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Summary

✤ Database Schema

✤ Implementation & Queries

✤ (public) test & (near) future developments

✤ Towards a Distributed Production Software
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Validation of the proposed 
schema

✤ Main features:
✤ Production
✤ Full and Fast jobs
✤ Merging
✤ Software releases

✤ Open Questions:
✤ Generators’s Parameters
✤ Machine / Generator / 

Input Files (FullSim)
✤ Uniqueness of values



Database Schema

✤ Sep 28th: SBK Meeting
Validation of the proposed 
schema

✤ Main features:
✤ Production
✤ Full and Fast jobs
✤ Merging
✤ Software releases

✤ Open Questions:
✤ Generators’s Parameters
✤ Machine / Generator / 

Input Files (FullSim)
✤ Uniqueness of values

NSI: Not So Important!
VI: Very Important!

NSI

VI

NSI



Features



Database Schema



Database Schema



Production

✤ Each production is a row 
identified by the prod_series

✤ All stuff related to a production 
refers (from other tables) to the 
corresponding row by means of 
prod_series value

✤ prod_root:
common to Full and Fast jobs

✤ datatime:
launch of the production



Full Job

✤ prod_series AND 
runnum identify a job
✤ Many job in a production
✤ The same runnum in 

different productions

✤ machine_id
✤ generator_id
✤ geo_...
✤ soft_release
} FK
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runnum identify a job
✤ Many job in a production
✤ The same runnum in 

different productions

✤ machine_id
✤ generator_id
✤ geo_...
✤ soft_release
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geometry_type: DG0, DG1, ... (as defined by the DGWG)

The “real” geometry is defined in the Geometry package
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✤ The same runnum in 
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✤ generator_id
✤ geo_...
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prod_type: A (Machine BG), B (Physics BG),
C (BG Physics), D (Physics)

 
Sub-classification? e.g. A1: Touschek, A2: Beam, A3: Track...

B1: Bha-bha to neutrons,...
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Full Job I/O

✤ Input files:
✤ Many per job

(0,N)
✤ The same input file for many jobs

(1, M)

✤ Two tables:
✤ FULL_INPUT

full_input_id

✤ FULLJOB_INPUT
fullinput_id,
prod_series, runnum

✤ Output files:
✤ Many per job

(1,N), typically 2
✤ A given output file is produced by 

one and only one job

✤ One table:
✤ FULL_OUTPUT

output_type,
prod_series, runnum

FULL_JOB
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NOW: “input for fast”, “hits”
exaustive list?
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Fast Job

✤ The same philosophy as Full Job

✤ Differences in input/output files

✤ Explicit reference to the master detector 
configuration file
(which is anyway in the Geometry package)

✤ prod_type: FastSim; do we need deeper 
classification ?



Fast Job I/O

✤ Fastsim uses (one or more) 
merge files as input

✤ The same merge file can be 
used by many Fast jobs

✤ Two tables:
✤ MERGE_JOB

merge_id

✤ FASTJOB_MERGE
merge_id,
prod_series, runnum
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✤ Fastsim uses (one or more) 
merge files as input

✤ The same merge file can be 
used by many Fast jobs

✤ Two tables:
✤ MERGE_JOB

merge_id

✤ FASTJOB_MERGE
merge_id,
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Fast Job I/O – Merge files

✤ A Merge file consists of many 
Fullsim Output files
(of the same type, i.e. produced 
by the same generator)

✤ A Fullsim Ouput file can be 
used in many Merge files

✤ A Fullsim Ouput file can be 
used in one and only one Merge 
files
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Fast Job I/O – Merge files

✤ A Merge file consists of many 
Fullsim Output files
(of the same type, i.e. produced 
by the same generator)

✤ A Fullsim Ouput file can be 
used in many Merge files

✤ A Fullsim Ouput file can be 
used in one and only one Merge 
files

merge_idAre You sure?
The N:M case includes the simplest 1:N

It will be more difficult to come back then...



Fast Job I/O – Output files

✤ Output files:
✤ Many per job

(1,N), at most one per physical channel
✤ A given output file is produced by 

one and only one job

✤ One table:
✤ FAST_OUTPUT

channel_type,
prod_series, runnum
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Software Release

✤ Packaging of Fullsim and Production will move to a release based 
schema (Fastsim already is)

✤ Geometry packages are “inside” the releases;
self-consistent packages independent from the sim pkg.

