Summary of 'Polarisation Task Force' Meeting of 21 September 2009

Michael Roney

Mailing list: A. Bevan, A. Cervelli, M. Ciuchini, G. Cavoto, D. Brown, D. Hitlin, A. Lusiani, P. Paradisi, F. Porter, A. Stocchi, O. Vives 21 September 2009

An Exciting Programme!

- Search for CP violation in tau decays
- tau EDM discovery very exciting given electron EDM
- g-2 complements muon g-2 hint(?)
- Search for LFV background suppression
- Discover LFV study Lorentz structure of LVF process
- low energy window on precision neutral current measurements
 - opportunity to re-visit a lingering 3 sigma effect left over from LEP/SLC: high luminosity + polarisation

Some Background:

- Adrian Bevan convened a meeting of parties known to have an interest in the case for polarisation.
- EVO meeting 21st Sept. 2009
- Meeting indico page:

<u>http://agenda.infn.it/conferenceDisplay.py?</u> <u>confId=1701</u>

Some Background: The items on the agenda:

- Overview: financial implications and a technical constraint on the accelerator
- Polarisation for g-2 and other non-LFV tau physics
- Polarisation for Tau Physics as a background suppression tool [including LFV]
- Other physics measurements relevant to the polarisation
- Discussion: tasks for TDR

Overview

• Polarisation is in the baseline design of SuperB

- Impact on cost and performance of having one polarised beam is difficult to accurately assess
- Roughly 15-20% cost in funds and in luminosity performance (from Tuesday's discussion)
 ~equivalent of running an extra year
- Must be installed at beginning or costs much higher won't be done
- Opens a rich and unique physics programme with potential for extremely high impact discovery: low risk for potentially high return
- → a discovery in this sector would be SuperB legacy

τ anomalous magnetic moment (g-2)

g-2 influence both the angular distribution and the τ polarization. Measure the Re(F2) and Im(F2) of the (g-2) from factor

 $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} \approx (3 \pm 1) \times 10^{-9}$ Complements muon g-2 hint at NP...

$$\Delta a_{\tau}/\Delta a_{\mu} \sim m_{\tau}^2/m_{\mu}^2$$
. NP effects $\rightarrow \Delta a_{\tau} \sim 10^{-6}$

	Snowmass points predictions						Super <i>B</i>
	1 a	1 b	2	3	4	5	exp. resolution
$\Delta a_{\mu} imes 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1	
$\Delta a_{ au} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3	~1-2

without beam polarization, expected worse

by factor \approx 10, and worse systematics

 τ Electric Dipole Moment: discriminates w/ angular distributions and/or polarisation
 Studies for Valencia: w/ 80±1% polarisation,
 80% acceptance, realistic tracking efficiencies statistical sensitivity of 10×10⁻²⁰

Systematic errors are x10 smaller •100x more precise than current no. (cannot control syst errors without polarisation)

 electron EDM null measurements + a discovery of tau EDM → amazing/unexpected window on NP!

 $\operatorname{sign}(q_{\mu}) \cdot \cos(\theta_{\mu})$

Irreducible background is from ISR photons produced in tau-pairs. Polarisation will alter ISR photon angular distribution providing additional discrimination

More stringent LFV limits might be possible

LFV analyses novel additional handle on backgrounds

Work done on Tau Physics with Beam Polarization

tau LFV

- S.Banerjee has added two models of τ → μγ production
 (SUSY production with full beam polarization and spin correlation)
- R.Cenci updated PacTauUser to FastSim V0.1.1
- A.L. imported latest BABAR tau generators (working, not yet released)
 - kk2f V00-02-29 → V00-02-32
 - ► tauola V00-01-20 → V00-01-21
 - koralb V03-01-16 → V03-01-18
- A.Cervelli generated events to simulate beam polarization effects for LFV search τ → μγ (see his plots)

LFV analyses novel additional handle on backgrounds

CPV in Tau decays

- Small effect expected in the SM: $\sim 10^{-12}$.
- Observation of CP asymmetry would be a clear sign of new physics: modulo K⁰K⁰ mixing effects in some decays.
- Limited experimental investigations so far...
- e.g. K_sπv: could get to ~10⁻⁵ precision on charge asymmetry.
 - Channel has been measured by CLEO using 13fb⁻¹ of data.
 - Probably not the best place to look (I think that the Ref is D. London et al. but will try and chase it up).
 - This area could benefit from having people think about it a little...

Exciting Discovery Programme!

