Assembling Background Frames

Gabriele Simi

University of Maryland
X SuperB General Meeting SLAC, 6-9 October

General Idea

- Simulate accelerator backgrounds using specific tool for each process
- Simulate details of the interaction with the material using GEANT4 description of the detector and the accelerator elements
- Pass a limited set of information to the fast-sim to finalize the simulation and merge the result with the simulation of a physics event
- TParticles, energy deposits, fluences

General Idea

- Background level proportional to time window (w) where detectors are sensitive to accelerator backgrounds
- expect simulation to produce background information "per bunch crossing"
- Embed N bunch crossing for each physics event
- $\mathrm{N}=\mathrm{w}^{*} v\left[=1 \mu \mathrm{~s}^{*} 400 \mathrm{MHz}=400\right]$

- v and w configurable
- $w=1 \mu s$, driven by $D C H$, subdetectors can specify a smaller window

TParticle Input recent developements

- Moving window: keep 400 events in memory, every physics event read a new Bxing and discard an old one
- Use single clonable module to read different types of input
- 1GB file limit => split bkg files (background set) and read each one in sequence
- Start event can be configured in the job or be random => helps to increase randomization when re-using background files
- New selection of input TParticles
- Time distribution

γ and high Pt tracks: selection

- $-200 \mathrm{~cm}<\mathrm{Z}<250 \mathrm{~cm}$
- $\mathrm{E} \gamma>8 \mathrm{MeV}$

Time distribution

- Divide background sources in
- Synchronous with bunch crossing
- Bhabha, pair production
$-\mathrm{t}_{0}=0, \Delta \mathrm{t}=2.5 \mathrm{~ns}$
- Asynchronous and single beam
- Non Gaussian tails, Touschek, beam-gas, synchrotron radiation
- t=random
- uniformly distributed in [-w/2,+w/2]

Beam strahlung: CPU Usage

Graph

- SumTimeAction
- Log-log scale
- PmcBkglnput ~constant time
- PmcSimulate \& PmcReconstruct proportional to number of bunch xing in window
- PmcSimulate~60 ms/event

Neutron interactions

- 90% of remaining particles interacting with detector are neutrons
- => do not simulate neutron passage
- Simply add the location of the energy deposit as a TParticles with a specific origin code?
- No need for a
shy[1]:shx[1] \{NSimHit>1\&\&gocause==11\&\&gpdg>100\}
 specific input module in fast sim

Low Pt particles

- Fluences from full sim
- Only pair production considered
- Toushek ?
- Can be implemented as a lookup table
- Generate random hits according to table

Types of Input Information: summary

- γ and high Pt tracks
- TParticle
- Save position and momentum of particles exiting a scoring volume, convert them into GTracks and simulate their passage trough the Fast-Sim detector
- Neutrons in EMC and IFR
- Energy deposit
- Use EMC and IFR response to determine the fast sim hits
- Low Pt tracks, neutrons, DCH spirals in Tracking volume
- Fluence
- Generate random hits according to fluence

Summary \& Discussion

- TParticle Input: OK
- Energy deposit:
- Simply add the location of the energy deposit as a TParticles with a specific origin code?
- No need for a specific input module in fast sim
- Fluences:
- Lookup table?
- Generate random hits according to table