✤ We just need to know which release has been used (for fast/full)
⇒ geometry package determined

✤ At the moment (no release, yet) is necessary to specify which 
geometry package has been used on a per job basis.



Open Questions



Generators

✤ We have many (possible) generators
✤ A job uses one and only one generator
✤ A generator has a set of parameters (and their values can vary)
✤ The generator’s parameters values are job dependent

➡ gen_parameters is in the Job table

➡ we may store default values in the Generator table
and when needed the new values in the Job table



Machine / Generators / Input Files

✤ Background’s simulation with FullSim is already modeled

✤ Something can be improved in the logic and/or schema in order to 
reduce redundancy
✤ mad_output_file in the Machine table
✤ Input files for the Fullsim

✤ Discussion with Andrea Di Simone & Manuela Boscolo in progress



Uniqueness

✤ prod_series ➟ identifier of a Production:
who’s giving names? Besides strictly checking it, how to avoid 
duplicates?

✤ runnum ➟ identifier of a Job within a Production:
who assign it? Cross numbering between Full & Fast, yes or no?

✤ full_input_id ➟ identifier of an input file for Fullsim
autoincrement, time-related? only if db centralized; ?

✤ merge_id ➟ identifier of a merged file
how to assign it? merge job doesn’t exist yet... we must take care of it



First Implementation & Queries



MySQL testing

✤ The presented Relational Schema has been implemented with 
MySQL RDBMS at Ferrara [Cinzia Luzzi made the job!]

✤ Scripts have been used to populate the database with data “taken” 
from previous production (July test)

✤ Queries of interest have been developed and executed on the schema 
as a functionality test



✤ Retrieve all merge files used by a specific Fastsim Job
(so we must identify the job by its runnum and prod_series)

SELECT MERGE_JOB.* FROM MERGE_JOB NATURAL JOIN FASTJOB_MERGE 
NATURAL JOIN FAST_JOB AS FAST WHERE FAST.runnum = 1021 AND 
FAST.prod_series = ‘2009_July’;

Queries

SELECT MERGE JOB.* FROM MERGE JOB NATURAL JOIN FASTJOB MERGE
NATURAL JOIN FAST JOB AS FAST WHERE FAST.runnum = 1021 AND FAST.prod -
series = ’2009 July’;

R2 Result:

merge id merged file type merged file name location site location path size
1500 beamstrahlung fullmerged1500 CNAF /storage/gpfs babar6/sb/user/2009 July/MergeFile/1500/ 23070094
1542 beamstrahlung fullmerged1542 CNAF /storage/gpfs babar6/sb/user/2009 July/MergeFile/1542/ 22180076

Q3 List of all the full output files – looking into all the used merged files –
used by the fast job belonging to the production 2009 July with runnum
1021:
SELECT FO.* FROM MERGE JOB AS M, MERGE FULLOUTPUT AS MFO, FULL -
OUTPUT AS FO, FASTJOB MERGE AS FJM, FAST JOB AS F WHERE M.merge -
id = MFO.merge id AND MFO.runnum = FO.runnum AND MFO.prod -
series = FO.prod series AND MFO.output type = FO.output type
AND M.merge id = FJM.merge id AND FJM.runnum = F.runnum AND
FJM.prod series = F.prod series AND F.runnum = 1200 AND F.prod -
series = ’2009 July’;

R3 Result:

output type prod series runnum file name location site location path size
... ... ... ... ... ... ...

Input for fast 2009 July 1013 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1281473
2009 July/FullSim/DG0/beamstrahlung/1013/

Input for fast 2009 July 1014 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1274153
2009 July/FullSim/DG0/beamstrahlung/1014/

Input for fast 2009 July 1015 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1117602
2009 July/FullSim/DG0/beamstrahlung/1015/

Input for fast 2009 July 1016 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1221705
2009 July/FullSim/DG0/beamstrahlung/1016/

... ... ... ... ... ... ...

3 Requirement definition discussion

We present here a proposal for the entity definitions related to the require-
ments of Production Management, FullSim and FastSim production.

