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GEANT4 Model of FDIRC 



Based on Jerry’s Design 
  The GEANT4 model is based on Jerry’s design 

as detailed in SLAC-PUB-13763 
  Currently, all of the optical elements are being 

modeled. 
  Full bar-box of quartz bars 

  12x4 bars with glue joints 
  Mirror at end of bars 
  Quartz Wedge, w/ 6mrad slope on bottom 
  Quartz Window 
  All quartz Focusing Block (FBLOCK) 

  Cylindrical mirror 
  Vertical planar mirror 

  Not in place at the moment is any modeling of 
photodetectors 
  Implies no QE corrections 

  Borrowed some code, esp. material properties, 
from fDIRC prototype simulation code. 
  Thanks to SLAC folks! 
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Some Pictures… 
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More Pictures… 

Green lines = Optical Photons 
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And some more… 
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Photon Hits on Focal Plane 
•  3 GeV momentum π	


•  Dip angle of 120 degrees	


•  Center of third bar from 
the end 

•  Shows reflection from side of 
FBLOCK 

•  100 events, all with same 
initial conditions 
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Hits per event and Timing 

Hits (no Photodetector sim) Hit Time 
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45° Dip Angle, 1 GeV pion in central bar 
•  Color of hit corresponds to wavelength of photon: You can see smearing from chromatic effects 

•  Easy to break down hits based on their paths and try to understand various features 

SuperB X, Oct. 6, 2009 8 Doug Roberts, University of Maryland 



85° Dip Angle, 1 GeV pion in central bar 
•  Color of hit corresponds to wavelength of photon: You can see smearing from chromatic effects 

•  Easy to break down hits based on their paths and try to understand various features 
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! = 85dip1 GeV Pion, 
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90° Dip Angle, 1 GeV pion in central bar 
•  Color of hit corresponds to wavelength of photon: You can see smearing from chromatic effects 

•  Easy to break down hits based on their paths and try to understand various features 
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! = 90dip1 GeV Pion, 
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Some Single Event Images 
No Quantum Efficiency! 
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! = 45dip1 GeV Pion, 
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Some Single Event Images 
No Quantum Efficiency! 

SuperB X, Oct. 6, 2009 Doug Roberts, University of Maryland 12 

! = 85dip1 GeV Pion, 

(cm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

(c
m

)

-15

-10

-5

0

5

10

15

All Hits

(cm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

(c
m

)

-15

-10

-5

0

5

10

15

All Hits

(cm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

(c
m

)

-15

-10

-5

0

5

10

15

All Hits

(cm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

(c
m

)

-15

-10

-5

0

5

10

15

All Hits

(cm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

(c
m

)

-15

-10

-5

0

5

10

15

All Hits

(cm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

(c
m

)

-15

-10

-5

0

5

10

15

All Hits



Some Single Event Images 
No Quantum Efficiency! 
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No Wedge Bounces vs. Just Bottom 
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Note that images don’t line up.  The wedge introduces some smearing in the image.  May 
require some re-optimization of the focal plane? 
•  About half of the photons bounce off the bottom of the wedge.   
•  60% bounce off top and/or bottom 
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Resolution Measurement 
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  Pictures are nice and can tell us some qualitative things, but we 
would really like to be able to quantify the resolution in order to 
be able to truly optimize the optical design and answer questions 
like: 
  Is there a more optimal position for the focal plane 

  Strike compromise between wedge-bounced and non-wedge-bounced 
photons with under-focused design 

  Do reflections from the vertical sides of the FBLOCK help or hurt? 
   How does resolution depend on bar number in the bar box in both cases? 

  What is the optimal pixel size for photodetectors? 
  Can we use timing to improve resolution? 
  How well can we resolve multiple tracks in the same FBLOCK? 
  What is the ultimate K/π separation we can expect?  
  Many other questions I’m sure… 



Ring Reconstruction 

SuperB X, Oct. 6, 2009 Doug Roberts, University of Maryland 16 

  I’ve made an attempt to reconstruct images from this design 
in order to start to quantify the resolution 

  This is very, very preliminary 



Reconstruction Technique 
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  Start by generating single photons that are propagated through the optical system and on 
to the focal plane. 

