*

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda_f')^2} m_f \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_f^{\text{SM}} = -m_f \bar{f} f \quad \Longrightarrow \quad m_f \to m_f \left[1 + \frac{\phi^2}{(\Lambda_f')^2} \right]$$
$$= > \frac{\delta m_f}{m_f} = \frac{\phi_0^2}{(\Lambda_f')^2} \cos^2(m_\phi t)$$

* Linear couplings may be eliminated by a Z_2 symmetry (invariance under $\varphi \rightarrow -\varphi$)

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{f} = -\frac{\phi^{2}}{(\Lambda'_{f})^{2}} m_{f} \bar{f} f \text{ c.f. } \mathcal{L}_{f}^{SM} = -m_{f} \bar{f} f => m_{f} \to m_{f} \left[1 + \frac{\phi^{2}}{(\Lambda'_{f})^{2}} \right]$$
$$= > \frac{\delta m_{f}}{m_{f}} = \frac{\phi_{0}^{2}}{(\Lambda'_{f})^{2}} \cos^{2}(m_{\phi} t) = \boxed{\frac{\phi_{0}^{2}}{2(\Lambda'_{f})^{2}}} + \boxed{\frac{\phi_{0}^{2}}{2(\Lambda'_{f})^{2}} \cos(2m_{\phi} t)}$$

^{*} Linear couplings may be eliminated by a Z_2 symmetry (invariance under $\varphi \rightarrow -\varphi$)

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{f} = -\frac{\phi^{2}}{(\Lambda'_{f})^{2}} m_{f} \bar{f} f \text{ c.f. } \mathcal{L}_{f}^{SM} = -m_{f} \bar{f} f \implies m_{f} \to m_{f} \left[1 + \frac{\phi^{2}}{(\Lambda'_{f})^{2}} \right]$$
$$= > \frac{\delta m_{f}}{m_{f}} = \frac{\phi_{0}^{2}}{(\Lambda'_{f})^{2}} \cos^{2}(m_{\phi} t) = \left[\frac{\phi_{0}^{2}}{2(\Lambda'_{f})^{2}} \right] + \left[\frac{\phi_{0}^{2}}{2(\Lambda'_{f})^{2}} \cos(2m_{\phi} t) \right]$$

$$\rho_{\phi} = \frac{m_{\phi}^2 \phi_0^2}{2} \implies \phi_0^2 \propto \rho_{\phi}$$

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

Consider <u>quadratic couplings</u> of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_{\omega}t)$, with SM fields.

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda_f')^2} m_f \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_f^{\text{SM}} = -m_f \bar{f} f \quad \Longrightarrow \quad m_f \to m_f \left[1 + \frac{\phi^2}{(\Lambda_f')^2} \right]$$

$$=>\frac{\delta m_f}{m_f}=\frac{\phi_0^2}{(\Lambda_f')^2}\cos^2(m_\phi t)=\boxed{\frac{\phi_0^2}{2(\Lambda_f')^2}}+\boxed{\frac{\phi_0^2}{2(\Lambda_f')^2}\cos(2m_\phi t)}$$

'Slow' drifts [Astrophysics

(high $\rho_{\rm DM}$): BBN, CMB]

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

Consider <u>quadratic couplings</u> of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_{\omega}t)$, with SM fields.

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda_f')^2} m_f \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_f^{\text{SM}} = -m_f \bar{f} f \quad \Longrightarrow \quad m_f \rightarrow m_f \left[1 + \frac{\phi^2}{(\Lambda_f')^2} \right]$$

$$=>\frac{\delta m_f}{m_f}=\frac{\phi_0^2}{(\Lambda_f')^2}\cos^2(m_\phi t)=\boxed{\frac{\phi_0^2}{2(\Lambda_f')^2}}+\boxed{\frac{\phi_0^2}{2(\Lambda_f')^2}\cos(2m_\phi t)}$$

'Slow' drifts [Astrophysics

(high $\rho_{\rm DM}$): BBN, CMB]

+ Gradients [Fifth forces]

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider *quadratic couplings* of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_{\varphi}t)$, with SM fields.

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda_f')^2} m_f \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_f^{\text{SM}} = -m_f \bar{f} f \quad \Longrightarrow \quad m_f \rightarrow m_f \left[1 + \frac{\phi^2}{(\Lambda_f')^2} \right]$$

$$=>\frac{\delta m_f}{m_f}=\frac{\phi_0^2}{(\Lambda_f')^2}\cos^2(m_\phi t)=\left|\frac{\phi_0^2}{2(\Lambda_f')^2}\right|+\left|\frac{\phi_0^2}{2(\Lambda_f')^2}\cos(2m_\phi t)\right|$$

$$\left| rac{\phi_0^2}{2(\Lambda_f')^2} \right| + \left| rac{\phi_0^2}{2(\Lambda_f')^2} \cos(2m_\phi t) \right|$$

