
Oct. 7, 2009 – X SuperB General Meeting, SLAC

Bookkeeping Database
Luca Tomassetti [University of Ferrara & INFN]



Summary

✤ Database Schema

✤ Implementation & Queries

✤ (public) test & (near) future developments

✤ Towards a Distributed Production Software



Database Schema Validation



Database Schema

✤ Sep 28th: SBK Meeting
Validation of the proposed 
schema

✤ Main features:
✤ Production
✤ Full and Fast jobs
✤ Merging
✤ Software releases

✤ Open Questions:
✤ Generators’s Parameters
✤ Machine / Generator / 

Input Files (FullSim)
✤ Uniqueness of values



Database Schema

✤ Sep 28th: SBK Meeting
Validation of the proposed 
schema

✤ Main features:
✤ Production
✤ Full and Fast jobs
✤ Merging
✤ Software releases

✤ Open Questions:
✤ Generators’s Parameters
✤ Machine / Generator / 

Input Files (FullSim)
✤ Uniqueness of values

NSI: Not So Important!
VI: Very Important!

NSI

VI

NSI



Features



Database Schema



Database Schema



Production

✤ Each production is a row 
identified by the prod_series

✤ All stuff related to a production 
refers (from other tables) to the 
corresponding row by means of 
prod_series value

✤ prod_root:
common to Full and Fast jobs

✤ datatime:
launch of the production



Full Job

✤ prod_series AND 
runnum identify a job
✤ Many job in a production
✤ The same runnum in 

different productions

✤ machine_id
✤ generator_id
✤ geo_...
✤ soft_release
} FK



Full Job

✤ prod_series AND 
runnum identify a job
✤ Many job in a production
✤ The same runnum in 

different productions

✤ machine_id
✤ generator_id
✤ geo_...
✤ soft_release
} FK

geometry_type: DG0, DG1, ... (as defined by the DGWG)

The “real” geometry is defined in the Geometry package



Full Job

✤ prod_series AND 
runnum identify a job
✤ Many job in a production
✤ The same runnum in 

different productions

✤ machine_id
✤ generator_id
✤ geo_...
✤ soft_release
} FK



Full Job

✤ prod_series AND 
runnum identify a job
✤ Many job in a production
✤ The same runnum in 

different productions

✤ machine_id
✤ generator_id
✤ geo_...
✤ soft_release
} FK

prod_type: A (Machine BG), B (Physics BG),
C (BG Physics), D (Physics)

 
Sub-classification? e.g. A1: Touschek, A2: Beam, A3: Track...

B1: Bha-bha to neutrons,...



Full Job

✤ prod_series AND 
runnum identify a job
✤ Many job in a production
✤ The same runnum in 

different productions

✤ machine_id
✤ generator_id
✤ geo_...
✤ soft_release
} FK



Full Job I/O

✤ Input files:
✤ Many per job

(0,N)
✤ The same input file for many jobs

(1, M)

✤ Two tables:
✤ FULL_INPUT

full_input_id

✤ FULLJOB_INPUT
fullinput_id,
prod_series, runnum

✤ Output files:
✤ Many per job

(1,N), typically 2
✤ A given output file is produced by 

one and only one job

✤ One table:
✤ FULL_OUTPUT

output_type,
prod_series, runnum

FULL_JOB



Full Job I/O

✤ Input files:
✤ Many per job

(0,N)
✤ The same input file for many jobs

(1, M)

✤ Two tables:
✤ FULL_INPUT

full_input_id

✤ FULLJOB_INPUT
fullinput_id,
prod_series, runnum

✤ Output files:
✤ Many per job

(1,N), typically 2
✤ A given output file is produced by 

one and only one job

✤ One table:
✤ FULL_OUTPUT

output_type,
prod_series, runnum

FULL_JOB

NOW: “input for fast”, “hits”
exaustive list?



