Use of Beam Polarization δ in $\tau \rightarrow \ell \gamma$ Searches

Alberto Cervelli INFN & Universita' di Pisa

Outline

- Ntuples Production
- Comparison between Polarized and Unpolarized signal events
- Polarization effects on background rejection
- Future Plans

Conclusions

Data Produced

- Since Last Presentation five classes of events were produced using Fast Sim V0.1.1 and modified KK2f and tauola packages in order to simulate polarization effects:
 - □ 500K events for $\tau \rightarrow \mu \gamma$ with + polarization
 - □ 500K events for $\tau \rightarrow \mu \gamma$ with polarization
 - □ 500K events for $\tau \rightarrow \mu \gamma$ unpolarized
 - 500K events for $\tau \rightarrow \mu \nu \nu$ with polarization
 - □ 500K events for $\tau \rightarrow \mu \nu \nu$ unpolarized

Albeit quite large the statistics studied is not enough to make studies on samples undergoing the selection made for BaBar analysis.

$Cos(\theta)_{\mu CMS}$: a discriminating variable I

In the case of polarized beams shapes for $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \nu \nu$ are different \rightarrow Polarization may give a new handle for background reduction

SuperB X General Meeting

After applying a cut on $2P_{\mu}/s^{1/2} < 0.77$ polarization seems to have lesser discriminating power

Releasing the cut requiring $2P_{\mu}/s^{1/2} < 0.87$ background and signal shapes differ again

Possible hint for a momentum magnitude-angle correlation

- A correlation between angle and momentum arise when beams are polarized
- Probably angle and momentum may be used together to have a better background rejection → Polarization still a good handle to reduce backgrounds

• Only $\tau \rightarrow \mu \nu \nu$ were simulated

Even if τ→µvv are an irreducible background their distribution in momentum is different from di-muon events.

Conclusions

- Polarization provide a good handle for $\tau \rightarrow \mu \gamma$ selection:
 - Shapes for $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \nu \nu$ are different
 - □ It could be used to reduce $\tau \rightarrow \mu \nu \nu$ backgrounds using variables like $Cos(\theta)_{\mu CMS}$
 - $\hfill\square$ Correlation between $Cos(\theta)_{\mu CMS}$ and $P_{\mu}^{\hfill}CMS}$ is observed in polarized beams
- Need to produce more statistics to study selection details in polarized environment
- Need to produce a large di-muon sample in order to study effects of polarization on di-muon background rejection (needs long machine times and selection at generator level)

Plans for the next weeks

- Prepare a large sample (~3-4 M events) for radiative di-muon events with μμγ final states
- Produce more statistics for polarized signal and $\tau \rightarrow \mu \nu \nu$ backgrounds
- Try to reproduce the BaBar analysis on the fast sim produced ntuples to have a quantitative estimation of polarization effects
- (Plug the polarization in the NN used in the latest BaBar analysis)

Backup

Pol+ Vs Pol -

SuperB X General Meeting

Alberto Cervelli

