

X SuperB General Meeting 💆

LFV -τ→lll -Latest results

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A

SuperB potential to discover lepton flavour violation with the decay τ→μμμ

Cédric Weiland, ENS Lyon

X SuperB General Meeting, October 8th 2009

1

Cédric Weiland, ENS Lyon

Queen Mary

Outline

Lepton Flavour Violation

LFV -τ→lll -Latest results

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A

> Predictions for the decay $\tau \rightarrow 111$ > Latest results Simulate large amount of data with **FastSim** How and how much > New tools Find a new upper limit for $\tau \rightarrow \mu \mu \mu$ The cuts and their optimisation > The results

X SuperB General Meeting, October 8th 2009

LFV -τ→lll -Latest results

>

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A

Model dependant predictions

		τ→μγ	τ→III
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	Undetect	able
SUSY Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10-10	10-7
SM + heavy Maj v_R	Cvetic, Dib, Kim, Kim , PRD66 (2002) 034008	10-9	10-10
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10-9	10-8
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10-8	10-10
mSUGRA + Seesaw	Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013	10-7	10-9

Theoretical branching ratios in some New Physics models

X SuperB General Meeting, October 8th 2009

Cédric Weiland, ENS Lyon

Queen Mary

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A

LFV -τ→lll -Latest results ≻

Latest results for $\tau \rightarrow lll$

Results from the EPS in July

Mode	ε (%)	N _{BG} ^{EXP}	N _{obs}	UL (x10 ⁻⁸)	BaBar's
e ⁻ e ⁺ e ⁻	6.0 → 7.9	0.21+-0.15 → 0.48+-0.21	0→0	<mark>2.7</mark> →1.8	2.9
$\mu^-\mu^+\mu^-$	7.6 → 8.9	0.13+-0.06 → 0.42+-0.17	0→0	<mark>2.1</mark> →1.6	3.3
$e^-\mu^+\mu^-$	6.1 → 6.8	0.10+-0.04 → 0.52+-0.21	0→0	<mark>2.7→</mark> 2.0	3.2
$\mu^-e^+e^-$	9.3 → 12.1	0.04+-0.04 → 0.41+-0.20	0→0	<mark>1.8</mark> →1.2	2.2
$\mu^- e^+ \mu^-$	$10.1 \rightarrow 11.8$	0.02+-0.02 → 0.09+-0.09	0→1	1.7 →2.5	2.6
$e^-\mu^+e^-$	11.5 → 13.1	0.01+-0.01 → 0.01+-0.01	0→0	<mark>1.5</mark> →1.3	1.8
	14日日日	Belle results			

Belle results

Channel	Efficiency (%)	N_{bgd}	Exp. UL	N_{obs}	UL
$e^+e^-e^+$	8.6 ± 0.2	0.12 ± 0.02	$3.4 imes 10^{-8}$	0	2.9×10^{-8}
$e^+e^-\mu^+$	8.8 ± 0.5	0.64 ± 0.19	$3.7 imes 10^{-8}$	0	2.2×10^{-8}
$e^+e^+\mu^-$	12.6 ± 0.7	0.34 ± 0.12	2.2×10^{-8}	0	1.8×10^{-8}
$e^+\mu^-\mu^+$	6.4 ± 0.4	0.54 ± 0.14	$4.6 imes 10^{-8}$	0	3.2×10^{-8}
$e^-\mu^+\mu^+$	10.2 ± 0.6	0.03 ± 0.02	$2.8 imes 10^{-8}$	0	2.6×10^{-8}
$\mu^+\mu^-\mu^+$	6.6 ± 0.6	0.44 ± 0.17	$4.0 imes 10^{-8}$	0	$3.3 imes 10^{-8}$

BaBar results

X SuperB General Meeting, October 8th 2009

LFV $-\tau \rightarrow |||$ -Latest results

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A

Using the FastSim

Study conducted using V0.0.9

Hypothesis: $Br(\tau \rightarrow \mu \mu \mu) \approx 10^{-9}$

All the events in the 5-year data sample 25TB of data

> 11000 years of simulation on 1 computer

			_
Background Type	ekground Type MC Class		Events in a $75ab^{-1}$ data sample
signal	$e^+e^- \rightarrow \tau^+\tau^-, \tau^+ \rightarrow \mu^+\mu^-\mu^+$	0.94×10^{-9}	70
$B^0ar{B}^0$	$e^+e^- ightarrow B^0 ar{B}^0$	0.525	$39.4 imes10^9$
B^+B^-	$e^+e^- \rightarrow B^+B^-$	0.525	$39.4 imes10^9$
$car{c}$	$e^+e^- \to c\bar{c}$	1.30	97.5×10^{9}
uds	$e^+e^- ightarrow u ar u/d ar d/s ar s$	2.09	157×10^9
Bhabha	$e^+e^- ightarrow e^+e^-$	40	$3.0 imes 10^{12}$
$\mu^+\mu^-$	$e^+e^- ightarrow \mu^+\mu^-$	1.16	$87.0 imes 10^9$
$\tau^+\tau^-$	$e^+e^- ightarrow au^+ au^-$	0.94	$70.5 imes10^9$

