### IFR Full simulation status

#### Mauro Munerato

University of Ferrara

#### SuperB Workshop X - SLAC, October 6-9, 2009



<ロ> (四) (四) (三) (三) (三) (三)

## Outline

#### 1 Introduction

- Why full simulation
- Status @ Perugia

#### 2 Code developments

- IfrRootCode
- New configurations

### 3 Future plans

# Introduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Why full simulation

A Full simulation is important for:

- background simulation;
- detector optimization ;
- useful for studying adronic showers (not possible in fast simulation).
- extracting parameters for fast simulation;





・ロト ・回ト ・ヨト ・ヨト

### Status of IFR @ Perugia

We had two geometry configuration: one as BaBar(787 mm of iron) and one as CDR (920 mm of iron)

| Number of gap | Material thickness |                |  |
|---------------|--------------------|----------------|--|
| 1             | scintillator       | 2cm            |  |
|               | air                | 0.5cm          |  |
|               | iron               | 2 cm           |  |
| 2             | scintillator       | 2cm            |  |
|               | air                | 0.5cm          |  |
|               | iron               | 2cm            |  |
| 3             | scintillator       | 2cm            |  |
|               | air                | 0.5cm          |  |
|               | iron               | 16cm           |  |
| 4             | scintillator       | 2cm            |  |
|               | air                | 0.5cm          |  |
|               | iron               | 26cm           |  |
| 5             | scintillator       | 2cm            |  |
|               | air                | 0.5cm          |  |
|               | iron               | 26cm           |  |
| 6             | scintillator       | intillator 2cm |  |
|               | air                | 0.5cm          |  |
|               | iron               | 10cm           |  |
| 7             | scintillator 2cm   |                |  |
|               | air                | 0.5cm          |  |
|               | iron               | 10cm           |  |
| 8             | scintillator       | 2cm            |  |

Stratigraphy of IFR CDR-like



Figure: IFR CDR-like

・ロン ・回 と ・ ヨ と ・ ヨ と

### Code developed @ Perugia

#### At Perugia we had a first version of digitization and clusterization.



Figure: SXT 1 not digitized

Figure: SXT 1 digitized

### Example of clusterization



Figure: SXT 1 not digitized

Figure: SXT 1 clusterized

・ロ ・ < 昂 ・ < 臣 ・ < 臣 ・ 臣 の Q (で 7/19)

Outline Code developments Future plans



Figure: View of one event not digitized, digitized and clustered.

frRootCode

# Code developments

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 (0) 9 / 19

### Structure of IfrRootCode

The package of reconstruction IfrRootCode, starting from rootples produced by Bruno, has been developed! (G. Cibinetto, R. Ferrara, M. Munerato, Marcello Rotondo, V. Santoro).

IfrRootCode is useful for extracting relevant informations from GHits



### Main code developed

We simulate with Bruno 10K muons and pions with momentum 0.5GeV GeV, without magnetic field and with geometry configuration of CDR.

IFRNoise: Turn on random strips with a fixed occupancy. IFREfficiency: Simulate the detection efficiency.

**IFRFitter**: We do a linear fit to the track, evaluating the  $\chi^2$ (in xy and zy plane) and the residual distribution of hits. We also calculate the  $\chi^2$  respect to the generated track using MC Truth information.

<ロ> (四) (四) (三) (三) (三) (三)

Code developments

IfrRootCode

### Example of simulated noise and efficiency



### Output of IfrRootCode: some plots

The output of IfrRootCode is a rootple with all the important informations: interaction length, first layer shouted, numbers of layers shouted and so on.



Figure: Interaction length vs  $\theta$  for muons



TrkThet:







Figure: Distribution of  $\chi^2$  for pions and Figure: Distribution of residues for pions and muons muons.





Figure: Number of touched layers for muons

Figure: Number of touched layers for pions

◆□ → < 部 → < 差 → < 差 → 差 < う Q ペ 15/19





IIIROOLC



Figure: Mean multiplicity of muons and pions

Figure: Standard deviation of mean multiplicity for muons and pions.

Outline Code developments

Future plans

### Status of IFR Now

Starting from CDR geometry configuration(called C2), now we have another two configurations: one with 10cm of iron added(C6=C2+10cm)and one with 10 cm removed(C5=C2-10cm).

| Number of gap | Material     | thickness C5 | thickness C2 | thickness C6 |
|---------------|--------------|--------------|--------------|--------------|
| 1             | scintillator | 2cm          | 2cm          | 2cm          |
|               | air          | 0.5cm        | 0.5cm        | 0.5cm        |
|               | iron         | 2 cm         | 2 cm         | 2 cm         |
| 2             | scintillator | 2cm          | 2 cm         | 2 cm         |
|               | air          | 0.5cm        | 0.5cm        | 0.5cm        |
|               | iron         | 2cm          | 2 cm         | 2 cm         |
| 3             | scintillator | 2cm          | 2cm          | 2cm          |
|               | air          | 0.5cm        | 0.5cm        | 0.5cm        |
|               | iron         | 14cm         | 16cm         | 18cm         |
| 4             | scintillator | 2cm          | 2cm          | 2cm          |
|               | air          | 0.5cm        | 0.5cm        | 0.5cm        |
|               | iron         | 22cm         | 26cm         | 30cm         |
| 5             | scintillator | 2cm          | 2cm          | 2cm          |
|               | air          | 0.5cm        | 0.5cm        | 0.5cm        |
|               | iron         | 22cm         | 26cm         | 30cm         |
| 6             | scintillator | 2cm          | 2cm          | 2cm          |
|               | air          | 0.5cm        | 0.5cm        | 0.5cm        |
|               | iron         | 10cm         | 10cm         | 10cm         |
| 7             | scintillator | 2cm          | 2cm          | 2cm          |
|               | air          | 0.5cm        | 0.5cm        | 0.5cm        |
|               | iron         | 10cm         | 10cm         | 10cm         |
| 8             | scintillator | 2cm          | 2cm          | 2cm          |

We have generated some single particle events of muon and pion and preliminary results will be showed by G.Cibinetto. 

# Future plans

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
18/19

Starting from rootples produced by IfrRootCode we want:

- add the dependence of resolution from theta-angle;
- study machine background and add it to the single particle events;
- maybe make a larger production (50K events);
- use the feedback from optimization studies to improve the code;
- add some minor code refinements.