
Full Simulation status

Andrea Di Simone
INFN Tor Vergata

2

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

OutlineOutline

➢ New developments since Perugia

➢ Already on SVN:
➢ Improved Truth configuration

➢ To be committed:
➢ Centralized management of output files

➢ Flexible control of UserActions

➢ Particle Follower

➢ Simplified event structure

➢ ROOT input

➢ Staged simulation

➢ Backup: report on summer bg frame production

3

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Truth configurationTruth configuration

➢ When truth recording was implemented, not clear yet whether
the macro-based UI was going to stay, or if we may migrate to
some better mechanism

➢ No effort at all in integrating truth configuration with macros.

➢ Everything was anyway controlled at runtime by means of separated
ascii files

➢ Now, it is clear that we are not going to drop the macros
anytime soon

➢ One user request for macro-level configuration of truth policies

➢ Decided to put some effort on this item

➢ Presently, all configurability formerly provided by the old ascii
files is available at macro level

➢ Ascii files were removed from svn. Code to read them is still present,
though, to provide some level of b/w compatibility.

4

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Truth, reminderTruth, reminder
➢ One can save the status of any secondary particle at its creation
➢ In addition, full trajectories (i.e. the “path” the particle follows inside the

detector) can be saved as well
➢ Configuration is specified in policies, controlled by specific macro

commands
➢ Main parameter in a policy is the volume name:

➢ The policy will affect only secondaries created in that volume (and its
daughter volumes)
➢ One can declare multiple policies for each volume

➢ Policies are designed to allow enough flexibility
➢ Example:

➢ Save all secondaries from my favorite subdetector
➢ Save only photons above a given energy
➢ Store trajectory of electrons above a given energy
➢ Save all secondaries above threshold in some shielding volume and keep trajectory

only for those which exit the original volume

5

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Boundaries, reminderBoundaries, reminder

➢ The aim is to save a snapshot of particles
exiting any given volume (a subdetector)
➢ Approach similar to the one used for MCTruth

➢ Configuration done using policies, but with less
parameters

➢ A set of policies for the main subdetectors is
provided as default

➢ User can add his/her own volume at runtime

➢ Many uses for this kind of feature
➢ Particle flux studies

➢ detection/reconstruction efficiency measurement

6

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Truth, boundaries: exampleTruth, boundaries: example

/truth/create_policy DCHpol1 DCH_container
/truth/policy/DCHpol1/level 2
/truth/policy/DCHpol1/trackPDG 11
ls /truth/policy/DCHpol1
/truth/policy/DCHpol1/print

/truth/create_boundary SVT_L0_container SVT_L0_container
/truth/boundary/SVT_L0_container/level 2
/truth/boundary/SVT_L0_container/trackPDG 0

➢ Example commands taken from MCConfig.mac

➢ The first line creates a policy for the volume DCH_container,
and calls it DCHpol1.

➢ From this point on, a new set of commands becomes
available at the prompt, i.e. /truth/policy/DCHpol1/*.
➢ In general, any policy will have its own menu, where you can easily

configure the different properties

➢ Boundary configuration is similar

7

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Output filesOutput files

➢ Right now, AnalysisManager takes care only of the hit/truth file

➢ if a given part of Bruno needs to write a different ROOT file, it has to
manage the file by itself

➢ Detector survey histograms

➢ Bg frames for fast sim

➢ Implemented a BrunoFileManager class to centrally manage file
creation and insertion of TObjects into a given file

➢ Only a very basic set of operations are possible for the time being

➢ More to be added in the future, depending on the actual needs

➢ Detector surveys and bg frames already migrated to the new class

➢ Plan is to improve the file manager by migrating some of the
functionality now implemented in the AnalysisManager

➢ xrootd support

➢ hit/truth recording

➢ (Positive) side effect would be to simplify the AnalysisManager itself,
which has become in time quite complex

8

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

User actionsUser actions

➢ BrunoActionSteering is the main class controlling our user
actions

➢ G4 will call the *Action methods of the BrunoActionSteering,
which will in turn call all our actions

➢ New possibility is to suspend an action during event
processing

➢ No UI for this: it is meant to be done only on the C++ side.

