Accelerator WG Summary

U. Wienands, SLAC

with thanks to everyone for the good work!

Accelerator/Storage Rings

- Reviewed progress since Perugia
 - focused on the LNF site
 - 1323 m ring
 - spin rotators in LER
 - 21 presentations (excl. Plenary & IR/MDI)
 - Injector
 - Siting & Lattice
 - Polarization
 - Beam Dynamics
 - Rf
 - Diagnostics & Vibrations/alignment
 - Won't be able to cover all...
- "White Paper"

Injector

Brachmann

Polarized source layout (CID injector)

Brachmann VVallk through the Source - Gun

SuperB Project Workshop

Boni et al. TATUS OF THE THOUGHTS ABOUT THE INJECTION SYSTEM (oct. 2009)

- Injection process in 3 phases, to avoid simultaneous acceleration of high-charge e- bunches and damped e+ bunches in the linac B.
- # No fast kickers required
- # Rings filled every 60 msec (16.66 Hz)

U. Wienands, Acc. Summary SuperB WS, SLAC, 9-Oct-09 R.Boni, S.Guiducci, M.Preger, J.Seeman,

LATEST PROPOSAL FROM IN2P3 GROUP (*A.Variola & c.*)

- # To perform e-/e+ conversion at lower energy,i.e. 500÷600 MeV instead of 3 GeV
- # They claim it is possible to produce enough positrons at much lower energy with a careful design of the matching system (focusing+capture section) after the target
- **#** They made simulations that are presented apart (see Variola slides)
- **#** Re-circulation not necessary; rings injection rate: 40 msec

Analytical estimations (dependents from arbitrary, AMD length and field scan

Variola et al.

SuperB WS, SLAC, 9-Oct-09

Lattice & DA

Nosochkov et al. Nosochkov et al. Mosochkov et al.

- Shorter 1.3 km ring to fit the LNF site.
- Fewer arc cells, no arc straight (but may be included if needed).
- Doglegs with 140 mrad crossing on opposite side of IP.
- Beam energies 6.7 x 4.18 GeV.
- Higher momentum compaction factor 15-30%.
- Lower SR power loss 12-40%.
- Lower RF plug power ~12 MW. (≈17 MW)
- Spin rotator in LER.
- Closed and separated rings with the same circumference, 2 m radial separation, 60 mrad crossing at IP, and 140 mrad crossing at the doglegs.

Correction by additional sextupole pair

Levichev et al.

$$x_{1} = -x_{0} - \frac{B_{1}(S_{1}, S_{2}, k)}{12} (x_{0}^{3} + x_{0}y_{0}^{2})t^{4}$$

$$p_{x1} = -\frac{B_{2}(S_{1}, S_{2}k)}{6} (x_{0}^{3} + x_{0}y_{0}^{2})t^{3}$$

$$y_{1} = -y_{0} - \frac{B_{1}(S_{1}, S_{2}, k)}{12} (y_{0}^{3} + x_{0}^{2}y_{0})t^{4}$$

$$p_{y1} = -\frac{B_{2}(S_{1}, S_{2}k)}{6} (y_{0}^{3} + x_{0}^{2}y_{0})t^{3}$$

$$B_{1}(S_{1}, S_{2}, k) = (3 + 2k)S_{1}^{2} + 6(2 + 3k + k^{2})S_{1}^{4}$$

 $B_2(S_1, S_2, k) = S_1^2 + 6(1 + k)S_1S_2 + S_2^2$

This quadratic equations are incompatible and have no common root. But, fortunately, if we set to zero one coefficient, the second reduces by 3-5 times.

The strength of the correction sextupole is ~5-10% of the main one dependently on the distance between the sextupoles

FF 4D dynamic aperture

Levichev et al.

All sextupoles in the arcs are switched off.

The black curve shows original DA (50 sigma_x X 80 sigma_y)

The red curve shows DA optimized by correction sextupoles (250 sigma_x X 750 sigma_y)

Polarization

Slicktrack Result (SB418 29-Jly)

shorter time mostly due to shorter dipoles

U. Wienands, Acc SuperB WS, SLAC,

Siberian Snake estimation

Nikitin et al.

