

Talk Outline

 Double Panovsky quadrupole: a resumé of Pavel Vobly new ideas for the QD0

• The status of the QD0 "Italian style"

Panovsky double quadrupole

Permendur Yoke

Pavel Vobly

Key ingredients

High permeability of the yoke

- i.e. Permeability > 1000, B < 2 T
- Uniform current density

Fig. 5. Intrinsic induction (B-H) versus magnetizing force H for measured samples.

Fig. 6. Permeability versus magnetizing force H for annealed 1010 steel and Permendur.

Mechanical Assembly

Insertion in the permendur yoke

Panovsky QD0

• PROS

- Well established technology
- Easier winding procedure
- Possibility to tilt the magnetic axis
- Possibility to have a "trumpet" shaped profile
- Cons
 - Maximum field on conductors ~ 2T
 - Same gradients on HER and LER

Field quality: not an issue

Field(kG) and gradient (kG/cm)

	An	Bn	an	bn	Radius: 0.500000
1	0.0000000	0.0000000	0.0000000	0.0000000	
2	10.0863836	0.0000000	20.1727673	0.0000000	
3	0.0000000	0.0000000	0.0000000	0.0000000	
4	0.0003235	0.0000000	0.0155294	0.0000000	
5	0.0000000	0.0000000	0.0000000	0.0000000	
6	0.0024064	0.0000000	9.2405017	0.0000000	
7	0.0000000	0.0000000	0.0000000	0.0000000	
8	0.0001420	0.0000000	91.6363025	0.0000000	
9	0.0000000	0.0000000	0.0000000	0.0000000	
10	-0.0008003	0.0000000	48693.142779	0.0000000	
11	0.0000000	0.0000000	0.0000000	0.0000000	
12	0.0000772	0.0000000	314901.161662	0.0000000	
13	0.0000000	0.0000000	0.0000000	0.0000000	
14	-0.0000361	0.0000000	3671722.6130	0.0000000	
15	0.0000000	0.0000000	0.0000000	0.0000000	
16	0.0000529	0.0000000	329915132.29	0.0000000	
17	0.0000000	0.0000000	0.0000000	0.0000000	Print
18	-0.0000434	0.0000000	0278596383.5	0.0000000	
					Clip
		Angle: 90.0	0000		Close

Fourier analysis (R= 0.5 cm)

Pavel Vobly

Same gradients for HER & LER

- Assuming the horizontal stay clears of Mike P3 design
- ~5 mm for the warm to cold transition
- 2 T on the SC wires
- G ~ 1.1 T/cm seems achievable

HER@6.7 GeV

- I* = 0.5 cm
- QD0: length 38.5 cm, G = 110 T/m
- Drift <u>1.77</u> m
- QF1 HER: length 56.1 cm, G = -20 T/m

LER@4.19 GeV

- I* = 0.5 cm
- QD0: length 38.5 cm, G = 110 T/m
- Drift <u>10</u> cm

Conclusions I

{QD0Len \rightarrow 0.384871, QF1LLen \rightarrow 0.28595} Ler focal length (cm) = 0.369419 Vert. Linear magnification @ IP = -37.6505 Hor. Linear magnification @ IP = -6.45088 { δ H \rightarrow 1.77414, QF1HLen \rightarrow 0.560958} 15. Her focal length (cm) = 0.318749 Vert. Linear magnification @ IP = -40.5915 Hor. Linear magnification @ IP = -1.94887

Start point configuration found.

 Harder to find a solution for the 7 on 4 machine (1.1 T/cm too small for the HER)

QDO: italian style

- First contacts with Pasquale Fabbricatore and Giovanni Volpini
- Very first steps toward the import of the magnetic design into a CAD/CAM program (Tomassini)
- Present issue:
 - SC wire procurement: crucial to take advantage of the progress made by Mike