

Hadronic Breco studies

Elisa Manoni (University and INFN Perugia)

Francesco Renga Universita' La Sapienza INFN – Sez Roma I *Alejandro Perez LAL- Orsay*

SuperB workshop – DGWG parallel session SLAC Oct 7 2009

elisa manoni

Outline

- Hadronic Breco reconstruction
 - philosophy
 - implementation in FastSim
- ✓ September production and detector geometries
- ✓ Detector performances: comparison between geometries
 - Breco selection efficiency
 - Breco kinematics variable
 - purity and multiplicity studies
- \checkmark Conclusions and to do list

Hadronic Breco reconstruction philosophy

- Aim: collect as many as possible fully reconstructed B mesons in order to study the property of the recoil
- ✓ SemiExclusive reconstruction: search for $B \rightarrow D(^*)X$, with

X=n π mK pK_s q π^0 and n+m+r+q<6, without making requirements on intermediate resonances

- ✓ Reoconstruction steps:
 - reconstruct $D \rightarrow hadrons$

- use D as a seed and add X to have a system compatible with the B hypotesys

- ✓ Signal box defined by using: $m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$ $\Delta E = E_B^* - E_{beam}^*$
- ✓ Sample of 1100 B decay modes, ordered by purity.
- ✓ In events with multiple candidates, the best one is selected according to the smallest ΔE

Hadronic Breco reconstruction in FastSim (I)

SemiExclusive reconstruction implemented in FastSim: PacHadRecoilUserPackage Package based on BaBar BtnSemiExclUser code

- ✓ It contains:
 - main analysis tcl on which run the executable
 - tcl for skim emulation (based on FilterTools/BSemiExclPath.tcl)
 - tcl for PID selection (TableBasedXXXSelection selectors based on BaBar run6-r24c PID tables)
 - tcl and .cc / .hh for signal and tag side reconstruction and selection (at the moment only $B_{sig} \rightarrow K^* v v$ available)
 - tcl for **BTupleMaker** settings
 - README
- ✓ Code status:
 - used in the September production
 - need to make some clean up and to update the README in order to make any user able to modify the package according to the B_{sig} mode

September production

- Generic MC samples produced by Dave using PacProduction package
- machine background included: turn on 50X beamstrahlung (nominal 400X) with neutrons enabled
- ✓ Samples:
 - two detector configurations: DG_1, DG_4 (see next slides)
 - DG_1 sample: $69.15 \times 10^6 B^0 B^0$ bar events

46.1 x 10⁶ B^+B^- events

- DG_4 sample: $46.3 \times 10^6 B^0 B^0$ bar events

36.7 x 10^6 B⁺B⁻ events

		Selectior	n rate			
Analysis	KByte/event	B0 DG1	B+ DG1	B0 DG4	B+ DG4	total size MBytes
Hadronic K*nunu	5.4	5.60%	7.10%	6%	7.70%	40000

- no uds, cc, tautau samples available
- \rightarrow study combinatorial contamination only

Detector geometry (I)

- ✓ DetectorGeometry_1
 - SVT_L0 + bwd and fwd DCH: gain in tracking and Breco reconstruction efficiencies

elisa manoni

Detector geometry (II)

✓ DetectorConfiguration_4

SVT_L0 + fwd DIRC + bwd EMC: higher angular coverage and better K-π discrimination

A remark on PID usage

- PID selectors used in the D and B lists
 - no PID on π
 - K PID:

 $D \rightarrow KY$ lists use GoodTracksLoose or KLHNotPion depending on the D mode

 $B \rightarrow D^{(*)}KY$ lists use KNNTight depending on the B mode

- ✓ select events in which the K pass the proper PID selector (accounting also for the DG configuration) by using BitMaps
 - require a K from a B to pass the KNNTight selector according to DIRC only (DG_1) or DIRC+FWD PID (DG_4) infos

 \rightarrow no events found with Breco \rightarrow B \rightarrow D^(*)KY, investigation ongoing

 require ALL the K from a D to pass the KLHNotPion according to DIRC only (DG_1) or DIRC+FWD PID (DG_4) infos

 $(\rightarrow$ not considering the GoodTrackLoose option)

Breco study: startegy

separate reconstructed neutral and charged Breco

- "signal" = B0 in B0B0bar_generic sample / B± in B+B-_generic sample
- "combinatorial background" = B0 in B+B-_generic sample / B± in B0B0bar_geeneric sample
- \checkmark Breco selection:

PID requirements on K candidates

best candidate selection: $|\Delta E|_{\min}$

selection on Breco kinematics $5.27 < m_{ES} < 5.288$ GeV $-0.09 < \Delta E < 0.5$ GeV $\left|\cos\theta_{\mathrm{Breco,Thrust}}\right| < 0.95$