➢ Main advantage is performance gain, in particular when
dealing with stepping actions

➢ See next slides for a concrete use case

9

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Particle followerParticle follower

➢ The idea is to provide means to monitor the evolution of a given type
of particle in the detector, adding some truth-level information

➢ Need a stepping action, which takes care of recording all
secondaries produced by the particle of interest

➢ In general, it is better to reduce the use of stepping actions as much as
possible

➢ Profit from the fact that G4 always processes one track at a time

➢ Register the follower as both a tracking and stepping action

➢ @PreUserSteppingAction, check the pdg code of the particle whose
stepping is going to happen. Note: this happens once per track.

➢ If it is the particle of interest, activate the stepping part of the action

➢ @Stepping, record secondaries, energy losses. Note: this happens once per step.

➢ @PostUserSteppingAction, de-activate the stepping part of the action

➢ This way we avoid the overhead of calling the stepping action for non
interesting particles

➢ Alternative would be to always execute the stepping part, and check there
the pdg code of the particle

10

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Particle follower, exampleParticle follower, example

➢ First application is to improve the handling of neutrons
when creating bg-frames for fast simulation

➢ fastsim not completely reliable/cpu-efficient when dealing with
neutrons

➢ Idea is to create the bg frame as usual (i.e. saving
simulation status at exit of IR), and in addition to let G4
simulate neutron propagation

➢ This is managed by a particle follower:

➢ All neutrons are monitored

➢ Their secondaries recorded to the same file as the rest of the
bg frame

➢ Note: in case a secondary neutron is produced, it is followed
too

11

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Neutron follower: resultsNeutron follower: results

➢ Neutron interaction vertices, as recorded by the neutron follower

➢ More details will be given at the bg session

12

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Bruno Event structureBruno Event structure

➢ Simulation results stored in a Tree with
one branch. Entries contain instances of
a dedicated class, grouping together all
hits and MCTruth

➢ The result of improvements and additions
on top of a much simpler original class

➢ Main disadvantage is lack of flexibility

➢ Example: if a user adds his/her own detector
boundary, the corresponding fluxes will be
saved in the general “other boundaries”
collection.

➢ In order to have them in a special container
(like the default boundaries) he/she will need
to

➢ Modify the Event class to add the new container.

➢ Modify the code responsible for writing of
boundary information

SVT hits

DCH hits

IFR hits

MC Truth

IR boundary

SVT boundary

DCH boundary

IFR boundary

other boundaries

H
it

s
T

ru
th

Branch: Event

T
re

e

Trajectories

13

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

New event structure (proposal)New event structure (proposal)

➢ First simplification could be to
separate truth information from
detector hits

➢ Even more, we can save each piece
of truth information in separate
branches

➢ This increases modularity

➢ E.g: user adding a new detector
boundary now does not have to modify
any code

➢ Just define the new policy in a macro
➢ The boundary writer will be clever enough

to create the new branch automatically,
with a sensible name

➢ Prototype implemented and working

SVT hits

DCH hits

IFR hits

Branch: MC Truth

Branch: IR boundary

Branch: SVT boundary

Branch: DCH boundary

Branch: IFR boundary

H
it

s

Branch: Event

T
re

e

Branch: Trajectories

14

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

ROOT inputROOT input

➢ Simulation input can be presently one of the following

➢ Single particle: run in the same simulation job

➢ Beam Strahlung events: run in the same simulation job

➢ Ascii file: allows to use results from an external event generator (to
be run beforehand as a different process)

➢ Now external generators can also use a ROOT file for data
interchange

➢ A plain TClonesArray of TParticle, stored as branch in a tree

➢ BrunoROOTGenerator implemented and tested

➢ Configurable at runtime via macro file

/generator/ROOT/file /path/to/my/file.root
/generator/ROOT/tree NameOfTheTree
/generator/ROOT/branch NameOfTheBranch

15

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Staged simulationStaged simulation
➢ When combining the ROOTGenerator together with the proposed new event

structure, one gets for free the possibility to perform a staged simulation

➢ Simulate only up to a given point of the detector, e.g. the calorimeter

➢ In a second phase (i.e. a different simulation job), use boundary information
and ROOTGenerator to resume the simulation job from where it was
interrupted, e.g. completing simulation in the IFR

➢ This may result in huge savings of cpu time, in particular when testing
different detector geometries

➢ Also, allows to quickly react to urgent requests:

➢ e.g: SVT needs an urgent production.

