Front-End Analog Cell for Hybrid Pixel Sensors and First Measurements on Apsel5T chip

<u>G. Traversia</u>, L. Gaioni^b, A. Manazza^b, M. Manghisoni^a, L. Ratti^b, V. Re^a, V. Speziali^b

^aUniversità degli Studi di Bergamo and INFN Pavia

^bUniversità degli Studi di Pavia and INFN Pavia

SVT layer0 options for SuperB

> Design of the SVT layer0 at SuperB has to comply with severe requirements

> large background, >5 MHz, small thickness, <1% X₀

> Striplets

> Hybrid pixel detectors

presently the baseline solution for the TDR

 \succ a 130 nm CMOS front-end chip (32x128) submitted in September

 \succ fine pitch (50 μm) bump bonding (IZM, Munich) with a 200 μm thick pixel detector (FBK-irst, Trento)

> Deep N-well CMOS monolithic sensors (DNW-MAPS)

> extensive R&D ongoing in a 130 nm CMOS process, Apsel4D1 and small matrices tested on the PS beam at CERN in July 2009 (see talk by S. Bettarini)

characterization of last prototype Apsel5T is ongoing

> Vertically integrated DNW CMOS monolithic sensors

>Apsel-like prototype designed and submitted for fabrication in a 3D process

Analog cell for hybrid pixel sensors: specifications & constraints

Analog current ≈ 2uA/pixel => minimize AVDD drop
 Analog power ≈ 0.1W/cm²
 Power consumption for digital section dominates ~ 1W/cm²

- ➢ Pixel capacitance ≈ 100fF
- ➤ I_{leak} ≈ 200fA

Shaping time ≈ 100ns (return to baseline < 3us => minimize dead time during which the cell is blind)

- ➤ Charge/pixel (MPV) ≈ 16000-4000 e-/pixel
- > S/N ≈ 25 for minimal charge (S=4000e- => ENC≈160e-)
- Analog channel + in-pixel digital-logic
 + structures for testing FE chip
 w/o sensors in 50x50um²
- STM 130nm CMOS technology
- > 6+1 metal layers
- No MIM CAPs allowed

Analog cell for Hybrid Pixel Sensors: Main design features and simulations

Qin [ke-]

- > $I_{AVDD} \approx 2.1 \text{ uA}$, power dissipated $\approx 2.5 \text{uW/ch}$
- Charge sensitivity ≈ 50mV/fC
- ➤ Fast peaking time ≈ 100ns
- ENC=150e- @ C_D=100fF (170e- @ C_D=150fF, 200e- @ C_D=200fF)
- > Threshold dispersion \approx 350e- (190e- from the PA, 290e- from the discriminator)
- > The recovery time increases linearly with the signal amplitude
- Cinj for external calibration (no internal pulser) included
- High frequency noise contribution has been reduced limiting the PA bandwidth

Return to the baseline of the analog output

Fast return to the baseline to minimize the dead time of the pixel

Qin [ke-]	∆T [us]	
30	≈ 1	
60	1.4	
80	1.7	
90	≈ 2	
120	2.4	
150	2.8	
180	3.2	
200	3.6	

Simulated with reference $V_{\rm feed}\,$ integrated in the cell

Cell layout

Post-layout simulations

Parasitic capacitance extraction

Digital signals toward IN	Parasitic cap. [aF] StarRCXT	Parasitic cap. [aF] Raphael	
LATCH_ENA _d	89.6	12	
INJ_MASK_OUT<7>d	52.2	40	
PIX_DATA _d	14.4	-	
LN_FAST_OR _d	14	-	
INJ_MASK_OUT<0>p	40	52	

Leakage current effects

Leakage current foreseen ≈ 200fA Baseline offset @ 2pA ≈ 0.02mV Noise increase @ 2pA ≈ 2-3 e-

X SuperB Workshop - SLAC National Accelerator Laboratory, October 6 2009

Performance wrt temperature

Temperature [°C]	ENC [e-] @ C _D =100fF	Charge sensitivity [mV/fC]	Baseline PA [mV]	Analog power [µW]
27	150	48	174.3	2.55
40	165	47.3	158.6	2.94
50	178	47	146.4	3.22

> The threshold voltage falls with increasing temperature. The slope is usually in the range of $-0.5mV/^{\circ}C$ to $-4mV/^{\circ}C$.

Apsel5T

Motivations

> Scaling to larger matrix size (128x128 or 320x80) dictates to remove the shaper stage to make room for additional macropixel private lines

> Shaper less front-end makes it possible to reduce the pixel pitch (from 50x50um² to 40x40um²)

> Optimized cell with <u>satellite N-wells</u> surrounding PMOS competitive N-wells in APSEL5T \Rightarrow Efficiency ~ 99% (from TCAD simulations). Beam test results of APSEL4D show a ~90% efficiency, which agrees very well with TCAD simulations

> Metal shielding between analog and digital voltages improved and made compatible with a large matrix

Main design features

Deep N-Well CMOS MAPS

- In triple-well CMOS processes a deep N-well is used to shield Nchannel devices from substrate noise in mixed-signal circuits
- DNW MAPS is based on the same working principle as standard MAPS

- Classical optimum signal processing chain for capacitive detector can be implemented at pixel level
- The collecting electrode (DNW) can be exploited to obtain higher single pixel collected charge
- ➤ A charge preamplifier is used for Q-V conversion → gain decoupled from electrode capacitance
- ▷ DNW may house NMOS transistors and using a large detector area, PMOS devices may be included in the front-end design → charge collection efficiency depends on the ratio between the DNW area and the area of all the N-wells (deep and standard)

Apsel5T

M1: 3x3 matrix with all the analog outputs available, injection capacitance for the central pixel, sensor layout version 1. 4 NW-P-int. NW-pepi diode for radiation hardness tests. 3 different geometries implemented.