'Slow' drifts [Astrophysics

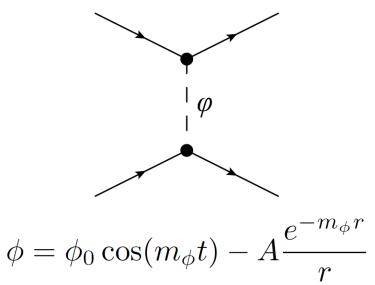
(high ρ_{DM}): BBN, CMB]

+ Gradients [Fifth forces]

Oscillating variations

[Laboratory (high precision)]

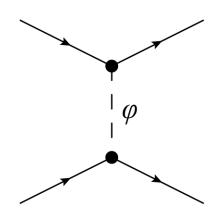
Fifth Forces: Linear vs Quadratic Couplings


[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

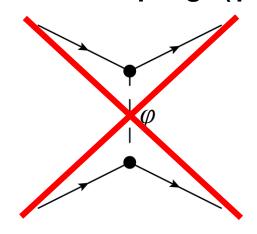
Consider the effect of a massive body (e.g., Earth) on the scalar DM field

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

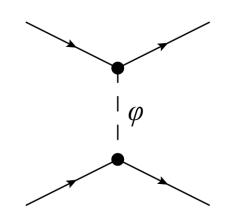

Linear couplings $(\varphi \bar{X}X)$

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

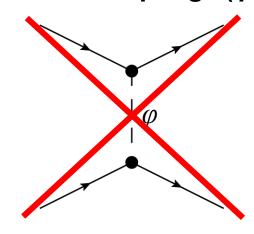

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings $(\varphi \bar{X}X)$

$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r}$$


Quadratic couplings ($\varphi^2 \bar{X} X$)

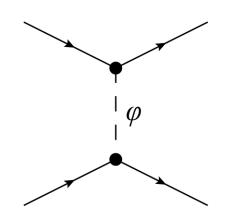
[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]


Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings $(\varphi \bar{X}X)$

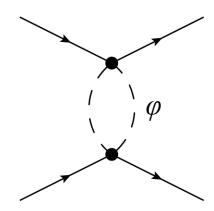
$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r}$$

Quadratic couplings $(\varphi^2 \bar{X} X)$


$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r} \qquad \phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right)$$

Gradients + screening/amplification

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]


Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings $(\varphi \bar{X}X)$

$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r}$$

Quadratic couplings ($\varphi^2 \bar{X} X$)

$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r} \qquad \phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right) - C \frac{e^{-2m_\phi r}}{r^3}$$

Gradients + screening/amplification

Atomic Spectroscopy Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

$$\frac{\delta\left(\omega_{1}/\omega_{2}\right)}{\omega_{1}/\omega_{2}} \propto \sum_{X=\alpha,m_{e}/m_{p},\dots} \frac{\left(K_{X,1}-K_{X,2}\right)\cos\left(\omega t\right)}{\uparrow}$$
 Sensitivity coefficients

 $\omega = m_{\varphi}$ (linear coupling) or $\omega = 2m_{\varphi}$ (quadratic coupling)

Atomic Spectroscopy Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

$$\frac{\delta\left(\omega_{1}/\omega_{2}\right)}{\omega_{1}/\omega_{2}} \propto \sum_{X=\alpha,m_{e}/m_{p},\dots} \frac{\left(K_{X,1}-K_{X,2}\right)\cos\left(\omega t\right)}{\uparrow}$$
 Sensitivity coefficients

 ω = m_{φ} (linear coupling) or ω = $2m_{\varphi}$ (quadratic coupling)

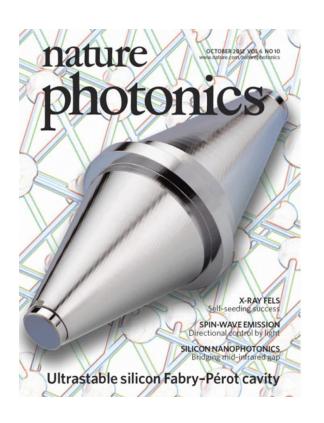
• Sensitivity coefficients K_X calculated extensively by Flambaum group and co-workers (1998 – present), see the reviews

[Flambaum, Dzuba, Can. J. Phys. 87, 25 (2009); Hyperfine Interac. 236, 79 (2015)]

Atomic Spectroscopy Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

$$\frac{\delta\left(\omega_{1}/\omega_{2}\right)}{\omega_{1}/\omega_{2}} \propto \sum_{X=\alpha,m_{e}/m_{p},\dots} \frac{\left(K_{X,1}-K_{X,2}\right)\cos\left(\omega t\right)}{\uparrow}$$
 Sensitivity coefficients


 $\omega = m_{\varphi}$ (linear coupling) or $\omega = 2m_{\varphi}$ (quadratic coupling)

- Sensitivity coefficients K_X calculated extensively by Flambaum group and co-workers (1998 present), see the reviews
 [Flambaum, Dzuba, Can. J. Phys. 87, 25 (2009); Hyperfine Interac. 236, 79 (2015)]
- Precision of optical clocks approaching ~10⁻¹⁸ fractional level

