

Michel Lebeau Oct. 07, 2009 c/o C.Cecchi

Summary

- 1. Proto alveolar module status
- 2. Off-pointing geometry (discussion)
- 3. Boundaries
- 4. Space for services
- 5. Support structure (reminder)
- 6. Cooling and thermal regulation
- 7. Monitoring

1. proto alveolar module status

- Survey of companies since July (draft spec)
- production method suggested
- Technical spec version 8 available
- Complete geometrical definition
- Based on crystal dimension table of 2008 05 27, rings 6 to 10, x 5 rows
- Spec sent 2009 09 24 to comp. A and B (composite specialists)
- Prod. dwgs complete (Perugia) 2009 09 28

proto alveolar production drawings complete (Perugia) 2009 09 28

proto alveolar production drawings detail of assembly

proto alveolar production drawings detail of cell

cell longitudinal section

23,36190 22,89687 20,74666 B B 20,09282 22,17014 20,09282

view from rear

detail of insert

proto status company A

- Visited ML at CERN 2009 09 15
- preparing an offer for this week
- Offer based on updated spec
 - from Spec draft V.6 to spec V.8
 - No need for final dimensions for offer

- Schedule proposal if offer accepted
- Offer sent end these days
- Order mid-October
 - with Perugia's production drawings in time
- Design review and production start OK end-October
 - Tooling 6 weeks (mid-December)
 - Wrapping, curing, finishing 3 weeks
 - Finished alveolar inspection at company mid-January to February

proto status company B

- interested but ...
 - Big aerospace consortium
 - Produced CMS ECAL alveolars (good)
 - cautious until convinced it is not just to see
 - A visit there is needed
 - Put on back-burner for full structure if offer for proto not in time or not in budget

2. Off-pointing (complete detector)

- θ tilt
- Z offset
- multi-points on circle
- Pointing precision

This discussion can be postponed to specialits' meeting

Michel Lebeau

Off-pointing geometry (ϕ tilt)

Basic: use same concept as in Babar barrel, L3 barrel and endcaps, i.e. pointing to points on a circle, geometrically correct

Off-pointing (ϕ **tilt)**

- Needs fine modularity to avoid high steps and dead space
 - L3 modularity 16
 - Babar modularity 20
- In SuperB endcap, max. possible modularity (as suggested) = 6
- Step would be about 50mm!

Off-pointing approximation by module θ tilt

- Build modules as pointing to IP
 - Polyhedral pyramids, summit = IP
 - Easy geometric definition and production
- tilt each module upright
- Module original centre brought to circle
- Tilt (θ rotation) creates a wedge gap between modules
- wedge thickness \Downarrow with modularity \Uparrow

Off-pointing approx by θ tilt

Off-pointing approximation: exact pyramid centre Z offset

- endcap built as an exact pyramidal polyhedron
- Its summit is at a given Z distance from IP
- What is the projection spread at IP?

Pointing to circle

 Alveolar θ and φ middle planes point to equi-spaced points on the pointing circle

Pointing to circle in θ

Pointing to circle in ϕ

Pointing to circle

20

Off-pointing errors from xals and alveolar tolerances

 Whatever the chosen tolerances in alveolar dimensions, crystal dimensions and position in their cell produce an error in pointing

Off-pointing, conclusions

- Pointing to circle seems OK
- to be verified with CAD
- N.B. alveolar proto built *around* given crystals shapes

3. Boundaries

Boundaries

to check with other sub-detectors

- Babar barrel end cone + 5mm no-go zone
- Front cone incl. 5mm no-go zone
- Inner cone (some more freedom?)
- Rear limit (incl. 5mm no-go zone)

Basic parameters

4. Service space behind crystals

Start integration exercises: Identify a responsible person for each item

- photodetectors
- VF readout
- monitoring
- cooling for electronics

- temp. sensing
- fluid (dew, leak) detect.
- radiation monitoring
- survey references
- xals & APD thermal regulation

5. Support structure

- Feasibility discussed with Company A
- Front bottom sandwich housing calibration circuitry and alveolar positioning + mech. fixation (20 to 30mm?)
- **Outer cone** massive CFRP (5 to 10mm?)
- Inner cone aluminium (7000 series) or st.steel (316LN) thickness 20 to 30mm
- Solomon's choice:
 - Solid doughnut or two halves?

Back plate

- frame or plate (open or closed) aluminium or st.steel
- connects inner and outer cone edges
- integrates supporting points
- matches Babar original fixation points
- This is our rear limit

Babar

6. Cooling & thermal regulation

- Electronics cooling
 - Power dissipation?
 - Cooling to temp. order of ±2°C
- Thermal regulation
 - If regulation to temp order of |0,5°C|
 - LYSO crystals light output 0,4%
 - Photo-detector (if APD -1,2%)

LYSO light output temp.dependence

C.L.Kim, 2005

Cooling & thermal regulation

- Cooling
 - Catch heat at source
 - Stop heat leaks to crystals
- Thermal regulation
 - Enclose crystals and photodetectors
 - Front and rear thermal screens

Cooling & thermal regulation

- Coolant
 - Babar Fluorinert (FC77)
 - Derivation from existing barrel system
 - Saving on system
 - Or demin. water
 - heat capacity x 4
 - viscosity -30%
 - Spending on system
- Best use of monitoring pipework
 - conceivable to run monitoring circuit as front thermal screen?
 - avoid doubling pipe material at the front

7. Monitoring

Babar endcap monitoring pipe work

- 40 radial loops
- aluminium alloy
- OD 9,5mm ID 8,5mm
- Flattened to 4mm

- Total pipe mass ≈10kg
- Fluid coverage 1,3 litre
- Line spacing ≈ 70mm

2009 10 07

Monitoring

- Use as much as possible from Babar monitoring design features, but...
 - Al welding very delicate (was Babar lucky?)
 - Integrate pipe work into support front plate sandwich
- Other solutions
 - Rollbond screen as sandwich inner skin

Monitoring

Example of *Rollbond* fridge thermal screen All aluminium Typical thickness 1,3mm on flat 4 to 5mm on channels

Michel Lebeau