3.1 Production management

3.1.1 Entities definition

Production: this entity contains information about production. A produc-
tion is composed by a set of full and/or fast sim jobs.
Involved fields will be:

5



✤ Retrieve all Fullsim Output files used (via merge files) by a specific 
Fastsim Job
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Q3 List of all the full output files – looking into all the used merged files –
used by the fast job belonging to the production 2009 July with runnum
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SELECT FO.* FROM MERGE JOB AS M, MERGE FULLOUTPUT AS MFO, FULL -
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id = MFO.merge id AND MFO.runnum = FO.runnum AND MFO.prod -
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AND M.merge id = FJM.merge id AND FJM.runnum = F.runnum AND
FJM.prod series = F.prod series AND F.runnum = 1200 AND F.prod -
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output type prod series runnum file name location site location path size
... ... ... ... ... ... ...

Input for fast 2009 July 1013 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1281473
2009 July/FullSim/DG0/beamstrahlung/1013/

Input for fast 2009 July 1014 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1274153
2009 July/FullSim/DG0/beamstrahlung/1014/

Input for fast 2009 July 1015 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1117602
2009 July/FullSim/DG0/beamstrahlung/1015/

Input for fast 2009 July 1016 InputForFastPatch.root CNAF /storage/gpfs babar6/sb/disimone/ 1221705
2009 July/FullSim/DG0/beamstrahlung/1016/

... ... ... ... ... ... ...
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ments of Production Management, FullSim and FastSim production.

3.1 Production management

3.1.1 Entities definition

Production: this entity contains information about production. A produc-
tion is composed by a set of full and/or fast sim jobs.
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✤ Queries of that type have to be included in the production software 
layer in order to populate the database and monitor the production

Queries

Prod.
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Inserts into job tables Inserts into output tables 
& updates into job tables
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Queries

Prod.
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& updates into job tables
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Queries to monitor the production execution
& queries to retrieve (meta)data of productions
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Deployment at CNAF

✤ Schema will be deployed at CNAF in the next few weeks

✤ Basic Web interface
✤ A prototype of production monitor
✤ parametric queries to retrieve (meta)data of productions
✤ Mysql + PHP + Apache

✤ Production Web-UI
✤ Web form + PHP
✤ Executes the production initialization
✤ Provides the interface to the database
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Deployment at CNAF

✤ Schema will be deployed at CNAF in the next few weeks

✤ Basic Web interface
✤ A prototype of production monitor
✤ parametric queries to retrieve (meta)data of productions
✤ Mysql + PHP + Apache

✤ Production Web-UI
✤ Web form + PHP
✤ Executes the production initialization
✤ Provides the interface to the database

it m
ay be postponed

we are already going towards
a distributed production software



Distributed Production



Works to do
[where the Database is involved]

✤ Production Initialization Script
✤ Web form to be used by the 

production manager
✤ Strict check on user input:

✤ Production data (e.g. prod_series, prod_root, 
prod_software)

✤ Production type, Number of jobs
✤ Jobs data (e.g. seeds, generators, number of 

events, geometry_type, input files, ...)
✤ TAG, ARCH, RELEASE_WORKDIR, ...

✤ Mysql + PHP + Apache at CNAF
✤ It will populate the database
✤ It will provide a macro for jobs 

submission (GANGA)

✤ Pre- & Post- Job Scripts
✤ They take care of updates into the 

database before and after job 
execution
✤ status changes, ...
✤ output files metadata

✤ HTTP based service
✤ Exception detection
✤ Python

init
start
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start

Fullsim should be ok
Fastsim has inputs “hard coded”
It will be necessary to separate

things
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Works to do
[where the Database is involved]

✤ Production Initialization Script
✤ Web form to be used by the 

production manager
✤ Strict check on user input:

✤ Production data (e.g. prod_series, prod_root, 
prod_software)
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✤ It will populate the database
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submission (GANGA)
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✤ They take care of updates into the 

database before and after job 
execution
✤ status changes, ...
✤ output files metadata

✤ HTTP based service
✤ Exception detection
✤ Python

init
start

See Armando’s talk for details
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Conclusions

✤ Database schema is ready, validated, implemented and tested

✤ Some (minor) refinements are under discussion

✤ Deployment will be ready by the end of October

✤ Interactions with Production Software have been modeled
(see Armando’s talk)

✤ Coding will start soon... 

✤ ...ready for January 2010 production!