1. Classical Siberian Snake with " π " spin rotation around velocity

Spin-Orbit coupling:
$$\left\langle \gamma \left(\frac{\partial \vec{n}}{\partial \gamma} \right)^2 \right\rangle \approx \frac{\pi^2 v^2}{3} \left(1 + \frac{3}{4} \frac{\sin^2 \pi v}{v^2} \right)$$

 $v = \frac{E[MeV]}{440.65} = 9.5 \text{ at } E = 4.18 \text{ GeV} \quad \rightarrow \left\langle \gamma \left(\frac{\partial \vec{n}}{\partial \gamma} \right)^2 \right\rangle \approx 300$

Depolarization time:
$$\tau_{dep} \approx \frac{\tau_0}{1 + \frac{11}{18} \left\langle \gamma \left(\frac{\partial \vec{n}}{\partial \gamma} \right)^2 \right\rangle} \approx \frac{\tau_0}{181} = 1.3 \text{ min}$$

Radiative polarization time (no snakes): $\tau_0 \approx 2.74 \times 10^{-2} \frac{\rho^2 R}{E^5} \approx 4 \text{ hr}$ (LER: $\rho = 29 \text{ m}, R = 211 \text{ m}$) "Fast kicker injection" (Raimondi) with $\tau_i = 40$ sec period: a final degree ~ exp(- τ_i / τ_{dep}) $\approx 0.6 \cdot P_0$ Nearly good. Increase of τ_0 is desired.

2. " $\pi/2$ " Siberian snake at v = (2k+1)/2 values Longitudinal projection at I.P.: $n_{\parallel} = \frac{\sqrt{2}}{2}$ Spin-Orbit coupling: $\left\langle \gamma \left(\frac{\partial \tilde{n}}{\partial \gamma}\right)^2 \right\rangle \approx \frac{\pi^2 v^2}{6} + \frac{\pi^2}{16} \approx 150 \rightarrow \tau_{dep} \approx 2.6 \text{ min}$

a polarization degree at the end of cycle $\approx 0.77 \cdot P_0 \cdot n_{\parallel}$ It is not worth the trouble!

3. Radical increase of τ_0 by a factor of 10: reciprocation of the LER (ρ =29 m) and HER (ρ =85 m) arc magnets

Laser light out to analysis box

Pros: Near IR Cons: Beam size large. Backgrounds from beamstrahlung large. Crossing angle ~50 mrad. Option B: Compton IP after n*pi spin rotations between IP and solenoid section

Pros: Beam size small~100µm. Backgrounds small. Smaller Compton Crossing angle due to larger spacing for Compton IP. Cons: After n*pi spin rotations Systematic error due to uncertainty in n*pi spin rotations between IP and Compton IP. Uncertainty in electron beam orbit angle < 2.983 mrad

IBS, e-Cloud, Beam-Beam

IBS in SuperB LER Sep.09 configuration

Recovering nominal emittance in LER

Buildup in the SuperB arcs: Dipoles

Head-Tail Instability Threshold

Demma		et al. June	2008	Januai	ry 2009	March	LNF conf.	
		ρ _{int} [10 ¹⁵ m ⁻²] solenoids	ρ _{int} [10 ¹⁵ m ⁻²] no solenoids	$\begin{array}{c} \rho_{\text{int}} \left[10^{15}\text{m}^{-2} \right] \\ \text{solenoids} \end{array}$	ρ _{int} [10 ¹⁵ m ⁻²] no solenoids	$\begin{array}{c} \rho_{\text{int}} \; [10^{15}\text{m}^{-2}] \\ \text{ solenoids} \end{array}$	ρ _{int} [10 ¹⁵ m ⁻²] no solenoids	ρ _{int} [10 ¹⁵ m ⁻²] solenoids
SEY=1.1	95%	0.06	2.1	0.09	2.5	0.22	2.7	0.1
	99%	0.02	0.02 0.25		0.3	0.04	0.7	0.07
SEY=1.2	95%	0.22	2.8	0.27	3.2	0.45	6.5	0.3
	99%	0.045	0.71	0.06	0.82	0.07	2.4	0.1
SEY=1.3	95%	2.7	20.2	2.9	25.7	5.4	25	2.0
	99%	0.94	3.2	1.3	4.1	4.5	13	0.7

Instability occurs if:

$$\rho_{\text{int}} = \int_{drift} \rho_{cent.} ds + \int_{dipoles} \rho_{cent.} ds + \int_{quads} \rho_{cent.} ds \ge \int_{L_{tot}} \rho_{e,th} ds = \underbrace{0.9 \times 10^{15} m^{-2}}_{0.5 \times 10^{15} m^{-2}}$$

and $\rho_{e,th}$ are obtained from simulations.

where $\rho_{\text{cent.}}$ Pe,th -

Clearing Electrodes for DAFNE

D.Alesini, A.Battisti, R. Sorchetti, V. Lollo (LNF)24

SuperB Meeting, SLAC 6-9 October 2009

Weak-Strong Simulations vs. Experiment

Simulations for SuperB with Linear Lattice

Shatilov et al.

