Possible mechanical design for the TOF detector

SLAC SuperB workshop, October 7th 2009

Nicolas Arnaud, Frédéric Bogard, Achille Stocchi, Sandry Wallon (LAL-Orsay)

- Starting point: Jerry's TOF design #1 @ Perugia worshop
- Goals & Limits of the project
- Drawings by LAL Orsay engineers Sandry Wallon & Frédéric Bogard
- Aim at starting discussion with people from the involved systems: PID, DCH and EMC

Jerry's Design @ Perugia workshop

• From http://agenda.infn.it/getFile.py/access?contribld=132&sessionId=43&resId=0&materialId=slides&confId=1161

Goals & limits of the project

- Work done by two LAL engineers: S. Wallon & F. Bogard
 - \rightarrow No prior experience with the forward side of BaBar
 - → Based on papers (mainly BaBar NIM), talks and misc. materials (e.g. pictures) whose information doesn't always match (dimensions, angles, etc.)
 - \rightarrow Some interpolation needed when actual data missing
- Clearly not aimed at being a final design
 - → rather a proof of principle which can very likely be improved: all feedbacks welcome!
 - → a concrete proposal with which to start discussing with neighbooring systems: DCH ('upstream') and EMC ('downstream')
- Drawings done with the Catia[®] software (standard at IN2P3)
 - \rightarrow Common exchange format with the other SuperB groups?

LAL Design for a TOF detector

- Engineer main idea: to hold the forward PID on the DCH endplate → Structure mechanically simpler than the crystals enveloppe
- Use a convex DCH endplate
- Initial drawings show at July PID meeting
 <u>http://agenda.infn.it/getFile.py/access?contribld=3&resld=0&materialld=slides&confld=1683</u>
 → Current drawings have been updated based on feedbacks received

LAL Design

(details follow)

Drawings (1/6)

• Starting from a convex DCH endplate [EMC endcap not represented]

Drawings (2/6)

• Quartz sector installed; examples of support which could allow a few mm adjustment

Drawings (3/6)

• Adding PMTs (blue) and their shielding; foreseen to be reachable for repair/change

Drawings (4/6)

Full sector with possible photon trap (tbc) on the uppermost part
 → only direct would photons reach PMTs

Drawings (5/6)

• Rear view of the full subdetector; DCH cone, no EMC endcap

Drawings (6/6)

• Overall, a very thin detector [EMC endcap in red]

Outlook

- Orsay proposal for Jerry's Perugia design
- Nothing frozen:
 - proof of principle
 - real dimensions & angles unknown for all systems
 - utilities (cooling pipes, supports, etc.) missing as well
- Already got comments from PID group this morning:
 - Angle of the device should be increased (\Rightarrow will take more space in z)
 - Photon trap only for the sides of the quartz surface, not in the back
- Comments from other systems and management more than welcome