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

Gravitational-wave detector (LIGO/Virgo), $L \sim 4 \text{ km}$

Small-scale cavity, $L \sim 0.2 \text{ m}$

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

Compare L ~ Na_B with λ

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

- Compare $L \sim Na_B$ with λ
- For a "usual" atomic optical transition and in the nonrelativistic limit:*

$$\Phi = \frac{\omega L}{c} \propto \left(\frac{e^2}{a_{\rm B}\hbar}\right) \left(\frac{Na_{\rm B}}{c}\right) = N\alpha \implies \frac{\delta\Phi}{\Phi} \approx \frac{\delta\alpha}{\alpha}$$

* For numerical calculations, including (small) relativistic effects, see [Pasteka, Hao, Borschevsky, Flambaum, Schwerdtfeger, arXiv: 1809.02863].

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

- Compare $L \sim Na_B$ with λ
- For a "usual" atomic optical transition and in the nonrelativistic limit:*

$$\Phi = \frac{\omega L}{c} \propto \left(\frac{e^2}{a_{\rm B}\hbar}\right) \left(\frac{Na_{\rm B}}{c}\right) = N\alpha \implies \frac{\delta\Phi}{\Phi} \approx \frac{\delta\alpha}{\alpha}$$

• Multiple reflections of light beam enhance the effect $(N_{\rm eff} \sim 10^5 \text{ in small-scale interferometers with highly reflective mirrors; c.f. <math>N_{\rm eff} \sim 100 \text{ in LIGO/Virgo})$

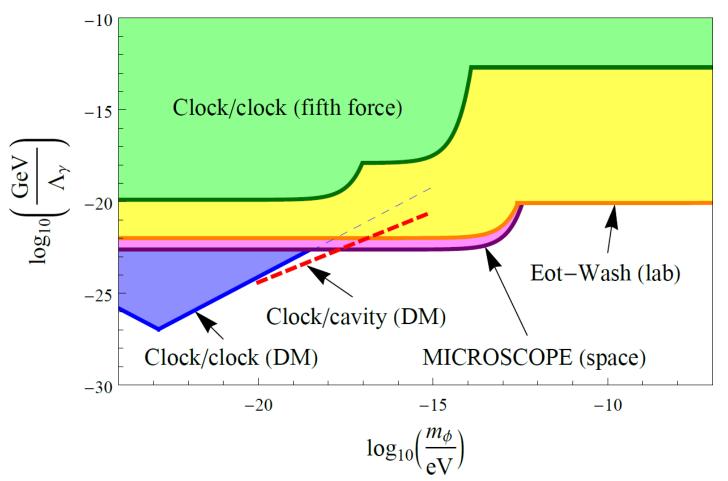
^{*} For numerical calculations, including (small) relativistic effects, see [Pasteka, Hao, Borschevsky, Flambaum, Schwerdtfeger, arXiv:1809.02863].

Experiments

Clock/clock comparisons: $10^{-23} \text{ eV} < m_{\varphi} < 10^{-16} \text{ eV}$

- Dy/Cs (Mainz): [Van Tilburg et al., PRL 115, 011802 (2015)],
 [Stadnik, Flambaum, PRL 115, 201301 (2015)]
 - Rb/Cs (SYRTE): [Hees et al., PRL 117, 061301 (2016)],
 [Stadnik, Flambaum, PRA 94, 022111 (2016)]
- Rb/Cs (GPS network)*: [Roberts et al., Nature Commun. 8, 1195 (2017)]
- Al+/Yb, Yb/Sr, Al+/Hg+ (NIST + JILA): [Hume, Leibrandt et al., In preparation]
 - Yb+(E3)/Sr (PTB): [Huntemann, Peik et al., In preparation]

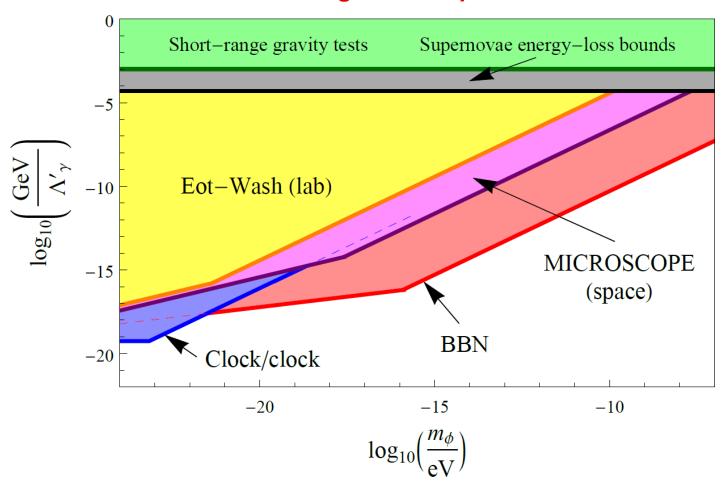
Clock/cavity comparisons: $10^{-20} \text{ eV} < m_{\varphi} < 10^{-15} \text{ eV}$


- Sr/ULE cavity (Torun)*: [Wcislo et al., Nature Astronomy 1, 0009 (2016)]
 - Sr/Si cavity (JILA): [Robinson, Ye et al., In preparation]

^{*} Searches for domain wall dark matter.