M1: 3x3 matrix with all the analog outputs available, injection capacitance for the central pixel, sensor layout version 2. M3: 8x8 matrix with a row-by-row sequential readout. Injection capacitance and analog output available on pixel 17. Sensor layout version 1 in the left 8x4 matrix and version 2 in the right 8x4 matrix. 5 bit DAC

Pixel layout

Area sensore: 410um2 Area NW-PMOS: 70um2 Fill Factor: 0.85 Cap. sensore ≈ 220fF

Area sensore: 480um² Area NW-PMOS: 70um² Fill Factor: 0.87 Cap. sensore ≈ 270fF

Vout vs Vfbk, Noise and Charge Sens. Measurements

X SuperB Workshop - SLAC National Accelerator Laboratory, October 6 2009

Laser measurements

Response of the preamplifier outputs of the
 3x3 matrices (the position of the laser is such to
 obtain the maximum amplitude)

> As shown in the previous slide there is a wide variation in the peak amplitude and in the return-to-baseline time

> Variations of the process parameters of the feedback network transistors could explain this effect

Monte Carlo simulations

Apsel5T submitted

M26, W/L=0.15/0.4 M27, W/L=8/0.18

Peak value	
Mean: 98mV	
Std dev: 6.4mV	
Width @ 25mV	
Mean: 2.77us	
Std dev: 1.43us	

Monte Carlo simulations

Laser scan: Matrix M1

 Charge collected by the central pixel of M1 matrix as a function of the laser position

 \succ 5um step in X and Y

> The layout of the n-well layers and the dimension of the pixel pitch has been superimposed (exact position unknown)

> σ_{xy} of the laser ≈ 20um

> The amount of charge that is deposited has not been calibrated

> The main purpose of this measurement is to show the relative charge collection versus position

Laser scan: Matrix M1

Laser scan: Matrix M2

Laser scan: Matrix 2

 Same plot but with color palette between 800e- and 400e-

Yellow and red zone with square shape: larger than M1

More than 500e- collected over about 40x40um2

White color for charge collected below 400e-

Metal3 and Metal4 shields

 \succ We used M3 and M4 to distribute analog and digital power and to shield the sensor from the digital activity

 \succ We routed M5 and M6 lines (as digital routing) above the sensor in different positions to test the shields

Metal3 and Metal4 shields

Cross-talk or something else

green: CLR_b di M3 of row_enable_x

red: out17_M3 (not dependent on LAT_EN of M3)

The red signal is present (in both chip2 and chip3) at all the analog outputs available of the chip (9 of M1, 9 of M2 and out17_M3)

It is not a capacitive coupled signal.

Dependent on the test set-up? Apsel5T has to be measured with a new test board.

Could be due to a drop of the analog ground.

5us delay with respect to CLR_b signal (not present at the falling edge of CLR_b). Not present every time there is CLR_b.

DNW MAPS in 3D CMOS technology

First guideline: separate analog from digital section to minimize cross-talk between digital blocks and sensor/analog circuits

Tier 1: collecting electrode (deep N-well/P-substrate junction) and analog front-end and discriminator

Tier 2: digital front-end (2 latches for hit storage, pixel-level digital blocks for sparsification, 2 time stamp registers, kill mask) and digital back-end (X and Y registers, time stamp line drivers, serializer)

Test structures chip layout: bottom and top tiers

Small test structures

Analog (bottom) tier

8x32 matrix with data driven readout

Analog (bottom) tier

From R. Yarema's talk (TWEPP 09, Sept. 21-25)

Timeline

- First Designers meeting held Dec 11, 2008
- Subsequent meeting in February, March, and May 2009
- All designs initially submitted by mid May
 - Continuous checking of designs by Tezzaron and Fermilab identified numerous problems
 - Inconsistent layer map tables between designs
 - Different DRC violations found with Assura, Calibre, and Magma
 - Non uniform bond interface across all subreticules
 - Via size confusion related to 2 top metals
 - Non mirroring of design in frame
 - Adding of high resistance poly option
 - Computer system crashes at Tezzaron
 - Problems with MicroMagic and Magma
 - Satisfying/answering all of Chartered's questions
 - Items changed during review process
 - Dummy fill program
 - Via density rule
 - Newer DRC versions uploaded.
- Masks started for 31 wafers
- 8 weeks for wafer fabrication.
- 4 weeks for 3D assembly

Topical Workshop on Experiments for Particle Physics

Conclusions

In R&D activity for the LayerO of SuperB three different approaches are being followed

> We have submitted a 32x128 matrix for hybrid pixel detector (fine pixel pitch 50x50um2) in a planar 130nm CMOS technology (STMicroelectronics)

> Latest version of Apsel family chip (Apsel5T) has been fabricated in a planar 130nm DNW CMOS technology (STMicroelectronics) and the characterization of the chips are in progress

First prototype of an Apsel-like chip has been submitted for fabrication in a 130nm vertically integrated (3D) CMOS technology. The mask fabrication has started. Delivery of the chips is expected for December 2009. Test activity is planned for January 2010.

