Computing summary

M. Morandin - INFN Padova

on behalf of the computing group

SuperB Gen. Meeting October 9 - 2009

Summary

- Progressing:
 - Full sim
 - Fast Sim
- Planning:
 - next large productions
 - towards SuperB distributed production
- Longer term
- The Computing White Book

Full Simulation: selected results I

• So far used for:

- Optimization studies in IFR, EMC, SVT
- To study the effect of FW PID material on EMC
- To estimate bkg hit rate in SVT, DCH, EMC, IFR

Figure: Interaction length vs θ for
muonsFigure: Interaction length vs θ for
pions

SuperB Gen. Meeting October 9 - 2009

... exploiting further Full Sim

- require active coordination/ cooperation with detector groups
- e.g.: for bkg studies we could now aim at delivering a standard tool for assessing bkg levels in appropriate units for all subsystems

Todo list for Background study with FullSim
 General Understand hit sources (new tools: followers) Other bkg sources, embed them into Bruno (if possible) Check geometry at all levels (SVT, EMC) Add error bars on bkg plot SVT Test with increased magnetic field, globally or locally DCH Add stereo layers Test other geometrical configuration (interest from McGill) smaller inner radius wedding cake or domed end-plate
 General: Improve geometry description according last designs, clean-up the code and std naming for classes Interaction region: Test different tungsten shielding configuration SVT: Test different rad length for BP (0.4-0.6%) and clearance BP-L0 (0.5-1mm) DCH: Cell shape, staggering

SuperB Gen. Meeting October 9 - 2009

M. Morandin

Recent Developments

- Several developments since Perugia (see presentation by A. Di Simone in Full Simulation parallel)
 - Improved Truth configuration
 - New ROOTGenerator allows easy data interchange with external generators
 - Particle Follower: tool for production of bkg frames for FastSim may actually be very useful also for FullSim studies
 - Staged simulation is now possible and it may prove to be very effective in reducing our CPU time usage

Splitting Full Simulation Code in Packages I

- Distinguish between "Core" and "Detector" code
 - Within those domains, the level of splitting depends on the actual amount of code involved
 - Most likely, will start with a minimal set of packages, aiming at having a more complex structure in the longer term, to reflect the growing complexity of the simulation code
- Aim is to also split the geometry gdml description for the different sub-detectors
 - In practice, this means that each sub-detector will manage its own geometry description
 - Keep in "Core" only top volumes, to better handle space allocation and volume clashes

Splitting Full Simulation Code in Packages II

- Advantages are obvious and this is clearly the way to go
- Several modifications will have to be done to fullsim
 - C++ side (ADS + EP + ???)
 - Build procedure (???)
 - Repository structure (RS?)
 - Releasing and distributions (RS?)
 - Validation (???)

Main issue will be manpower

- Any involvement of present human resources in this packaging will disrupt normal development and user support.
- However the more we delay this step, the larger will be the amount of work to do.

We will need the tight cooperation of the detector Full Sim experts!

SuperB Gen. Meeting October 9 - 2009

Splitting Full Simulation Code in Packages: Planning

- Create a Bruno tag with:
 - Recent development from A. Di Simone
 - Simplified DIRC SOB & simplified PID volume (E. Paoloni)
- Freeze it (only bug fixes on top of it)
 - Sub-detector studies and central production can continue using that tag.
- Perform the splitting of Bruno into packages
 - Both coding and validation
 - Create a new tag of Bruno with splitting in packages
 - We hope to be finished in less than two months from now

Progress in Fast Sim

- many results shown at parallel session
 - some will be reported in other plenary talks
- first presentation at this meeting of the SVT dE/dx implementation

- SVT dE/dx now implemented in Fastsim
- Reasonable results already available via the BtaPidQual object ⇒ PID algorithms can start using SVT dE/dx
- Crude calibration gives correct resolution for MIPs

Fast sim productions

- "private" productions
 - now being performed for several Physics and performance studies
 - already shown results from very large production
- "coordinated" productions
 - large generics productions
 - bkg mixing
 - various analysis streams
 - different detector geometries
 - managed via a bookkeeping DB

SuperB	Using	the FastSim	ļ,	Queen Mary						
LFV -τ→lll -Latest results	Study conducted using V0.0.9									
Using FastSim -How much -Solutions -The cust -The										
Q & A	All the events in the 5-year data sample 25TB of data									
	 > 11000 years of simulation on 1 computer 									
	D 1		(1)							

SuperB Gen. Meeting October 9 - 2009

M. Morandin

X SuperB General Meeting, October 8th 2009

Production Plans (Perugia)

- "July 09 test production"
- August 09 FullSim production
 - ~1M beamstrahlung background frames produced
- September 09 FastSim production
 - planned ~1 ab⁻¹ generic B⁰B⁰, udsc, 2-photon, ...
 - Multiple detector geometries
 - Multiple analyses in parallel
- January 09 production
- July 09 production (TDR)

Test production: a success but...