Constraints on Linear Interaction of Scalar Dark Matter with the Photon

Clock/clock (DM) constraints: [Van Tilburg et al., PRL 115, 011802 (2015)], [Hees et al., PRL 117, 061301 (2016)]; Clock/clock (fifth force) constraints: [Leefer et al., PRL 117, 271601 (2016)]


4 orders of magnitude improvement!

Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* 115, 201301 (2015); *PRA* 94, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* 98, 064051 (2018)]

15 orders of magnitude improvement!

Low-mass Spin-0 Dark Matter

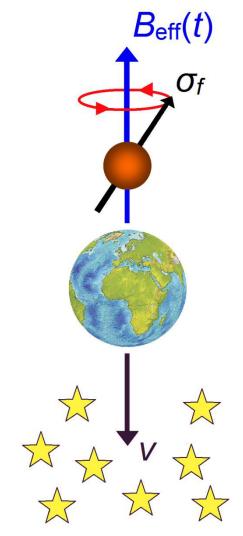
Dark Matter

QCD axion resolves strong CP problem

Pseudoscalars (Axions): $\varphi \xrightarrow{P} -\varphi$

- → Time-varying spindependent effects
 - Co-magnetometers
 - Nuclear magnetic resonance
 - Torsion pendula

"Axion Wind" Spin-Precession Effect

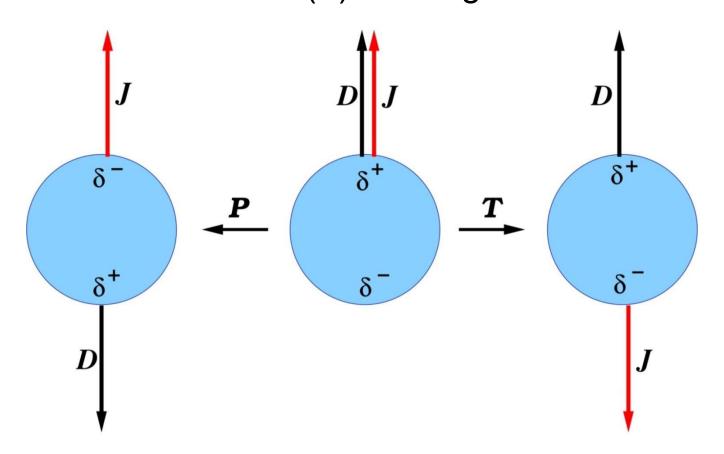

[Flambaum, talk at *Patras Workshop*, 2013], [Graham, Rajendran, *PRD* 88, 035023 (2013)], [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

$$\mathcal{L}_{aff} = -\frac{C_f}{2f_a} \partial_i [a_0 \cos(\varepsilon_a t - \boldsymbol{p}_a \cdot \boldsymbol{x})] \bar{f} \gamma^i \gamma^5 f$$

$$=> H_{\text{eff}}(t) \simeq \boldsymbol{\sigma}_f \cdot \boldsymbol{B}_{\text{eff}} \sin(m_a t)$$

Pseudo-magnetic field*

$$oldsymbol{B}_{ ext{eff}} \propto oldsymbol{v}$$

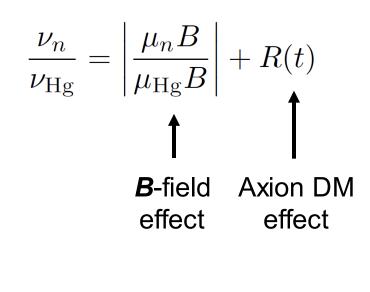

^{*} Compare with usual magnetic field: $H = -\mu_f \cdot B$

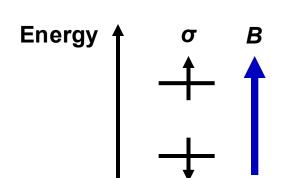
Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]

Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]

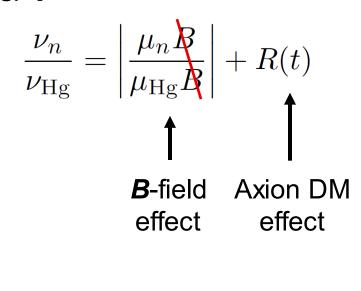
Electric Dipole Moment (EDM) = parity (P) and timereversal-invariance (T) violating electric moment

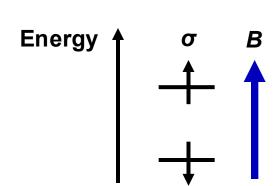



Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

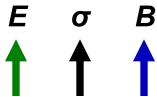
Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]


Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons torsion pendula



Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons torsion pendula



Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons torsion pendula

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\mu_n R}{\mu_{\rm Hg} R} \right| + R(t)$$

$$R_{\rm EDM}(t) \propto \cos(m_a t)$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