Due to asymmetry in emittances and beta-functions between HER and LER the optimum "crab" values are different: **0.8** for HER and **1.0** for LER.

The designed tune shifts are rather small: $\xi_y < 0.12$, so there is now blowup, but the effect of dynamic beta exists. Plus the geometric luminosity gain due to crab... As a result, the luminosity becomes even higher than the designed value: **L** \approx **1.07**·**10**³⁶ instead of 1.02·10³⁶.

The next step: simulations with the real lattice (sextupoles, etc.). It will be done as soon as the lattice will be finalized and optimized for DA.

Ð

D

tor Laboratory

HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER
		S.	R. ener	8y		Total	Zero I	1	Max	Number			Total	Total	Total	Power fo
Lumi	Beam	Beam	loss	Momen	Momen	RF	Bunch	Bunch	voltage	of	S.R.	HOM	cavity	reflected	forward	one
	energy	current	per turi	tum com	tum	/oltag	length	pacing	er cavi	tcavities	power	power	loss	power	power	cavity
	GeV	Α	MeV	paction	spread	MV	mm	nsec	MV	klystro	MW	MW	MW	MW	мw	MW
18:26	63	2.12	2.02	4.05.04	6.32.04		5.0	42	0.4		4 2026	0.4611	0.50	0.2050		0.40
11:430	0.7	2.12	2.05	4.05-04	0.26-04	5.7	5.0	4.2	0.4	7	4.3030	0.4011	0.58	0.2858	5.05	0.40
1E+36	6.7	2.12	2.03	4.0E-04	6.2E-04	7	4.5	4.2	0.5	14	4.3036	0.5411	0.875	0.0299	5.75	0.41
										7						
LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER
		S.	R. ener	ву		Total	Zero I	1	Max	Number			Total	Total	Total	Power fo
Lumi	Beam	Beam	loss	Momen	Momen	RF	Bunch	Bunch	voltage	of	S.R.	ном	cavity	reflected	forward	one
	energy	current	per turi	tum com	tum	voltag	length	pacing	er cavi	tcavities	power	power	loss	power	power	cavity
	GeV	Α	MeV	paction	spread	MV	mm	nsec	MV	klystro	MW	MW	MW	MW	MW	MW
1E+36	4.18	2.12	0.83	4.2E-04	6.6E-04	4.1	5.0	4.2	0.65	6	1.7596	0.3836	0.7	0.0533	2.90	0.48
										3						
1E+36	4.18	2.12	0.83	4.2E-04	6.6E-04	5	4.5	4.2	0.65	8	1.7596	0.4694	0.781	0.0763	3.09	0.39
										4						

October 6-9, 2009

13

đ

10/07/2009

Wheathersby et al. SS factor and bunch length

Vibrations

Underground Measurements

Esposito et al.

- On September 14th the first campaign of geological tests started at LNF site: 4 holes of different depth have been bored in the points shown below. Each hole was tubed with a plastic pipe with an inner bore of about 70mm.
- A second campaign of other four-five holes is foreseen soon
- These holes will also be used for underground vibration measurements

34

White Paper, Conclusions

Biagini et al.

What -> Who

- Chapters easily updated:
 - > Overview \rightarrow Seeman
 - ≻ Layout → Biagini,Raimondi
 - ➢ IR + QD0 + backgrounds → Sullivan, Raimondi, Paoloni, Boscolo, Bettoni
 - > Lattice \rightarrow Raimondi, Biagini, Siniatkin, Nosochkov, Yocky, Wittmer
 - Tolerances + Vibrations ????
 - Emittance tuning (Yocky)
 - Intensity dependent effects (Demma, Boscolo, Novokhatski, Wienands, Seeman, Shatilov)
 - Beam beam (Shatilov)
 - Touschek lifetime (Boscolo)
 - IBS (Demma)
 - e-cloud (Demma)
 - HOM (Novokhatski)
 - Single bunhc inst (Wienands)
 - Multibunch inst (Wienands, Novokhatski)
 - Fast ion (Seeman)
 - Space charge ??
 - CSR (Novokhatski)
 - ≻ RF

- → Novokhatski, Bertsche
- ➢ Injection system → Seeman, Boni, Preger, Guiducci, Variola
- > Polarization \rightarrow Wienands, Nikitin
- ➤ Feedbacks → Drago
- ➢ Costs → Seeman
- > Operation costs \rightarrow Seeman
- \succ Schedule \rightarrow Seeman

When?