- only two analysis
 - working with BaBar code is difficult
- lot of manual work for job submission and merging of output files, DB only partially used
 - production tools improvments needed
- no systematic code validation
 - will have to organize QA team
- performance less than expected
- only one type of machine background
- backgrounds only partially dealt with in the simulation
 - main problem: neutrons not simulated properly and efficiently
- no show stoppers, all the issues are being addressed
- good progress during this meeting

SuperB Gen. Meeting October 9 - 2009

Fast Sim Bkg simulation model extended

- γ and high Pt tracks
 - TParticle
 - Save position and momentum of particles exiting a scoring volume, convert them into GTracks and simulate their passage trough the Fast-Sim detector
- Neutrons in EMC and IFR
 - Energy deposit
 - Use EMC and IFR response to determine the fast sim hits
- Low Pt tracks, neutrons, DCH spirals in Tracking volume
 - Fluence
 - · Generate random hits according to fluence

07 Oct 2009

G. Simi - X SuperB General Meeting, SLAC

10

also electronic noise can be dealt with

SuperB Gen. Meeting October 9 - 2009

M. Morandin

November production tests

- there is hope that in a few weeks from now many bug fixes and improvements can be already in
- it would be important to perform a second test production in the second half of November
 - could provide additional data for physics and detector studies to be presented at the December general meeting
- after some discussions we decided to aim at
 - a November production of roughly the same statistics as the September one (a few hundreds million events)
 - limited improvements to the production tools not to disrupt major ongoing effort towards the development of a ditributed production environment

2010 productions: the scaling problem

		Sept.'09 test production	Jan. '10 production	Summer '10 production	
Statistics	ab⁻¹	0,1	1	5	
Cross section	nb	1,1	5	5	
N. of geometries		2	3	5	
Analysis streams		2	5	5	
Background processes					
Beamstrahlung		Y	Y	Y	
Pairs		Ν	Y	Y	
Touscheck		Ν	Y	Y	
Beam gas		Ν	Y	Y	
					performance
bunch crossing per event		100	400	400	improvemed
CPU time per event	ms	350	300 ┥	300	by 3x
Nof generated events	*10 ⁹	0,22	15	125	
Filtering fractions		100%	100%	100%	
Total CPU needed	core-day	891,2	52083	434028	
Duration CNAF only (200 cores)	days	4	260	2170	
Duration distribut. prod. (1300 cores)	days	1	40	334	
largest storage selection fraction		7,0%	7,0%	7,0%	
average storage per event	kB	6	6	6	
Nof stored events	*10 ⁹	0,015	1,050	8,750	
Total disk space	GB	92	6300	52500	

understanding the goals

- unless there are drastic performance improvments, the January production will require the coordinated use of all resources available to SuperB worldwide
 - and LHC will be hopefully producing some real data too...
- it's going to be a pretty large effort
- production tools for distributed productions will have to be in place by January 15: tight schedule
- it's really important now to assess:
 - the performance and requirements of analysis code
 - see E. Manoni contribution at the Det./Comp. session for a model
 - what the real "luminosity goals" are for the TDR and physics studies: how much ? when ?

1080X9210

SuperB Gen. Meeting October 9 - 2009

M. Morandin

longer term planning

- on Thursday morning we had a meeting of the Computing Planning group
 - main task of the group: elaborate a plan for the SuperB computing R&D program
- to make progress it was felt necessary to organize a dedicated workshop that will likely take place in Europe in late January or early February 2010

DOLOMITI SUPERSKI

SuperB Gen. Meeting October 9 - 2009

M. Morandin

Computing white paper goals (I)

- will provide:

- a description of the baseline computing model (extrapolated from BaBar)
- a general plan for the development of SuperB computing system
- an overview of the computing tools and services that we are building for completing the detector TDR and the status of development
 - with special emphasis on the distributed computing approach
- can be used immediately for interaction with colleagues interested to collaborate as well as with funding agencies willing to provide computing resources, institutional oversight bodies, etc.
- can serve as
 - a basis for publication(s) documenting the original work done by the computing group in the SuperB TDR phase
 - material for filling the computing section of the SuperB Web site

Computing white paper goals (II)

- second longer term goal: describe the plan of R&D activities that should precede the definition of the SuperB computing Model to be reported in the Computing TDR
 - useful to motivate the request of human resources we need in the R&D phase implementing
 - and to get more people interested and involved with the development of the SuperB Computing system
- timescale could be the March collaboration meeting, if we succeed in organizing an effective R&D workshop

Distributed resources model ?

- the SuperB computing resources
 - combined offline and lattice QCD needs
 - the distributed approach
 - justification (CDR)
 - the GRID paradigm (CDR)
 - services and resources at the experimental site (new)
 - services and resources elsewhere (new)
 - INFN computing centers (new)
 - participation of the Italian sites
 - the model

22

Conclusions

- due to the enthusiastic and dedicated efforts of several people (+ the BaBar legacy):
- it's probably fair to say that SuperB has at his disposal
 - the most sophisticated simulation tools
 - the largest amount of computing resources free free than any HEP experiments has ever had at such early stage of development
- for being part of a "record setting" enterprise like SuperB, Computing is on the right track
 - but cooperation with detector and physics groups really essential
- excitement is growing (as well as the scale of problems)

SuperB Gen. Meeting October 9 - 2009

M. Morandin