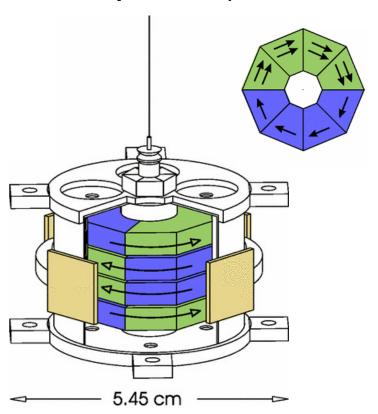
Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons torsion pendula

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\mu_n R}{\mu_{\rm Hg} R} \right| + R(t)$$

$$R_{\rm EDM}(t) \propto \cos(m_a t)$$

$$R_{\rm wind}(t) \propto \sum_{i=1,2,3} A_i \sin(\omega_i t)$$

$$R_{\rm eff}$$

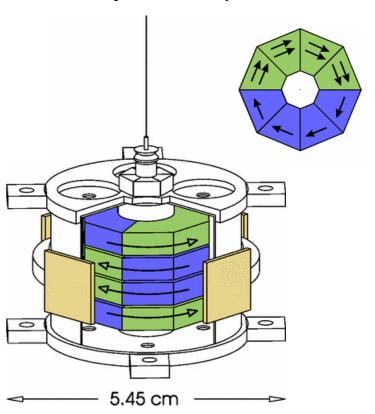

$$\omega_1 = m_a, \ \omega_2 = m_a + \Omega_{\text{sidereal}}, \ \omega_3 = |m_a - \Omega_{\text{sidereal}}|$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use spin-polarised sources: Atomic magnetometers,

ultracold neutrons, torsion pendula

Experiment (Alnico/SmCo₅): [Terrano et al., arXiv:1902.04246]



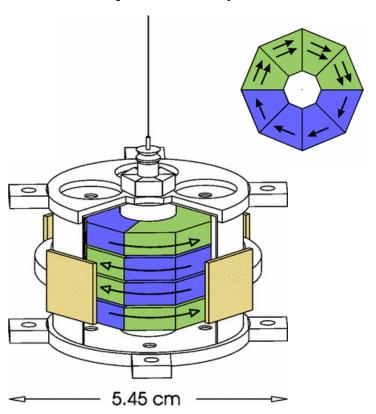
Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use spin-polarised sources: Atomic magnetometers,

ultracold neutrons, torsion pendula

Experiment (Alnico/SmCo₅): [Terrano et al., arXiv:1902.04246]

$$\mu_{
m pendulum}pprox 0$$


$$(\boldsymbol{\sigma}_e)_{\mathrm{pendulum}} \neq \mathbf{0}$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

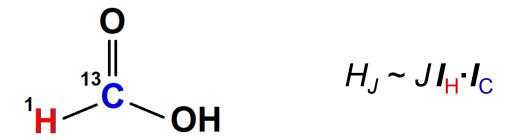
Use spin-polarised sources: Atomic magnetometers,

ultracold neutrons, torsion pendula

Experiment (Alnico/SmCo₅): [Terrano et al., arXiv:1902.04246]

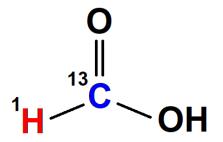
$$\mu_{
m pendulum}pprox 0$$

$$(\boldsymbol{\sigma}_e)_{\mathrm{pendulum}} \neq \mathbf{0}$$

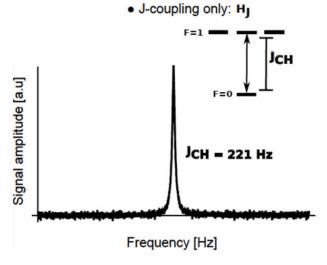

$$\boldsymbol{\tau}\left(t\right) \propto \left(\boldsymbol{\sigma}_{e}\right)_{\mathrm{pendulum}} \times \boldsymbol{B}_{\mathrm{eff}}\left(t\right)$$

Proposals: [Garcon et al., Quantum Sci. Technol. 3, 014008 (2018)]

Use *nuclear magnetic resonance* ("sidebands" technique)

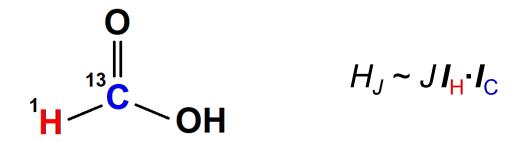

Proposals: [Garcon et al., Quantum Sci. Technol. 3, 014008 (2018)]

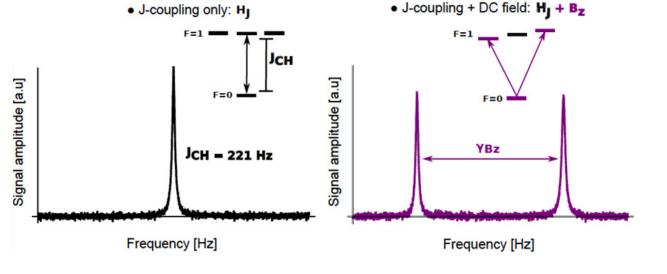
Use *nuclear magnetic resonance* ("sidebands" technique)