- All but the last have been explored, to some extent, and presented at our workshops. These are the ~low risk – high gain studies: 'Wouldn't it be wonderful if...' CPV seen; LFV discovered and studied; etc
- Still work to be done on those
- but the neutral current component is another class of physics that until now hasn't be presented in the context of polarization at SuperB

$$\underbrace{ \frac{2s}{\pi} \frac{1}{N_{c}^{f}} \frac{d\sigma_{ew}}{d\cos\theta} (e^{+}e^{-} \rightarrow f\bar{f})}_{\sigma^{\gamma}} = \underbrace{ \text{LEP: 15M hadronic Z decays, unpolarised} }_{I = \frac{|\alpha(s)Q_{f}|^{2} (1 + \cos^{2}\theta)}{\sigma^{\gamma}} \text{ at SLC: 0.5M hadronic Z decays, polarised e-} \\ \underbrace{ \frac{|\alpha(s)Q_{f}|^{2} (1 + \cos^{2}\theta)}{\sigma^{\gamma}} \text{ at SuperB: Z-term ~30M hadronic Z, polarised} }_{\gamma-\text{Z interference}} \\ \underbrace{ \frac{-8\Re \left\{ \alpha^{*}(s)Q_{f}\chi(s) \left[\mathcal{G}_{\text{Ve}}\mathcal{G}_{\text{Vf}}(1 + \cos^{2}\theta) + 2\mathcal{G}_{\text{Ae}}\mathcal{G}_{\text{Af}}\cos\theta \right] \right\}}{\gamma-\text{Z interference}} \\ \underbrace{ \frac{+16|\chi(s)|^{2} \left[(|\mathcal{G}_{\text{Ve}}|^{2} + |\mathcal{G}_{\text{Ae}}|^{2}) (|\mathcal{G}_{\text{Vf}}|^{2} + |\mathcal{G}_{\text{Af}}|^{2}) (1 + \cos^{2}\theta) }{\sigma^{Z}} }_{\sigma^{Z}}$$

with:

$$\chi(s) = \frac{G_{\rm F} m_{\rm Z}^2}{8\pi\sqrt{2}} \frac{s}{s - m_{\rm Z}^2 + is\Gamma_{\rm Z}/m_{\rm Z}},$$

where θ is the scattering angle of the out-going fermion with respect to the direction of the e⁻.

UVic

$$e^+e^- \rightarrow f f Diff. Cross section$$

$$\mathcal{G}_{Vf} = \sqrt{\mathcal{R}_f} (T_3^f - 2Q_f \mathcal{K}_f \sin^2 \theta_W)$$

$$\mathcal{G}_{Af} = \sqrt{\mathcal{R}_f} T_3^f.$$

In terms of the real parts of the complex form factors,

$$\rho_{\rm f} \equiv \Re(\mathcal{R}_{\rm f}) = 1 + \Delta \rho_{\rm se} + \Delta \rho_{\rm f}$$

$$\kappa_{\rm f} \equiv \Re(\mathcal{K}_{\rm f}) = 1 + \Delta \kappa_{\rm se} + \Delta \kappa_{\rm f} ,$$

the effective electroweak mixing angle and the real effective couplings are defined as:

$$\begin{aligned} \sin^2 \theta_{\text{eff}}^{\text{f}} &\equiv \kappa_{\text{f}} \sin^2 \theta_{\text{W}} \\ g_{\text{Vf}} &\equiv \sqrt{\rho_{\text{f}}} \left(T_3^{\text{f}} - 2Q_{\text{f}} \sin^2 \theta_{\text{eff}}^{\text{f}} \right) \\ g_{\text{Af}} &\equiv \sqrt{\rho_{\text{f}}} T_3^{\text{f}} , \\ \frac{g_{\text{Vf}}}{g_{\text{Af}}} &= \Re \left(\frac{g_{\text{Vf}}}{\mathcal{G}_{\text{Af}}} \right) = 1 - 4|Q_{\text{f}}| \sin^2 \theta_{\text{eff}}^{\text{f}} .\end{aligned}$$

The quantities $\Delta \rho_{se}$ and $\Delta \kappa_{se}$ are universal corrections arising from the propagator selfenergies, while $\Delta \rho_{f}$ and $\Delta \kappa_{f}$ are flavour-specific vertex corrections.