  However, the map from (x,y) position on the focal plane to photon angles at the exit of a 
quartz bar is multi-valued 
  There are many distinct photon paths that can produce a hit at that same location. 

  Bounces off the wedge, off the sides of the FBLOCK, missing mirrors, etc. 
  For a given hit, we don’t know a priori which path the photon took. 

  I generated 1M single photons with isotropic initial direction and fixed wavelength of 
400nm 
  All have initial kz component pointing toward FBLOCK, otherwise isotropic over that half-

sphere 
  Initial position randomly distributed within cross-section of a quartz bar and randomly 

along z-axis 
  For now, only generated photons in the third long bar from the edge of the bar box. 

  Easy to generalize code to look at all 12 bars 

  A little more than 1/3 of the photons produce hits on the focal plane 
  For each photon, store its exit angles, θx and θy, as it leaves the quartz bar, position on 

the focal plane, time, and various other quantities 



Exit Angle v.s. Position on Focal Plane 
Y-View (Focused) X-View (Unfocused) 
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Reconstruction (cont.) 

SuperB X, Oct. 6, 2009 Doug Roberts, University of Maryland 19 

  For each photon hit in an image, search the single photon database for photons within 1 
“pixel” size of the hit 
  Since we don’t have a finalized pixel configuration, this is a parameter in the code 
  Currently using 3mm x 3mm pixels, easy to change 
  “Pixels” are centered on hit, not fixed in space as they would be for real detector 
  No implementation of hit merging for photons hitting same pixel, however 
  No dead space 

  For each single photon within the pixel size, grab its θx and θy 

  Using initial track direction {θdip, φ} (unsmeared) calculate θC 

  4-fold ambiguity relating angles at bar exit to angles at photon creation 
  But, all the tracks I generated have φ = 0, so really 2-fold 

  Only keep solutions with cosθC > 0.6 (physical limit ~2/3, but allow for some 
resolution effects) 

€ 

cosθC =
1

tan2θ x + tan2θy +1
tanθ x cosφ sinθdip + tanθ y sinφ sinθdip + cosθdip( )



Reconstruction (cont.) 
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  For each hit, store all valid solutions for θC, normalized by 
the number of valid solutions for that hit 
  Each hit will contribute an overall weight of 1, independent of 

the number of solutions 
 On average about 30~60 solutions/hit, depending on dip angle 

  Accumulate solutions for all hits in an event 
  Hopefully a clear peak appears! 



Single Hits, first 6 hits in first event 
1 GeV momentum pion 

Expected θC = 0.81 radians, indicated by Blue Arrow 
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All Hits From One Event, First Six Events 
Again, expected θC = 0.81 radians 

Dip angle of 45 degrees 
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4 Different θdip angles, 100 events each 
Hard cutoff at θC around 0.93 radians from requirement that cos(θC) > 0.6 

Note different scales on x-axis 
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Fits to the peak 
100 events each 

Fit is just Gaussian + Line 
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Separate Fits to All 100 Events 
Plots show the mean of the Gaussian from each event 
Means are right on, RMS ~ 2.6 mrad, except θdip = 90° 
Remember, no QE corrections, etc., so number of photons/event larger by factor of 5 or so. 
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Still to do… 
  These are just some samples of things to look at 
  Obviously there is still a lot to do for the reconstruction 

algorithm, but it is a start (I think?) 
  There’s a lot that I would still like to understand in more detail 
  More information could be used, like hit time 
  I’m not by any means proposing that this be the way 

reconstruction is done! 
  It is unbelievably slow! (almost 1 minute/event on my Mac) 
  But, things could be done to optimize 

  Need to start looking at the questions of interest as far as design 
optimization is concerned. 

  Could use some help!  I’m more than willing to share code. 
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