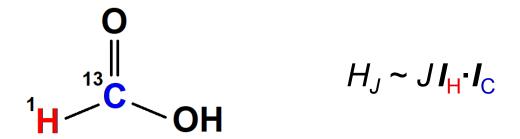
Proposals: [Garcon et al., Quantum Sci. Technol. 3, 014008 (2018)]

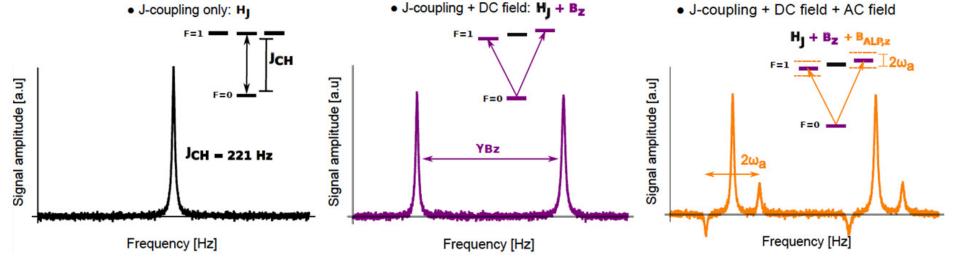
Use nuclear magnetic resonance ("sidebands" technique)




$$H_J \sim J I_{\mathsf{H}} \cdot I_{\mathsf{C}}$$

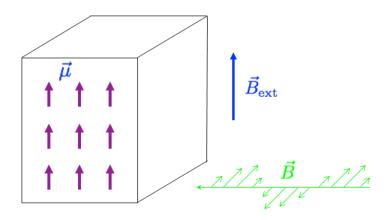
Proposals: [Garcon et al., Quantum Sci. Technol. 3, 014008 (2018)]


Use nuclear magnetic resonance ("sidebands" technique)



Proposals: [Garcon et al., Quantum Sci. Technol. 3, 014008 (2018)]

Use nuclear magnetic resonance ("sidebands" technique)

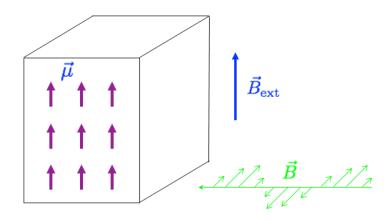

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]

Use nuclear magnetic resonance

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]

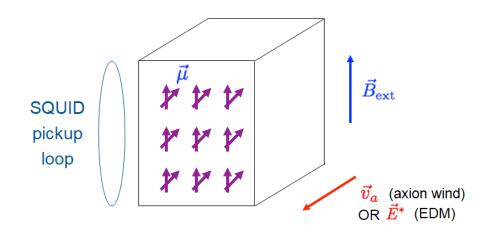
Use nuclear magnetic resonance

Traditional NMR



Resonance: $2\mu B_{\rm ext} = \omega$

Proposals: [Budker, Graham, Ledbetter, Rajendran, A. O. Sushkov, PRX 4, 021030 (2014)]


Use nuclear magnetic resonance

Traditional NMR

Resonance: $2\mu B_{\rm ext} = \omega$

Dark-matter-driven NMR

Resonance: $2\mu B_{\rm ext} \approx m_a$

Measure transverse magnetisation

Experiments

Co-magnetometry: $10^{-23} \text{ eV} < m_a < 10^{-17} \text{ eV}$

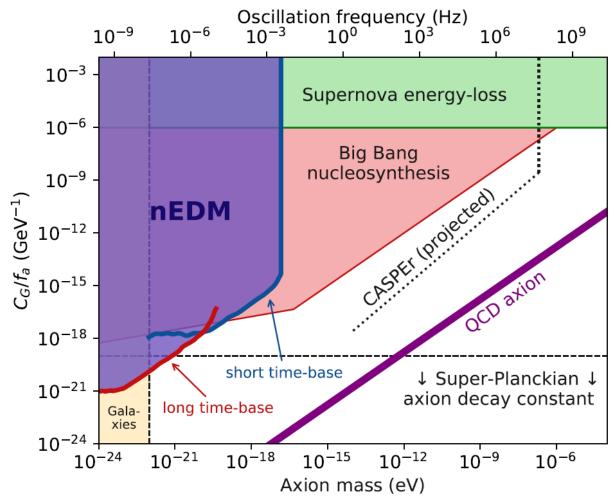
- **n/Hg (PSI):** [nEDM collaboration, *PRX* **7**, 041034 (2017)]
 - Acetonitrile (Mainz): [Wu et al., arXiv:1901.10843]

Torsion pendulum: $10^{-23} \text{ eV} < m_a < 10^{-18} \text{ eV}$

Alnico/SmCo₅ (Seattle): [Terrano et al., arXiv:1902.04246]