Full Job I/O

✤ Input files:
✤ Many per job

(0,N)
✤ The same input file for many jobs

(1, M)

✤ Two tables:
✤ FULL_INPUT

full_input_id

✤ FULLJOB_INPUT
fullinput_id,
prod_series, runnum

✤ Output files:
✤ Many per job

(1,N), typically 2
✤ A given output file is produced by 

one and only one job

✤ One table:
✤ FULL_OUTPUT

output_type,
prod_series, runnum

FULL_JOB



Fast Job

✤ The same philosophy as Full Job

✤ Differences in input/output files

✤ Explicit reference to the master detector 
configuration file
(which is anyway in the Geometry package)

✤ prod_type: FastSim; do we need deeper 
classification ?



Fast Job I/O

✤ Fastsim uses (one or more) 
merge files as input

✤ The same merge file can be 
used by many Fast jobs

✤ Two tables:
✤ MERGE_JOB

merge_id

✤ FASTJOB_MERGE
merge_id,
prod_series, runnum



Fast Job I/O

✤ Fastsim uses (one or more) 
merge files as input

✤ The same merge file can be 
used by many Fast jobs

✤ Two tables:
✤ MERGE_JOB

merge_id

✤ FASTJOB_MERGE
merge_id,
prod_series, runnum



Fast Job I/O – Merge files

✤ A Merge file consists of many 
Fullsim Output files
(of the same type, i.e. produced 
by the same generator)

✤ A Fullsim Ouput file can be 
used in many Merge files

✤ A Fullsim Ouput file can be 
used in one and only one Merge 
files



Fast Job I/O – Merge files

✤ A Merge file consists of many 
Fullsim Output files
(of the same type, i.e. produced 
by the same generator)

✤ A Fullsim Ouput file can be 
used in many Merge files

✤ A Fullsim Ouput file can be 
used in one and only one Merge 
files



Fast Job I/O – Merge files

✤ A Merge file consists of many 
Fullsim Output files
(of the same type, i.e. produced 
by the same generator)

✤ A Fullsim Ouput file can be 
used in many Merge files



Fast Job I/O – Merge files

✤ A Merge file consists of many 
Fullsim Output files
(of the same type, i.e. produced 
by the same generator)

✤ A Fullsim Ouput file can be 
used in many Merge files

✤ A Fullsim Ouput file can be 
used in one and only one Merge 
files

merge_id



Fast Job I/O – Merge files

✤ A Merge file consists of many 
Fullsim Output files
(of the same type, i.e. produced 
by the same generator)

✤ A Fullsim Ouput file can be 
used in many Merge files

✤ A Fullsim Ouput file can be 
used in one and only one Merge 
files

merge_idAre You sure?
The N:M case includes the simplest 1:N

It will be more difficult to come back then...



Fast Job I/O – Output files

✤ Output files:
✤ Many per job

(1,N), at most one per physical channel
✤ A given output file is produced by 

one and only one job

✤ One table:
✤ FAST_OUTPUT

channel_type,
prod_series, runnum



Fast Job I/O – Output files

✤ Output files:
✤ Many per job

(1,N), at most one per physical channel
✤ A given output file is produced by 

one and only one job

✤ One table:
✤ FAST_OUTPUT

channel_type,
prod_series, runnum



Fast Job I/O – Output files

✤ Output files:
✤ Many per job

(1,N), at most one per physical channel
✤ A given output file is produced by 

one and only one job

✤ One table:
✤ FAST_OUTPUT

channel_type,
prod_series, runnumphysical channels

naming, list, ...



Fast Job I/O – Output files

✤ Output files:
✤ Many per job

(1,N), at most one per physical channel
✤ A given output file is produced by 

one and only one job

✤ One table:
✤ FAST_OUTPUT

channel_type,
prod_series, runnum



Software Release

✤ Packaging of Fullsim and Production will move to a release based 
schema (Fastsim already is)

✤ Geometry packages are “inside” the releases;
self-consistent packages independent from the sim pkg.

✤ We just need to know which release has been used (for fast/full)
⇒ geometry package determined

✤ At the moment (no release, yet) is necessary to specify which 
geometry package has been used on a per job basis.



