Assembling Background Frames

Gabriele Simi

University of Maryland

X SuperB General Meeting SLAC, 6-9 October

General Idea

- Simulate accelerator backgrounds using specific tool for each process
- Simulate details of the interaction with the material using GEANT4 description of the detector and the accelerator elements
- Pass a limited set of information to the fast-sim to finalize the simulation and merge the result with the simulation of a physics event

- TParticles, energy deposits, fluences

General Idea

- Background level proportional to time window (w) where detectors are sensitive to accelerator backgrounds
- expect simulation to produce background information "per bunch crossing"
- Embed N bunch crossing for each physics event
 - N=w*v [= 1 μ s*400MHz = 400]
 - v=bunch crossing frequency
 - v and w configurable
- w=1µs, driven by DCH, subdetectors can specify a smaller window

07 Oct 2009

TParticle Input recent developements

- Moving window: keep 400 events in memory, every physics event read a new Bxing and discard an old one
- Use single clonable module to read different types of input
- 1GB file limit => split bkg files (background set) and read each one in sequence
- Start event can be configured in the job or be random => helps to increase randomization when re-using background files
- New selection of input TParticles
- Time distribution

07 Oct 2009

D. N. Brown

γ and high Pt tracks: selection

- -200 cm < Z < 250 cm
- Εγ>8MeV

Time distribution

- Divide background sources in
 - Synchronous with bunch crossing
 - Bhabha, pair production

– t_0 =0, Δt =2.5ns

- Asynchronous and single beam
 - Non Gaussian tails, Touschek, beam-gas, synchrotron radiation
 - t=random
 - uniformly distributed in [-w/2,+w/2]

G. Simi - X SuperB General Meeting, SLAC

Beam strahlung: CPU Usage

SumTimeAction

- Log-log scale
- PmcBkgInput ~constant time
- PmcSimulate & PmcReconstruct proportional to number of bunch xing in window
- PmcSimulate~60 ms/event

Neutron interactions

- 90% of remaining particles interacting with detector are neutrons
- => do not simulate neutron passage
- Simply add the location of the energy deposit as a TParticles with a specific origin code?
 - No need for a specific input module in fast sim

R. Cenci

Low Pt particles

- Fluences from full sim
- Only pair production considered
- Toushek ?
- Can be implemented as a lookup table
- Generate random hits according to table

07 Oct 2009

Types of Input Information: summary

- γ and high Pt tracks
 - TParticle
 - Save position and momentum of particles exiting a scoring volume, convert them into GTracks and simulate their passage trough the Fast-Sim detector
- Neutrons in EMC and IFR
 - Energy deposit
 - Use EMC and IFR response to determine the fast sim hits
- Low Pt tracks, neutrons, DCH spirals in Tracking volume
 - Fluence
 - Generate random hits according to fluence

G. Simi - X SuperB General Meeting, SLAC

Summary & Discussion

- TParticle Input: OK
- Energy deposit:
 - Simply add the location of the energy deposit as a TParticles with a specific origin code?
 - No need for a specific input module in fast sim
- Fluences:
 - Lookup table?
 - Generate random hits according to table