- \checkmark Mode by mode study
 - high vs low **PURITY** modes (integrated purity threshold: 80%)
 - high vs low vs verylow **MULTIPLICITY** modes verylow = $B \rightarrow DK/D\pi \&\& D^0 \rightarrow K\pi; D^*, D^0 \rightarrow K\pi; D^+ \rightarrow K_s\pi; D^{*0} \rightarrow D^0 pi^0$, $D^0 \rightarrow K\pi; D^{*0} \rightarrow D^0\gamma, D^0 \rightarrow K\pi$ low = $B \rightarrow DK/D\pi$ && all $D^{(*)}$ modes high = !(low)

Cut flow tables: B0B0bar_generic

cumulative efficiencies

	DO	G_1	DG_4		
	neutral B _{reco}	charged B _{reco}	neutral B _{reco}	charged B _{reco}	
reconstructed	1.91x10 ⁻²	3.48x10 ⁻²	1.97x10 ⁻²	3.68x10 ⁻²	
ΔE cut	1.62 x 10 ⁻²	2.87x10 ⁻²	1.68x10 ⁻²	3.06x10 ⁻²	
m _{ES} cut	3.72x10 ⁻³	3.86x10 ⁻³	3.82x10 ⁻³	4.09x10 ⁻³	
$\cos\theta_{\mathrm{Breco,Thrust}}$ cut	3.68x10 ⁻³	3.80x10 ⁻³	3.78x10 ⁻³	4.03x10 ⁻³	
$\epsilon_{\rm neutral}/\epsilon_{\rm charged}$	0.	97	0.	94	

BaBar Full-Sim:

-
$$\varepsilon_{\text{neutral}}/\varepsilon_{\text{charged}} = 2.24$$

university & infn perugia 10

Cut flow tables: B+B-_generic

cumulative efficiencies

	DC	G_1	DG_4		
	neutral B _{reco}	charged B _{reco}	neutral B _{reco}	charged B _{reco}	
reconstructed	1.34x10 ⁻²	5.65x10 ⁻²	1.36x10 ⁻²	5.93x10 ⁻²	
ΔE cut	1.10x10 ⁻²	4.76x10 ⁻²	1.12x10 ⁻²	5.02x10 ⁻²	
m _{ES} cut	1.41x10 ⁻³	1.02x10 ⁻²	1.45x10 ⁻³	1.06x10 ⁻²	
$\cos \theta_{\mathrm{Breco,Thrust}}$ cut	1.39x10 ⁻³	1.01x10 ⁻²	1.43x10 ⁻³	1.05x10 ⁻²	
$\epsilon_{\rm charged}/\epsilon_{\rm neutral}$	7.	26	7.	34	

BaBar Full-Sim: - $\varepsilon_{charged}/\varepsilon_{neutral} = 5.14$

university & infn perugia 11

Purity studies

B0B0bar_generic

	DO	<u>-1</u>	DG_4		
	neutral B _{reco}	charged B _{reco}	neutral B _{reco}	charged B _{reco}	
int_purity < 80%	96.1%	99.9%	95.9%	99.9%	
int_purity > 80%	3.9%	0.1%	4.1%	0.1%	

✓ B+B-_generic

	DC	G_1	DG_4		
	neutral B _{reco}	charged B _{reco}	neutral B _{reco}	charged B _{reco}	
int_purity < 80%	99.7%	97.4%	99.7%	97.5%	
int_purity > 80%	0.03%	2.6%	0.03%	2.5%	

- fractions computed on the number of events that pass the selection

elisa manoni

Multiplicity studies

B0B0bar_generic

	DO	G_1	DG_4		
	neutral B _{reco}	charged B _{reco}	neutral B _{reco}	charged B _{reco}	
high mult	82.2%	98.4%	82.4%	98.4%	
low mult (very low mult)	17.8% (1.3%)	1.6% (0.07%)	17.6% (1.3%)	1.6% (0.07%)	

✓ B+B-generic

	DC	G_1	DG_4		
	neutral B _{reco}	charged B _{reco}	neutral B _{reco}	charged \mathbf{B}_{reco}	
high mult	85.6%	88.7%	85.7%	89%	
low mult (very low mult)	14.4% (0.1%)	11.3% (2.5%)	15.3% (0.1%)	11% (2.4%)	

- fractions computed on the number of events that pass the selection

elisa manoni

university & infn perugia¹⁷

Conclusion and to-do-list

- PacHadRecoilUser run during September production to test DG_1 and DG_4
- ✓ On charged Breco, DG_4 gives higher efficiency and but also higher background contamination (continuum MC would be needed to confirm this)
- ✓ On neutral Breco, DG_1 and DG_4 gives compatible results
- ✓ Results may be "biased" by
 - low tracking efficiency for low momentum tracks (see Dave posting on FastSimml)
 - non correct implementation of B lists/or PID related problems for which B modes with a K as a daughter are never reconstructed
- ✓ To do list:
 - investigate the previous issues
 - implement a Filter to reduce the event rate
 - clean up the package and write documentation to implement other \mathbf{B}_{sig} reconstruction

