SVT Background study using FullSim

Riccardo Cenci

University & INFN Pisa University of Maryland

SLAC, Oct 7th, 2009

Goal for this background study

Plots of significant background quantities:

- Hits frequency (Mhz/cm²), occupancy
- Equivalent fluency of 1MeV neutron (cm⁻²), bulk doping and inversion
- Radiation Dose (Mrad), damage to electronics
- ... vs geometrical parameters:
 - SVT Layer0 inner radius
 - Beampipe inner radius
- Note: only electrons and positrons (primary and secondary), but not photons, are taken for computing bkg quantities

FullSim version and geometry

• Bruno v00-01-04, r247

Only Svt code has been committed

• Geometry:

- Beampipe (BP) thickness: 1mm
- SVT Layer 0 is a tube, not a pin-wheel
- SVT L0 length 10 cm, thickness 300um, Rmin 1 cm

3

- BaBar SVT
- Gold foil outside BP: 10um
- BP and L0 centered at z = 0

Background events

Beam-strahlung (radiative Bhabha's)

- 1k evts
- Processing time: 30 evts/hour
- Generator embedded into Bruno

Pairs production

- 40k events
- External standalone generator
- Processing time: 10k evts/hour
- Main known bkg for SVT
- Not a big statistics for Svt outer layers and Dch
- More events can be generated or any other bkg events, if readable by Bruno, can be used to produce easily the same plots

4

Clean-up, fixes and additions

- Main geom parameters to be changed written in a single file, SuperB_constants.xml, included in different GDML modules
- Geometrical par's, like L0 radius, can be written into the Root file as TParameter
- G4 geometry tolerance set to main volume size to avoid crashing jobs
- Geometry checked for overlapping over all the volume levels:
 - Output file @CNAF: /home/BABAR/cenci/simu_sb/Bruno/out/geomtestfull/geomtestfull_090930.log
 - Problems in SVT, many from EMC (visualization problem with HepRep), still need to go through it

5

Bruno Hits

Hits stored corresponds to G4Step

 Many similar classes for different subsysts, starting to write a common class and derive specific ones when needed (not yet in repo)

Bruno hits

 Starting point coordinates, time, step length, incident and released energy, particle and track ID

SVT hits

- BrnHits plus Svt layer
- Merging hits in the same pixel/strip 50x50um
- Additional methods of MyRootSvtHit for checking hits distance (pixel size can be changed without running Bruno again)
- First results compatible with Eugenio's plots filled during Bruno running

All the considerations from here made with a safety factor of 5

Riccardo Cenci

- Configurations:
 - Black: BP close to L0, BP inner radius is equal to the inner L0 one minus 3 mm (BP thickness + clearance + pin-wheel average)
 - Red: BP inner radius fixed at 10mm
- Black is clearly the best option

Hits Frequency, pairs bkg

Hits Frequency, bbbrem bkg

Riccardo Cenci

Results for EqFluency and Rad Dose (10⁷ sec)

- Same behaviour with different configurations
- Both of those are slightly critical including safety factor
- For outer layers, Fluency < 10¹¹ cm⁻² and Dose < 100 krad, but we need to consider also other bkg sources

Equivalent Fluency (10⁷ sec), pairs bkg

Equivalent Fluency (10⁷ sec), bbbrem bkg

Radiation Dose (10⁷ sec), pairs bkg

Radiation Dose (10⁷ sec), bbbrem bkg

Conclusions

- Tools for producing background plots as needed by subsystems
- Easy to get them from Bruno using different bkg types and geometrical configurations
- Some settings, like pixel size, can be modified even after running FullSim
- Results:
 - Pairs production remain the first kbg source for SVT, while Radiative Bhabha are ~10 times less than this
 - Bkg variables are correlated but hits frequency is the most worrying one (efficiency and output rate limit)
 - Beampipe should stay close to L0
- Many requests from people: priority list, but they are encouraged to look into the code and get their own plots

General Todo List (not in priority order)

- Check geometry at all levels
- Interaction region
 - Modify according last design by Mike
 - Test different shielding configuration
- SVT
 - Add realistic silicon on L0, same as FastSim
 - Test different rad length for BP (0.4-0.6%) and clearance BP-L0 (0.5-1mm)
 - Hits are from some particular point apart from IP?
- Make a FullSim Production
- Add error bars on bkg quantities
- Other bkg sources, try to embed them into Bruno, if possible
- Clean-up the code and std naming for classes

HitsFreg Svt Laver 0

X axis: inner
Layer0 radius
13 – 16 mm

Configurations:

Inner Radius of Svt Layer0 (mm)

- BP close to L0, BP inner radius is equal to the inner L0 one minus 3 mm (BP thickness + clearance + pin-wheel average)
- like black one, with the gold foil moved from BP to inner L0 surface
- BP inner radius fixed at 10mm
- like green one but the gold foil moved on inner L0 surface
- like black but the gold foil is both on the BP and on L0 inner surface

Comments

 Results confirm to keep BP as close as possible to L0 (yellow vs green, not so effective when moving gold foil, blue vs red)

- Moving the gold coating form BP to L0 brings a nice improvement. The effect should be due to particles that arrive on the outer surface of BP: with a gold foil, they can be deflected more and are easy to hit the L0. Need to check if it's feasible technically
- Not useful to put gold coating on both BP and L0
- Hits frequency is still a bit higher than reqstd (28 MHz/cm²)