➢ We can simulate events only up to (excluding) the DCH

➢ This is FAST

➢ If one day DCH is interested in the same events, can resume simulation from where it
was interrupted and add its own piece of code

➢ Functionality was tested using the bg frames produced this summer

➢ The plot showing the results from the neutron follower was actually done using this
mechanism

➢ Re-use bg frames simulated this summer and start a new simulation from there

➢ No need to re-simulate interactions in the IR again

16

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

ConclusionsConclusions

➢ Several developments since Perugia

➢ Main focus is to improve usability as much as possible,
profiting from the feedback we have from users

➢ New ROOTGenerator allows easy data interchange
with external generators

➢ Tools for production of bg frames for fastsim may
actually be very useful also for fullsim studies
➢ Particle follower

➢ Staged simulation is now possible (pending commit on
svn...) and it may prove to be very effective in reducing
our CPU time usage
➢ needs some sensible UI, and copying of hits from one stage

to the following one still to be implemented

17

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

Summer productionSummer production

➢ Goal was to exercise the full chain of bg frame production and
overlay for at least one particular background

➢ Focus on beamstrahlung

➢ Easy to run for Bruno, since it uses an embedded generator

➢ Easy to treat in overlay, since has unitary weights

➢ Also used the first prototype of the production system for job
submission

➢ In total, 5000 fullsim jobs were launched, 250 events each

➢ Simulation status was saved at the exit of the IR, and simulation
killed

➢ No particle propagation into subdetectors, no hit production

➢ Diagnostics reported in the following slides was done with a
simple python script

18

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

General performanceGeneral performance
➢ Log files were available for 4929 jobs

➢ no log files means submission problem, not simulation failure

➢ 4828 log files show the conventional "success" message written to stdout by
Bruno

➢ this gives a total success rate of 4828/4929=97%

➢ The 101 failures were investigated, and they can be divided in the following
categories

➢ 45 are related to fs access problems, due to a small bug in the production scripts

➢ 11 seem to be due to job killing (either by myself or because of queue time limit, to be
checked)

➢ 5 are completely mysterious: according to Armando this may be due to general
problems of the batch queue

➢ 39 jobs failed because of another fs-related problem: my home directory was not
accessible anymore

➢ 1 job showed a genuine Bruno-related problem

➢ the generator produced a huge number of primary particles (N(her)=2000000000).

➢ the logs do not show what happened precisely at the job afterwards.

➢ for sure it never stopped processing this event. It would be interesting to test the reproducibility of
this bug.

19

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

General performance (2)General performance (2)

➢ 2 jobs showed some navigation problems

➢ did not lead to job crash, but still it is something most likely related to
geometry inconsistencies
➢ to be fixed

➢ Summarizing

➢ total success rate (Bruno+production) 97%

➢ Bruno-only success rate: ignoring all failures but the one Bruno-
related = 4828/4829

➢ production-only success rate: ignoring kill problems and the one
Bruno failure, normalizing to total submitted jobs =
4828+11+1/5001=96%

➢ The Bruno-only success rate is of course impressive, but one
must consider that we are running on a simplified layout, with
only the final focus in, no detector geometry, no hit production,
etc.

20

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

GalleryGallery

➢ Left: CPU time distribution for the first batch of 2500
jobs (in minutes)

➢ Right: size of the stdout log (in bytes)

➢ The size of the log files is very useful in diagnosing
pathologic jobs, such as the ones with the navigation
problems

21

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
09

10
07

GalleryGallery

➢ Left: size of the hit file (in bytes)

➢ Reminder: it contains no hits! It's just truth information...

➢ Right: size of the file with the bg-frame

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21