Open Questions



Generators

✤ We have many (possible) generators
✤ A job uses one and only one generator
✤ A generator has a set of parameters (and their values can vary)
✤ The generator’s parameters values are job dependent

➡ gen_parameters is in the Job table

➡ we may store default values in the Generator table
and when needed the new values in the Job table



Machine / Generators / Input Files

✤ Background’s simulation with FullSim is already modeled

✤ Something can be improved in the logic and/or schema in order to 
reduce redundancy
✤ mad_output_file in the Machine table
✤ Input files for the Fullsim

✤ Discussion with Andrea Di Simone & Manuela Boscolo in progress



Uniqueness

✤ prod_series ➟ identifier of a Production:
who’s giving names? Besides strictly checking it, how to avoid 
duplicates?

✤ runnum ➟ identifier of a Job within a Production:
who assign it? Cross numbering between Full & Fast, yes or no?

✤ full_input_id ➟ identifier of an input file for Fullsim
autoincrement, time-related? only if db centralized; ?

✤ merge_id ➟ identifier of a merged file
how to assign it? merge job doesn’t exist yet... we must take care of it



First Implementation & Queries



MySQL testing

✤ The presented Relational Schema has been implemented with 
MySQL RDBMS at Ferrara [Cinzia Luzzi made the job!]

✤ Scripts have been used to populate the database with data “taken” 
from previous production (July test)

✤ Queries of interest have been developed and executed on the schema 
as a functionality test



✤ Retrieve all merge files used by a specific Fastsim Job
(so we must identify the job by its runnum and prod_series)

SELECT MERGE_JOB.* FROM MERGE_JOB NATURAL JOIN FASTJOB_MERGE 
NATURAL JOIN FAST_JOB AS FAST WHERE FAST.runnum = 1021 AND 
FAST.prod_series = ‘2009_July’;

Queries

SELECT MERGE JOB.* FROM MERGE JOB NATURAL JOIN FASTJOB MERGE
NATURAL JOIN FAST JOB AS FAST WHERE FAST.runnum = 1021 AND FAST.prod -
series = ’2009 July’;

R2 Result:

merge id merged file type merged file name location site location path size
1500 beamstrahlung fullmerged1500 CNAF /storage/gpfs babar6/sb/user/2009 July/MergeFile/1500/ 23070094
1542 beamstrahlung fullmerged1542 CNAF /storage/gpfs babar6/sb/user/2009 July/MergeFile/1542/ 22180076

Q3 List of all the full output files – looking into all the used merged files –
used by the fast job belonging to the production 2009 July with runnum
1021:
SELECT FO.* FROM MERGE JOB AS M, MERGE FULLOUTPUT AS MFO, FULL -
OUTPUT AS FO, FASTJOB MERGE AS FJM, FAST JOB AS F WHERE M.merge -
id = MFO.merge id AND MFO.runnum = FO.runnum AND MFO.prod -
series = FO.prod series AND MFO.output type = FO.output type
AND M.merge id = FJM.merge id AND FJM.runnum = F.runnum AND
FJM.prod series = F.prod series AND F.runnum = 1200 AND F.prod -
series = ’2009 July’;

R3 Result:

output type prod series runnum file name location site location path size
... ... ... ... ... ... ...

Input for fast 2009 July 1013 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1281473
2009 July/FullSim/DG0/beamstrahlung/1013/

Input for fast 2009 July 1014 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1274153
2009 July/FullSim/DG0/beamstrahlung/1014/

Input for fast 2009 July 1015 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1117602
2009 July/FullSim/DG0/beamstrahlung/1015/

Input for fast 2009 July 1016 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1221705
2009 July/FullSim/DG0/beamstrahlung/1016/

... ... ... ... ... ... ...

3 Requirement definition discussion

We present here a proposal for the entity definitions related to the require-
ments of Production Management, FullSim and FastSim production.