"Sidebands" NMR: $10^{-16} \text{ eV} < m_a < 10^{-13} \text{ eV}$

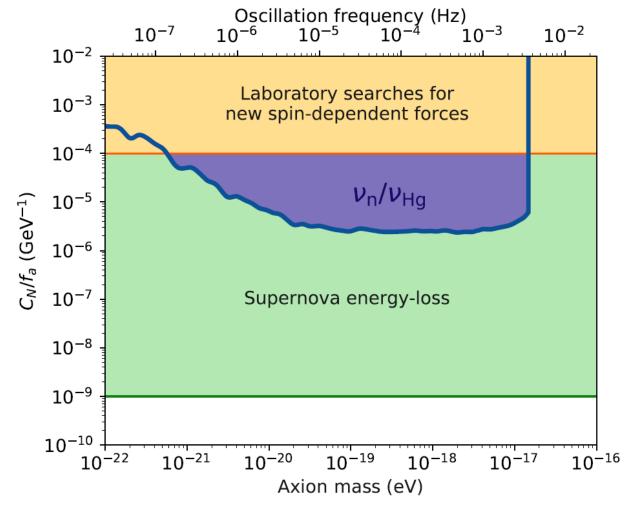
• Formic acid (Mainz): [Garcon et al., arXiv:1902.04644]


"Normal" NMR: $10^{-14} \text{ eV} < m_a < 10^{-7} \text{ eV}$

- Liquid Xe (Mainz)
- Pb in ferroelectric medium (Boston)

Constraints on Interaction of Axion Dark Matter with Gluons

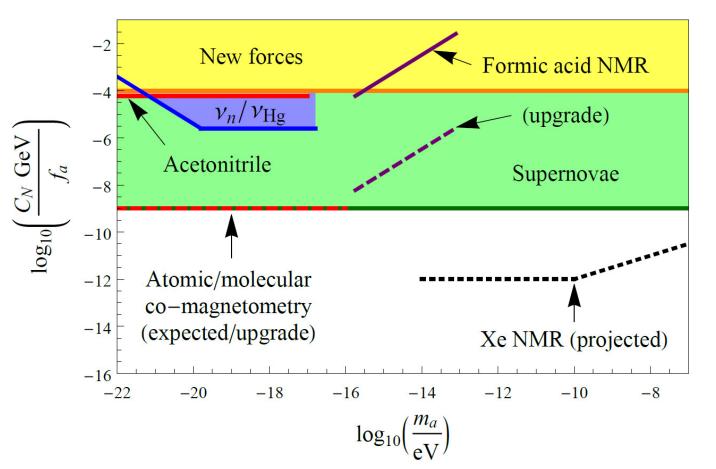
nEDM constraints: [nEDM collaboration, *PRX* 7, 041034 (2017)]


3 orders of magnitude improvement!

Constraints on Interaction of Axion Dark Matter with Nucleons

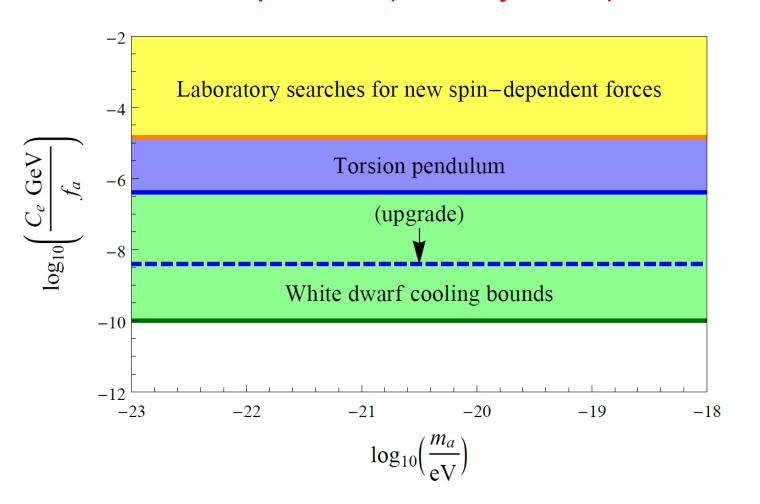
v_n/v_{Hq} constraints: [nEDM collaboration, *PRX* 7, 041034 (2017)]

40-fold improvement (laboratory bounds)!



Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hg} constraints: [nEDM collaboration, *PRX* 7, 041034 (2017)]


Acetonitrile constraints: [Wu et al., arXiv:1901.10843]

Formic acid NMR constraints: [Garcon et al., arXiv:1902.04644]