or, equivalently in terms of vector and axial-vector couplings:

$$g_{\rm V}^{\rm tree} \equiv g_{\rm L}^{\rm tree} + g_{\rm R}^{\rm tree} = \sqrt{\rho_0} \left(T_3^{\rm f} - 2Q_{\rm f} \sin^2 \theta_{\rm W}^{\rm tree}\right)$$
$$g_{\rm A}^{\rm tree} \equiv g_{\rm L}^{\rm tree} - g_{\rm R}^{\rm tree} = \sqrt{\rho_0} T_3^{\rm f}.$$

$$\begin{array}{ll} \frac{2s}{\pi} \frac{1}{N_c^f} \frac{d\sigma_{ew}}{d\cos\theta} (\mathrm{e^+e^-} \to \mathrm{f}\overline{\mathrm{f}}) &= \\ \underbrace{|\alpha(s)Q_{\mathrm{f}}|^2 \left(1 + \cos^2\theta\right)}_{\sigma^\gamma} \\ \hline -8\Re \left\{ \alpha^*(s)Q_{\mathrm{f}}\chi(s) \left[\mathcal{G}_{\mathrm{Ve}}\mathcal{G}_{\mathrm{Vf}}(1 + \cos^2\theta) + 2\mathcal{G}_{\mathrm{Ae}}\mathcal{G}_{\mathrm{Af}}\cos\theta \right] \right\} \\ \gamma - \mathrm{Z} \text{ interference} \\ +16|\chi(s)|^2 \left[(|\mathcal{G}_{\mathrm{Ve}}|^2 + |\mathcal{G}_{\mathrm{Ae}}|^2)(|\mathcal{G}_{\mathrm{Vf}}|^2 + |\mathcal{G}_{\mathrm{Af}}|^2)(1 + \cos^2\theta) \\ +8\Re \left\{ \mathcal{G}_{\mathrm{Ve}}\mathcal{G}_{\mathrm{Ae}}^* \right\} \Re \left\{ \mathcal{G}_{\mathrm{Vf}}\mathcal{G}_{\mathrm{Af}}^* \right\} \cos\theta \right] \\ \sigma^Z \\ g_{\mathrm{L}}^{\mathrm{tree}} &= \sqrt{\rho_0} \left(T_3^{\mathrm{f}} - Q_{\mathrm{f}} \sin^2\theta_{\mathrm{W}}^{\mathrm{tree}} \right) \\ g_{\mathrm{R}}^{\mathrm{tree}} &= -\sqrt{\rho_0} Q_{\mathrm{f}} \sin^2\theta_{\mathrm{W}}^{\mathrm{tree}} , \end{array}$$

or, equivalently in terms of vector and axial-vector couplings:

$$g_{\rm V}^{\rm tree} \equiv g_{\rm L}^{\rm tree} + g_{\rm R}^{\rm tree} = \sqrt{\rho_0} \left(T_3^{\rm f} - 2Q_{\rm f} \sin^2 \theta_{\rm W}^{\rm tree}\right)$$
$$g_{\rm A}^{\rm tree} \equiv g_{\rm L}^{\rm tree} - g_{\rm R}^{\rm tree} = \sqrt{\rho_0} T_3^{\rm f}.$$

Asymmetries at Z-pole: $\sigma_{\rm F} - \sigma_{\rm B}$

A_{FB} is Problematic at SuperB because of pure QED FB asymmetry – requires polarised beam – need to evaluate polarisaiton precision required

FIG. 2: Predicted variation [18] of $\sin^2 \theta_W^{\text{eff}}$ as a function of momentum transfer Q (solid line) and its estimated theoretical uncertainty (shaded area). Results of prior low energy experiments [6, 16] (closed triangle, shown at an arbitrarily higher Q) and [7] (open triangle) are overlaid together with the Z^0 pole value [16] (square) and this measurement (circle).

NC Lepton universality:

• Neutral current universality: a reminder

UVic

Neutral Current Physics Programme

- Precision measurement of $\sin^2 \Theta^{eff}_W$ at 10.58GeV
 - with muon probe running, NuTeV result
 - with muons and taus probe NC universality at low Q^2
 - with charm
 - with b's: probe residual 3σ effect from LEP AFB
 - as 4S is pure vector this would be continuum B measurement while running on the 4S

Work list from meeting...

- homework NP theories are we sensitive to with CPV
- what NP theories have left or right-handed LFV decays
- improvements to g-2 and EDM sensitivities NP theories at our sensitivities
- evaluate the NC sensitivities with 75/ab at SuperB
- need to examine impact of QED A_{FB}
- what are requirements of systematic precision of polarisation determination: work with machine folks

Summary...

- We have a very rich and unique programme with polarisation
- low risk/cost with potential for amazing physics discoveries that could define SuperB's ultimate impact
- Also, bread-and-butter neutral current physics programme that can shine light on a couple of >2sigma effects and provide sensitivity to different kind of new physics
- still work to do on the physics side... help wanted!