elisa manoni

Extra slides

elisa manoni

Oct 7, 2009, SLAC

B decay modes

bmode		1	"B->Dpi"
bmode	-	2	"B->Dk"
bmode	-	3	"B->Dpipi0_<1.5GeV"
bmode	-	4	"B->Dkpi0_<1.5GeV"
bmode	-	5	"B->Dpiks"
bmode	-	6	"B->Dkks"
bmode		7	"B->Dpi2pi0_<1.5GeV"
bmode		8	"B->Dk2pi0_<1.5GeV"
bmode		9	"B->D3pi_<1.5GeV"
bmode		10	"B->Dk2pi_<1.5GeV"
bmode	-	11	"B->D2kpi_Ds"
bmode	-	12	"B->Domegah"
bmode	-	13	"B->Dk2pipi0_<2.2GeV"
bmode	-	14	"B->D2kpipi0_Ds*"
bmode	-	15	"B->Dpipi0ks"
bmode	-	16	"B->Dkpi0ks_<1.8GeV"
bmode	-	17	"B->Dk2pi0ks_1.8-2.2GeV
bmode	-	18	"B->D2ksX"
bmode	-	19	"B->D3pi2pi0_<2.2GeV"
bmode		20	"B->Dk2pi2pi0_<2.2GeV"
bmode		21	"B->D2kpi2pi0_Ds*"
bmode		22	"B->D5pi_<2.3GeV"
bmode		23	"B->Dk4p_<2.7GeV"
bmode		24	"B->D2K3pi_<2.7GeV"
bmode		25	"B->D5pipi0_<2.2GeV"
bmode		26	"B->Dk4pipi0_<2.2GeV"
bmode	-	27	"B->D2k3pipi0_<2.5GeV"

bmode	=	28	"B->D3piks_D*"
bmode	=	29	"B->D3pikspi0_D*"
bmode	=	30	"B->Dk2piks_D*"
bmode	=	31	"B->DD* Dpi0"
bmode	=	32	"B->Dpipi0_>1.5GeV"
bmode	=	33	"B->Dkpi0_>1.5GeV"
bmode	=	34	"B->Dpi2pi0_1.5-2GeV"
bmode	=	35	"B->Dk2pi0_>1.5GeV"
bmode	=	36	"B->D3pi_1.5-2GeV"
bmode	=	37	"B->Dk2pi_>1.5GeV"
bmode	=	38	"B->D2kpi_K*"
bmode	=	39	"B->D2kpi_other"
bmode	=	40	"B->D3pipi0_<1.6GeV"
bmode	=	41	"B->D3pipi0_1.6-2.2GeV"
bmode	=	42	"B->Dk2pipi0_>2.2GeV"
bmode	=	43	"B->D2kpipi0_other"
bmode	=	44	"B->Dkpi0ks_>1.8GeV"
bmode	=	45	"B->D3pi2pi0_>2.2GeV"
bmode	=	46	"B->Dk2pi2pi0_>2.2GeV"
bmode	=	47	"B->D2kpi2pi0_other"
bmode	=	48	"B->D5pi_>2.3GeV"
bmode	=	49	"B->Dk4p_>2.7GeV"
bmode	=	50	"B->D2K3pi_>2.7GeV"
bmode	=	51	"B->D5pipi0_>2.2GeV"
bmode	=	52	"B->D3piks_noD*"
bmode	=	53	"B->D3pikspi0_noD*"

elisa manoni

D decay modes

=	110	"D0->kpi"
=	111	"D0->kpipi0"
=	112	"D0->k3pi"
=	113	"D0->kspipi"
=	130	"D*,D0->kpi"
=	131	"D*,D0->kpipi0"
=	132	"D*,D0->k3pi"
=	133	"D*,D0->kspipi"
=	120	"Dc->kspi"
=	121	"Dc->kpipi"
=	122	"Dc->kspipi0"
=	123	"Dc->kpipipi0"
=	124	"Dc->kspipipi"
=	140	"D*0->D0pi0,D0->kpi"
=	141	"D*0->D0pi0,D0->kpipi0"
=	142	"D*0->D0pi0,D0->k3pi"
=	143	"D*0->D0pi0,D0->kspipi"
=	150	"D*0->D0gamma,D0->kpi"
=	151	"D*0->D0gamma,D0->kpipi0"
=	152	"D*0->D0gamma,D0->k3pi"
=	153	"D*0->D0gamma,D0->kspipi"
		$\begin{array}{c} = 110 \\ = 111 \\ = 112 \\ = 113 \\ = 130 \\ = 131 \\ = 132 \\ = 132 \\ = 121 \\ = 122 \\ = 121 \\ = 122 \\ = 123 \\ = 124 \\ = 140 \\ = 141 \\ = 142 \\ = 143 \\ = 150 \\ = 151 \\ = 152 \\ = 153 \end{array}$

elisa manoni