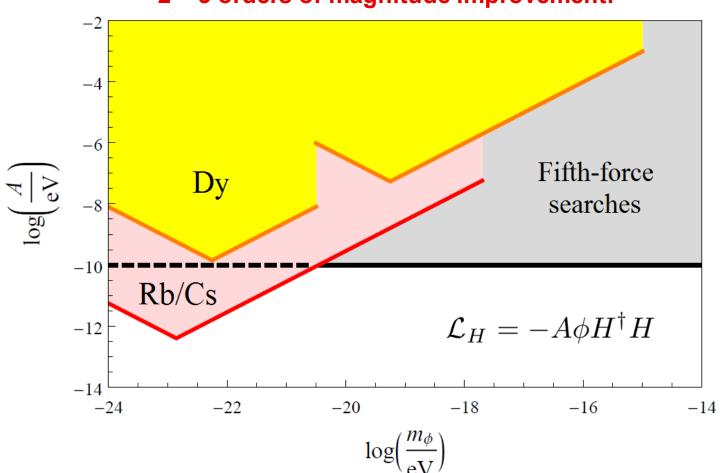
Constraints on Interaction of Axion Dark Matter with the Electron

Torsion pendulum constraints: [Terrano *et al.*, arXiv:1902.04246] 35-fold improvement (laboratory bounds)!

Summary

- New classes of dark matter effects that are
 <u>first power</u> in the underlying interaction constant
 => Up to <u>15 orders of magnitude improvement</u>
 with low-energy probes:
 - Spectroscopy
 - Cavities and interferometry
 - Magnetometry
 - Torsion pendula

:


Back-up Slides

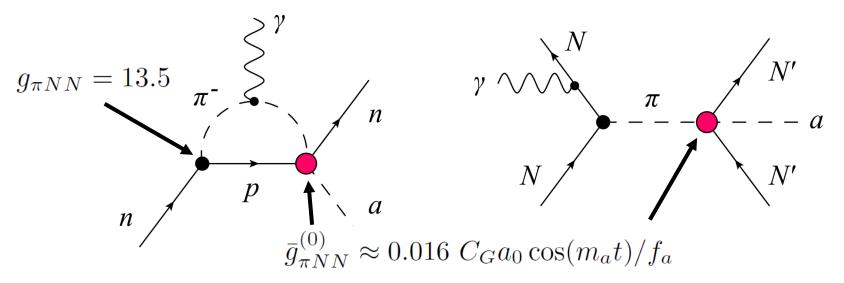
Constraints on Linear Interaction of Scalar Dark Matter with the Higgs Boson

Rb/Cs constraints:

[Stadnik, Flambaum, *PRA* **94**, 022111 (2016)]

2 – 3 orders of magnitude improvement!

Oscillating Electric Dipole Moments


Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]

Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]

$$\mathcal{L}_{aGG} = \frac{C_G a_0 \cos(m_a t)}{f_a} \frac{g^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Nucleon EDMs

CP-violating intranuclear forces

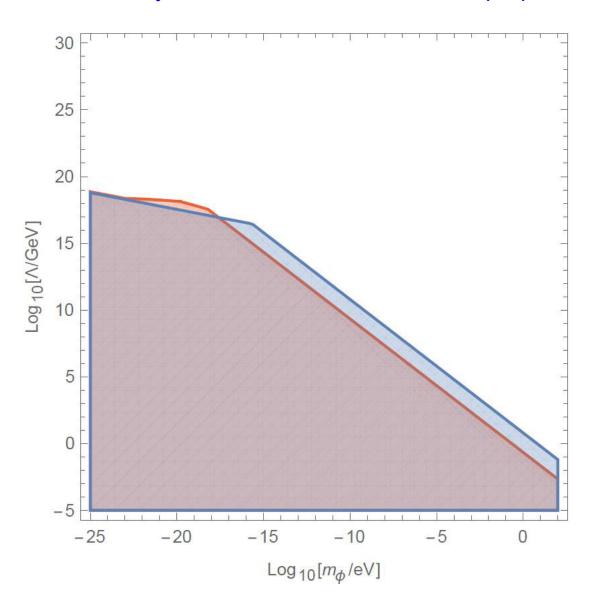
In nuclei, <u>tree-level</u> *CP*-violating intranuclear forces dominate over <u>loop-induced</u> nucleon EDMs (loop factor = $1/(8\pi^2)$).

BBN Constraints on 'Slow' Drifts in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, PRL 115, 201301 (2015)]

- Largest effects of DM in early Universe (highest $ho_{\rm DM}$)
- Big Bang nucleosynthesis ($t_{\text{weak}} \approx 1 \text{s} t_{\text{BBN}} \approx 3 \text{ min}$)
- Primordial ⁴He abundance sensitive to n/p ratio
 (almost all neutrons bound in ⁴He after BBN)

$$\frac{\Delta Y_p(^{4}\text{He})}{Y_p(^{4}\text{He})} \approx \frac{\Delta (n/p)_{\text{weak}}}{(n/p)_{\text{weak}}} - \Delta \left[\int_{t_{\text{weak}}}^{t_{\text{BBN}}} \Gamma_n(t) dt \right]$$


$$p + e^{-} \rightleftharpoons n + \nu_{e}$$

$$n + e^{+} \rightleftharpoons p + \bar{\nu}_{e}$$

$$n \to p + e^{-} + \bar{\nu}_{e}$$

Back-Reaction Effects in BBN

[Sörensen, Sibiryakov, Yu, PRELIMINARY – In preparation]