Number of events for every channel considered in this study

X SuperB General Meeting, October 8th 2009

LFV $-\tau \rightarrow |||$ -Latest results

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A

Solutions and new tools University of London A. Bevan wrote a filter for the FastSim Divided the average event size by 241 in this case Sped up the simulation

Simulate less events

Virtually increase the size of the data sample by not applying the PID but using its mis-ID rate Mimic the PID using data from the MCTruth block

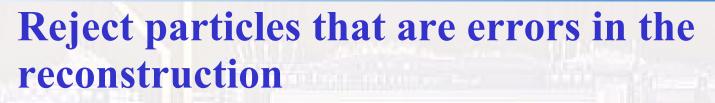
2	Background Type	mis-ID rate	Events in the simulated sample
0	$B^0ar{B}^0$	5.12×10^{-3}	923.1×10^{6}
	B^+B^-	4.07×10^{-3}	$914.3 imes10^6$
	$car{c}$	$6.21 imes 10^{-4}$	$88 imes 10^6$
1	uds	1.21×10^{-4}	$99 imes 10^6$
	Bhabha	1.27×10^{-9}	$2.0975 imes 10^9$
27	$\mu^+\mu^-$	1.37×10^{-4}	$2 imes 10^9$
	$ au^+ au^-$	2.86×10^{-5}	$99.2 imes 10^6$

X SuperB General Meeting, October 8th 2009

6

Cédric Weiland, ENS Lyon

ueen Marv


LFV -τ→lll -Latest results

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A

Defining the cuts

Loose cuts on the momentum, the polar angle

Use the event geometry

> 3-x topology: maximum number of muons, neutral candidates and reconstructed taus

Use kinematic variables
 Invariant mass and momentum of the reconstructed taus

Momentum of the muons

X SuperB General Meeting, October 8th 2009

Queen Mary

Loose cuts

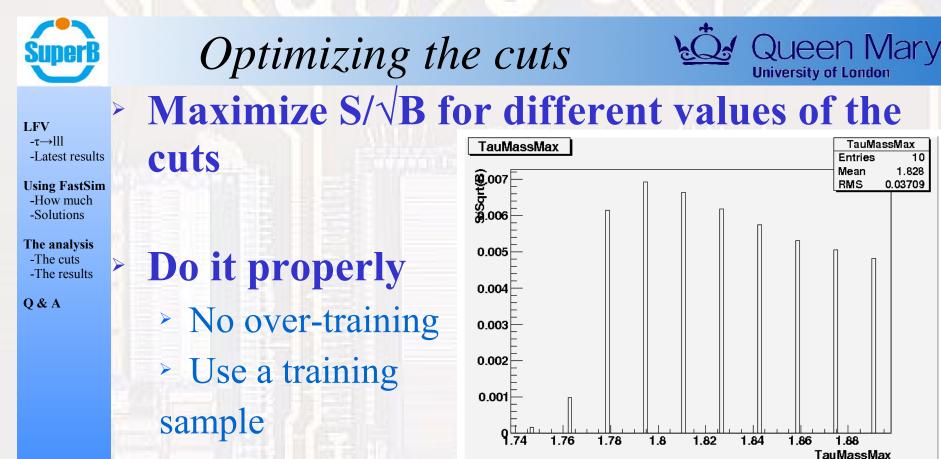
LFV -τ→lll -Latest results

≻

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A


Cuts Type	Value
Polar angle	$13^o \le \theta \le 165^o$
Momentum (for charged particles only)	$0.1 \leq ec{p_c} \leq 5 GeV$
Number of tracks	$3 \le nTRK \le 7$
Number of neutral particles	$ngamma \leq 6$
Mass of the reconstructed particles	$1.70 \leq tauMass \leq 1.85 GeV$

Selection requirements for the filter

Loose cuts

Cuts Type	Value
Polar angle (for charged particles)	$-0.96 \le \cos \theta_c \le 0.966$
Momentum (for charged particles only)	$0.15 \le \left \vec{p_c} ight \le 4.9 GeV$
Polar angle (for neutral particles)	$-0.96 \le \cos \theta_n \le 0.966$

X SuperB General Meeting, October 8th 2009

S/\sqrt{B} as a function of the tau mass

Results of the optimization

Cuts	n_{TRK}	n_{γ}	n_{μ}	E^{CM}_{μ}	$ ec{p}^{CM}_{\mu} $	n_{rec}	m_{rec}	$ ec{p}^{CM}_{rec} $
No optimization	[3, 6]	[0, 6]	[3, 4]	[0.15, 4.9]	[0.15, 4.9]	[1, 4]	[1.70, 1.85]	[4.5, 5.2]
1^{st} optimization	[4, 6]	[0, 5]	3	$\frac{[0.15, 5]}{[0.15, 5]}$	[0.15, 4.6]	1	[1.76, 1.79]	[4.5, 5.2]
2^{nd} optimization	4	[0, 5]	3	[1., 4.9]	[1., 4.9]	1	[1.77, 1.8084]	[4.92, 4.976]