3.1 Production management

3.1.1 Entities definition

Production: this entity contains information about production. A produc-
tion is composed by a set of full and/or fast sim jobs.
Involved fields will be:

5



✤ Retrieve all Fullsim Output files used (via merge files) by a specific 
Fastsim Job
SELECT FO.* FROM MERGE_JOB AS M, MERGE_FULLOUTPUT AS MFO, 
FULL_OUTPUT AS FO, FASTJOB_MERGE AS FJM, FAST_JOB AS F WHERE 
M.merge_id = MFO.merge_id AND MFO.runnum = FO.runnum AND 
MFO.prod_series = FO.prod_series AND MFO.output_type = 
FO.output_type AND M.merge_id = FJM.merge_id AND FJM.runnum = 
F.runnum AND FJM.prod_series = F.prod_series AND F.runnum = 1200 
AND F.prod_series = ‘2009_July’;

Queries

SELECT MERGE JOB.* FROM MERGE JOB NATURAL JOIN FASTJOB MERGE
NATURAL JOIN FAST JOB AS FAST WHERE FAST.runnum = 1021 AND FAST.prod -
series = ’2009 July’;

R2 Result:

merge id merged file type merged file name location site location path size
1500 beamstrahlung fullmerged1500 CNAF /storage/gpfs babar6/sb/user/2009 July/MergeFile/1500/ 23070094
1542 beamstrahlung fullmerged1542 CNAF /storage/gpfs babar6/sb/user/2009 July/MergeFile/1542/ 22180076

Q3 List of all the full output files – looking into all the used merged files –
used by the fast job belonging to the production 2009 July with runnum
1021:
SELECT FO.* FROM MERGE JOB AS M, MERGE FULLOUTPUT AS MFO, FULL -
OUTPUT AS FO, FASTJOB MERGE AS FJM, FAST JOB AS F WHERE M.merge -
id = MFO.merge id AND MFO.runnum = FO.runnum AND MFO.prod -
series = FO.prod series AND MFO.output type = FO.output type
AND M.merge id = FJM.merge id AND FJM.runnum = F.runnum AND
FJM.prod series = F.prod series AND F.runnum = 1200 AND F.prod -
series = ’2009 July’;

R3 Result:

output type prod series runnum file name location site location path size
... ... ... ... ... ... ...

Input for fast 2009 July 1013 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1281473
2009 July/FullSim/DG0/beamstrahlung/1013/

Input for fast 2009 July 1014 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1274153
2009 July/FullSim/DG0/beamstrahlung/1014/

Input for fast 2009 July 1015 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1117602
2009 July/FullSim/DG0/beamstrahlung/1015/

Input for fast 2009 July 1016 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1221705
2009 July/FullSim/DG0/beamstrahlung/1016/

... ... ... ... ... ... ...

3 Requirement definition discussion

We present here a proposal for the entity definitions related to the require-
ments of Production Management, FullSim and FastSim production.

3.1 Production management

3.1.1 Entities definition

Production: this entity contains information about production. A produc-
tion is composed by a set of full and/or fast sim jobs.
Involved fields will be:

5



✤ Queries of that type have to be included in the production software 
layer in order to populate the database and monitor the production

Queries

Prod.
Init

Job
Start

Job
Done

Inserts into job tables Inserts into output tables 
& updates into job tables

Prod.
Done

O
nl

in
e



✤ Queries of that type have to be included in the production software 
layer in order to populate the database and monitor the production

Queries

Prod.
Init

Job
Start

Job
Done

Inserts into job tables Inserts into output tables 
& updates into job tables

Prod.
Done

O
nl

in
e

Queries to monitor the production execution
& queries to retrieve (meta)data of productions

O
ffl

in
e



Future Developments



of
fli

ne
on

lin
e

Deployment at CNAF

✤ Schema will be deployed at CNAF in the next few weeks

✤ Basic Web interface
✤ A prototype of production monitor
✤ parametric queries to retrieve (meta)data of productions
✤ Mysql + PHP + Apache

✤ Production Web-UI
✤ Web form + PHP
✤ Executes the production initialization
✤ Provides the interface to the database



of
fli

ne
on

lin
e

Deployment at CNAF

✤ Schema will be deployed at CNAF in the next few weeks

✤ Basic Web interface
✤ A prototype of production monitor
✤ parametric queries to retrieve (meta)data of productions
✤ Mysql + PHP + Apache

