
Offline / Online
Connection

Steffen Luitz, SuperB Workshop, SLAC, October
2009

From BaBar Experience
Some Talking Points

Components in Online
Code Management, Release and Build System
Data Format & Dependency Management
Online vs. Offline Paradigms
Shared Code
Performance / Quality Control
Bookkeeping

“Hardware” Trigger

Event Builder

Software Triggers/
Filters

FCTS

Experiment /
Run

Control System

Detector/”Slow”
Control System

Data Quality
MonitoringDetector Readout

Systems

Data Persistency

Bookkeeping

Databases
Configuration
Conditions
Ambient
Inventory

Computing
Infrastructure

File Servers,
SysAdmin, etc.

Performance
Monitoring

Code &
Release
Mgmt

Execution
Frameworks

Networks

Machine
Interface

Code

GUIs
Visualizati

on

Code Management,
Release+Build System (1)

BaBar
 “2 1/2” different release + build systems

Dataflow build system (embedded + regular) - for a reason
“Online Releases” - using SRT but special
Base SRT releases

Some of the Issues
Impractical code dependencies (Online on top of SRT Base) and complex
dependency management (what goes where, etc.). Online, where you want most
flexibility & agility depended on this huge blob of SRT base
Search path overlays can be dangerous
Several attempts to improve - never high priority

Opportunity for R&D in code organization
Code organization (peer modules) as well as runtime (dynamic loading)
Some ideas are already there

Code Management
Release+Build System (2)

Other areas of interest
Configurable firmware in more and more places (embedded
processors, FPGA configurations, etc.)

Need to manage & track - What should be integrated with release mgmt?

Scripts, glue code, computer configurations
ditto

Especially Online needs to be able to “test” deploy and back out
quickly

More automation than BaBar (path / symlink based scheme) seems desirable

Design mechanisms to ensure consistency of what code is
running

large farms - make sure every machine has the right
executables and configuration

Data Format +
Dependency Mgmt

Data format (or semantics) or database schema changes
are always difficult

Fundamental problem: Have to deploy code that understands the
new format / schema before deploying code that produces data
in that format

Unfortunate effect in BaBar: Interesting improvements in
Online got delayed for months because downstream
release building and deployment was difficult
Attempt do design a system that provides the necessary
agility and flexibility for Online

e.g. Simplify downstream release builds / deployment
e.g. look into how forward&backward compatibility could be
achieved

Online / Offline
Paradigms

Boundaries between “Online” & “Offline” are becoming
increasingly blurry.

Computers are getting much faster, so you can do much more
“online”

Code sharing is very attractive

Fundamental difference:

Online is where you (often) can’t redo things if something
goes wrong!

Shared Code

Lots of benefits from Online/Offline code sharing
Online paradigms impact how code used by Online must
behave - especially in areas of input validation and error
handling:

Code used in Online often needs to be very robust against malformed input
data. Alert and skip, not segfault & core dump. Impacts all code used in Online.
In Online systems assert() is not always your friend - code needs ability choose
what to do in the face of errors. Exceptions (or similar mechanisms)
Need to propagate errors to higher levels where meaningful decisions can be
made
Restarting from scratch “to reset” is not always acceptable, especially if startup
times are long

True code sharing requires some thought and reliability
engineering

Performance & Quality
Control

When running in an Online context, code may run in or
close to the “dead time path”

Careful engineering & testing

Take into account average & worst-case performance

Engineer frameworks that allow to deal with worst-case
e.g. “non-blocking” behavior where appropriate

Overall performance
Ability to utilize underlying platform

Multithreading. GPU, other non-uniform architectures, etc.

Quality control
verify code to standards outlined on previous slide

Bookkeeping & Storage

Just some thoughts
Over the SuperB lifetime, storage media may significantly
change in characteristics (e.g. Tape, Disk, SSD, ...)

Decouple file / container sizes from data grouping concepts
such as “Runs”
Allow for optimization of file sizes - splitting, merging

Do not introduce artificial choke points in the system
such as e.g. merging run parts into complete run files in BaBar

Is a versioning capability for raw data (e.g. in case of “manual”
repairs or removal of “bad” parts) needed

I’m tempted to say no - forego the complexity and write-off the data

Bookkeeping system - shared between Online & Offline
must hide the complexities from users (and apps)