X SuperB General Meeting, October 8th 2009

9

Cédric Weiland, ENS Lyon

10

Results

LFV -τ→lll -Latest results

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A

Compute the upper-limit
Get the efficiencies for every channel
Calculate the expected number of events
Use the Cousins-Highland method

Sample	Size	n_{TRK}	n_{γ}	n_{μ}	$ ec{p}_{\mu}^{CM} $	m_{rec}	$ ec{p}^{CM}_{rec} $	total/ϵ
Signal	1×10^{6}	0.569	0.896	0.512	0.228	0.726	0.338	0.0145 ± 0.0001
$B^0 ar{B}^0$	$923.1 imes 10^6$	1.68×10^{-4}	0.563	0.254	6.4×10^{-3}	0.232	0.0	$(0+1) \times 10^{-9}$
B^+B^-	$914.3 imes 10^6$	7.9×10^{-5}	0.492	0.306	5.4×10^{-3}	0.254	0.0	$(0+1) \times 10^{-9}$
$c\bar{c}$	$88 imes10^6$	1.0×10^{-3}	0.534	0.229	0.017	0.188	0.0	$(0+1) \times 10^{-8}$
uds	$99 imes 10^6$	3.1×10^{-3}	0.619	0.251	0.038	0.259	0.030	$(1.4 \pm 0.4) \times 10^{-7}$
Bhabha	2.0975×10^{9}	6.2×10^{-6}	0.911	0.246	0.173	0.182	0.014	$(4.8 \pm 4.8) \times 10^{-10}$
$\mu^+\mu^-$	$2.0 imes 10^9$	2.1×10^{-5}	0.984	0.776	0.136	0.307	0.037	$(2.5 \pm 0.4) \times 10^{-8}$
$\tau^+\tau^-$	$99.2 imes 10^6$	8.2×10^{-3}	0.779	0.281	2.1×10^{-3}	0.208	0.13	$(1.0 \pm 1.0) \times 10^{-8}$

Partial efficiencies for every channel

Final result: upper-limit at the 90% confidence level: 1.2×10^{-9}

LFV -τ→lll -Latest results

Using FastSim -How much -Solutions

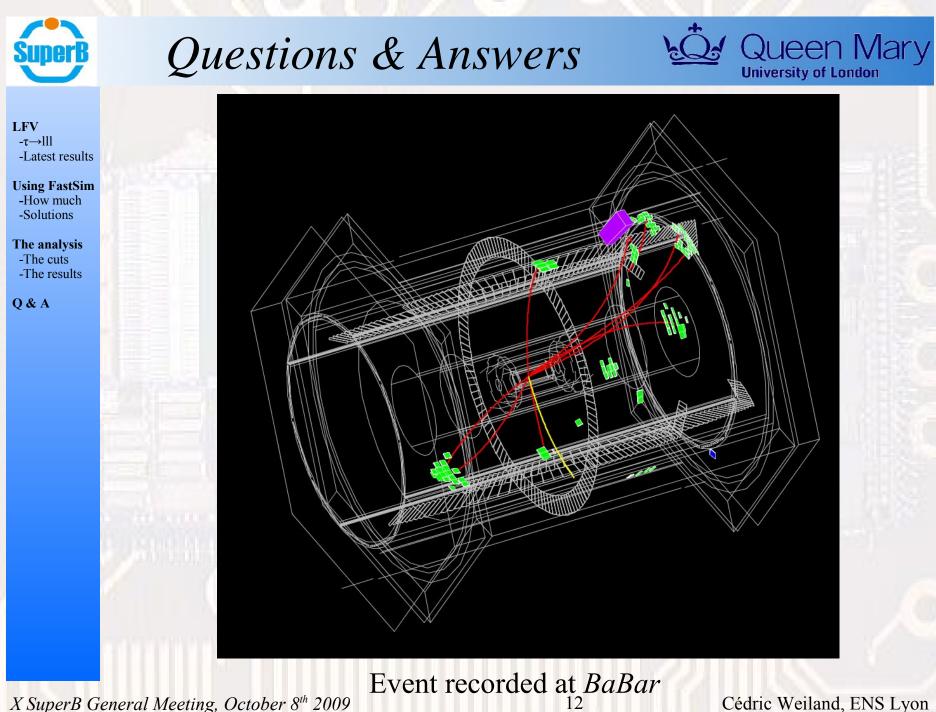
The analysis -The cuts -The results

Q & A

Lepton Flavour Violation is one of the best way to find New Physics and to constrain it

Super*B* will divide by more than 10 the current upper-limits on $\tau \rightarrow \mu\mu\mu$

One of the largest data sample generated with the FastSim so far


Numerous improvements can be done

Variables with a better separation

> Multivariate analysis methods

X SuperB General Meeting, October 8th 2009

11

X SuperB General Meeting, October 8th 2009

Study of $\tau \rightarrow \mu\mu\mu$ at SuperB

Using FastSim -How much -Solutions

The analysis -The cuts -The results

Q & A

Simulate data samples

> Signal> Backgrounds

Define cuts and optimise them

Get the efficiencies

Compute the upper limit for the branching ratio

X SuperB General Meeting, October 8th 2009

Cédric Weiland, ENS Lyon

Queen Mary