

# Computing resources for $B \rightarrow K^{(*)}vv$ in FastSim

**Elisa Manoni** University and INFN Perugia

> Alejandro Perez LAL-Orsay

SuperB workshop Detector and Computing parallel session SLAC Oct 8 2009 Francesco Renga Universita' La Sapienza and INFN Roma I

university & infn perugia 1

elisa manoni

### 1. B<sub>tag</sub> reconstruction:

Full reconstruction of
one B meson in hadronic
or semileptonic decays.
(Btag reconstruction +
selection efficiency O(10<sup>-2</sup>÷10<sup>-3</sup>))

 $B \rightarrow K^{(*)} \nu \nu$  analayses



#### 2. B<sub>sig</sub> reconstruction:

look for a K<sup>\*</sup> not accompanied by additional (charged or neutral) particles + missing energy (Bsig+Btag selection efficiency  $O(10^{-4} \div 10^{-5}))$ 

elisa manoni



### 1) statistics for the January production

is the foreseen 1 ab-1 reasonable for your analysis?

yes this is a reasonable sample both for the SL and hadronic analyses

- ✓ what generic processes are you interested to have simulated in Fast Sim ?
  - B0B0\_generic
  - B+B-\_generic
  - ccbar
  - uds
  - tautau
  - $B \rightarrow SL vs. B \rightarrow generic$

### 2) machine bkg sources

which one are the most relevant for the results of your analysis?

Sensible to background which produces neutral hitting the calorimeter: beamstrhalung, out of time bhabha clustesrs, two photon events backgrounds. Effects producing fake tracks shouldn't be an issue.

# 3) CPU budget

how long does it take to apply your analysis to

- generic events w/o bkg ?
- generic events w/ bkg ?

Please specify if possible the CPU model used to run the jobs.

HAD analysis as run in September, with machine background (50X beamstrahlung with neutrons enabled): 0.35-0.38 <sec>/events for generic BB events, depending on the detector geometry model; same estimate to run without background (previous production); 0.15 <sec>/events for signal MC (w/o background)

SL analysis ("private" production, w/o background): 0.20 <sec>/events for generic BB; 0.08 <sec>/events for signal MC events



## 4) Disk budget

what information do you store on disk for each event as outcome of your analysis ? recoil specific variables (mES, deltaE, cosBY,...), UsrDataVariables (B decayMode,..), usual BtaTupleMaker blocks, i.e. :

| ntpBlockContents | $\mathbf{set}$ | "Y | : | MCIdx | Mass | Momentum | CMMomentum | Vertex | VtxChi2 | nDaughters Usr | Data(TagB_ | BToDlnu, | SigB_ |
|------------------|----------------|----|---|-------|------|----------|------------|--------|---------|----------------|------------|----------|-------|
| BToDlnu)"        |                |    |   |       |      |          |            |        |         |                |            |          |       |
| ntpBlockContents | $\mathbf{set}$ | "B | : | MCIdx | Mass | Momentum | CMMomentum | Vertex | VtxChi2 | nDaughters"    |            |          |       |
| ntpBlockContents | $\mathbf{set}$ | "D | : | MCIdx | Mass | Momentum | CMMomentum | Vertex | VtxChi2 | nDaughters"    |            |          |       |
| ntpBlockContents | $\mathbf{set}$ | "h | : | MCIdx | Mass | Momentum | CMMomentum | Vertex | VtxChi2 | nDaughters"    |            |          |       |
| ntpBlockContents | $\mathbf{set}$ | "1 | : | MCIdx | Mass | Momentum | CMMomentum | Vertex | VtxChi2 | Doca DocaXY Po | ca PocaXY  | PocaErr  | PocaC |
| ov nDaughters"   |                |    |   |       |      |          |            |        |         |                |            |          |       |

HAD analysis: 433 vars (Bsig+Btag info), SL analysis: 1 ntuple with Bsig+Btag variables (366 vars) + 1 ntuple with Btag variables only (28 vars)

We can: reduce the number of variables; produce, for both analysis two ntuples: one (small) with Btag variables another with both Btag and Bsig infos, without events in which no Bsig has been reconstructed

✓ how much disk space is need per event on average ?

HAD analysis : 5.5 KB

SL analysis: 4.2 KB

elisa manoni

### 5) Event selection

To reduce the amount of CPU time spent and the space occupied on disk,

<sup>24</sup>one could consider to filter the events while they are being processed;

is it feasible, for events you are not interested in, to filter them out:

- at the generator level ?
- after background mixing has taken place?
- at some later steps in the analysis ?
- before writing the results on disk ?
- what would be the anticipated filtering fractions ?

We plan to add a filter at reconstruction level, probably based on some kinematic variable. Is there an expected rate to be reached using the filter?