✤ Production Web-UI
✤ Web form + PHP
✤ Executes the production initialization
✤ Provides the interface to the database

it m
ay be postponed

we are already going towards
a distributed production software



Distributed Production



Works to do
[where the Database is involved]

✤ Production Initialization Script
✤ Web form to be used by the 

production manager
✤ Strict check on user input:

✤ Production data (e.g. prod_series, prod_root, 
prod_software)

✤ Production type, Number of jobs
✤ Jobs data (e.g. seeds, generators, number of 

events, geometry_type, input files, ...)
✤ TAG, ARCH, RELEASE_WORKDIR, ...

✤ Mysql + PHP + Apache at CNAF
✤ It will populate the database
✤ It will provide a macro for jobs 

submission (GANGA)

✤ Pre- & Post- Job Scripts
✤ They take care of updates into the 

database before and after job 
execution
✤ status changes, ...
✤ output files metadata

✤ HTTP based service
✤ Exception detection
✤ Python

init
start

W
eb

-U
I



Works to do
[where the Database is involved]

✤ Production Initialization Script
✤ Web form to be used by the 

production manager
✤ Strict check on user input:

✤ Production data (e.g. prod_series, prod_root, 
prod_software)

✤ Production type, Number of jobs
✤ Jobs data (e.g. seeds, generators, number of 

events, geometry_type, input files, ...)
✤ TAG, ARCH, RELEASE_WORKDIR, ...

✤ Mysql + PHP + Apache at CNAF
✤ It will populate the database
✤ It will provide a macro for jobs 

submission (GANGA)

✤ Pre- & Post- Job Scripts
✤ They take care of updates into the 

database before and after job 
execution
✤ status changes, ...
✤ output files metadata

✤ HTTP based service
✤ Exception detection
✤ Python

init
start

Fullsim should be ok
Fastsim has inputs “hard coded”
It will be necessary to separate

things

W
eb

-U
I



Works to do
[where the Database is involved]

✤ Production Initialization Script
✤ Web form to be used by the 

production manager
✤ Strict check on user input:

✤ Production data (e.g. prod_series, prod_root, 
prod_software)

✤ Production type, Number of jobs
✤ Jobs data (e.g. seeds, generators, number of 

events, geometry_type, input files, ...)
✤ TAG, ARCH, RELEASE_WORKDIR, ...

✤ Mysql + PHP + Apache at CNAF
✤ It will populate the database
✤ It will provide a macro for jobs 

submission (GANGA)

✤ Pre- & Post- Job Scripts
✤ They take care of updates into the 

database before and after job 
execution
✤ status changes, ...
✤ output files metadata

✤ HTTP based service
✤ Exception detection
✤ Python

init
start

W
eb

-U
I



Works to do
[where the Database is involved]

✤ Production Initialization Script
✤ Web form to be used by the 

production manager
✤ Strict check on user input:

✤ Production data (e.g. prod_series, prod_root, 
prod_software)

✤ Production type, Number of jobs
✤ Jobs data (e.g. seeds, generators, number of 

events, geometry_type, input files, ...)
✤ TAG, ARCH, RELEASE_WORKDIR, ...

✤ Mysql + PHP + Apache at CNAF
✤ It will populate the database
✤ It will provide a macro for jobs 

submission (GANGA)

✤ Pre- & Post- Job Scripts
✤ They take care of updates into the 

database before and after job 
execution
✤ status changes, ...
✤ output files metadata

✤ HTTP based service
✤ Exception detection
✤ Python

init
start

See Armando’s talk for details

W
eb

-U
I



Conclusions

✤ Database schema is ready, validated, implemented and tested

✤ Some (minor) refinements are under discussion

✤ Deployment will be ready by the end of October

✤ Interactions with Production Software have been modeled
(see Armando’s talk)

✤ Coding will start soon... 

✤ ...ready for January 2010 production!