Deadline is December

- We can decouple the Accelerator from the Physics and the Detector sections
- We need to choose a deadline that we can actually meet
- what we are doing before starting writing
- Since we will have a December 5-9 meeting in Frascati I propose that we start writing just after this meeting and have January 31 2010 as a deadline for the Accelerator

SuperB parameter list (July 2009) (P. Raimondi)

Parameter	Units	TorVergata	LNF	Piwinski angle HER	rad	26.52	26.52
		1-Mar-09	22-Jul-09	Piwinski angle LER	rad	15.15	16.57
		with SR HER	with SR LER	Sig x HER effective	microns	150.15	150.15
E HER (positrons)	GeV	6.9	6.7	Sig x LER effective	microns	150.37	150.32
E LER (electrons)	GeV	4.06	4.18	X-angle factor HER		0.038	0.038
Energy ratio		1.70	1.60	X-angle factor LER		0.066	0.060
rO	cm	2.83E-13	2.83E-13	Can Sig X	microps	11 402	10.673
X-Angle (full)	mrad	60	60	Can Sig Y	microns	0.054	0.054
Beta x HER	cm	2	2	D (hourgloop factor)	microns	0.004	0.001
Beta y HER	cm	0.037	0.032	R (nourgiass lactor)		0.900	0.900
Coupling (high current)		0.0025	0.0025	Cap Sig X eff	microns	212.13	212.13
Emit x HER	nm	1.6	1.6	Lumi calc	/cm2/s	1.02E+36	1.02E+36
Emit y HER	nm	0.004	0.004	Tune shift x HER		0.0018	0.0017
Bunch length HER	cm	0.5	0.5	Tune shift y HER		0.1271	0.1170
Beta x LER	cm	3.5	3.2	Tune shift x LER		0.0052	0.0045
Beta y LER	cm	0.021	0.02	Tune shift y LER		0.1220	0.1170
Coupling (high current)	%	0.0025	0.0025	Damping Jong HER	msec	21	14.5
Emit x LER	nm	2.8	2.56	Damping long LER	msec	20.0	22.0
Emit y LER	nm	0.007	0.0064	Un HER	MeV	23	2.03
Bunch length LER	cm	0.5	0.5	Unler	MeV	1 40	0.83
IHER	mA	2200	2120	alfa c HER		3.50E-04	4 04E-04
ILER	mA	2200	2120	alfa c I ER		3 20E-04	4 24E-04
Circumference	m	2105	1315	sigma-EHER		5.80E-04	6 15E-04
N. Buckets distance		2	2	sigma-ELER		8 20E-04	6 57E-04
Gap		0.97	0.97	CM sigma E		5.02F-04	4 50E-04
Frf	Hz	4.76E+08	4.76E+08	SR nomer loss HER	B/DAC	5.06	4 30
Fturn	Hz	1.43E+05	2.28E+05	SD power loss LED	B B AZ	2.00	4.70
Fcoll	Hz	2.31E+08	2.31E+08	Sk power loss Lek		3.00	1.70
Num Bunch		1619	1011	Touschek lifetime HER	min	33	35
NHER		5.96E+10	5.74E+10	Touschek lifetime LER	min	1/	16
NLER		5.96E+10	5.74E+10	Luminosity lifetime HER	min	5.20	4.95
Sig x HER	microns	5.657	5.657	Luminosity lifetime LER	min	5.20	4.95
Sig y HER	microns	0.038	0.036	i otal lifetime HER	min	4.49	4.34
Sig x LER	microns	9.899	9.051	Total lifetime LER	min	3.98	3.78
Sig y LER	microns	0.038	0.036	8 RF plug power	MW	16.28	12.13
SuperB WS, SLAC.	9-Oct-09	I					

To-Do List

- Further beam dynamics study
 - HER emittance
 - machine acceptance
 - misalignments, emittance tuning, magnet errors...
 - ensure parameter set can be achieved
- Study flexibility in parameter space
 - How many ways to get to 10^{36} ?
- Investigate hardware modifications necessary
 - esp. the rf coupling box
 - what will vacuum system look like?

U. Wienands, Acc. Summary SuperB WS, SLAC, 9-Oct-09

In Conclusion

- Good progress in defining lattices fit for the LNF/ENEA site
 - Siting remains a rather tight fit.
- IBS estimate indicates LER emittance goal can be met
- Beam dynamics & other details being worked
 - no showstoppers apparent, but constant attention needed
- Rf System will likely involve changing the rf-cavity couplers

 not a prohibitive effort
- Proposed LLRF Collaboration with LPSC Grenoble
- Polarization remains a challenge
 - 80% will be tough to get, some scenarios hardware intensive
 - Polarimetry requires space near the IP
- "White Paper" effort being organized.