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Atom Interferometry



Atom Interferometry for gravity measurement

Ingredients:

 A source of Cold Atoms (~ μ K or less)

(the sample must be slowly expanding and weakly interacting ) 

 A laser system to cool the sample and to manipulate

the wavepacket

Atom Interferometry can measure accelerations

We use Cold Atoms as free falling microscopic masses

Quantum features of matter allow to improve the sensitivity

(not just a time-of-flight measurement in the “classical way”)
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Atom / light Interferometry: the analogy

Once you have an atomic two level system

you can make the analogy with light looking 

at the Rabi’s population oscillations scheme 2
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Atom Interferometry: theory
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Two hyperfine states are coupled by two photon RAMAN Transition

using two couterpropagating beams

frequency difference must be equal to hyperfine states separation

Momentum recoil  and arms separation
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• We need to couple two long-lived states

• Why RAMAN: we need large momentum recoil (arms separation)
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Atom Interferometry: theory
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MAGIA
Misura Accurata di  G mediante InterferometriaAtomica



The big G issue

“The wide disagreement among recent measured values of G must cast some doubt on our

abilities in this crucial area of small-force measurement and in other areas where similar

techniques are used. This is an unsatisfactory situation” [*]

Macroscopic probe (detailed modelling)

Mechanical influences hard to control 

(gravity is weak!)

Two-centuries old concept

«Classical»» Instruments 

[*] Outcome of the Royal Society meeting ‘The Newtonian constant of gravitation, a constant too difficult to measure?’ (2014)
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G

SOURCE MASSES
Well-characterized tungsten cylinders

PROBE MASSES
Cold, freely falling 87Rb atoms 

MEASUREMENT METHOD
Raman atom interferometry (local acc.)
Spatial & temporal differential scheme

CALCULATION of gravitational attraction

MAGIA   - the procedure
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MAGIA   - the idea
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MAGIA - the experimental sequence
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LASER SYSTEMManipulate 87Rb atoms

MAGIA - the apparatus
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LASER SYSTEMManipulate 87Rb atoms

OPTICAL FIBERSTransport light
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LASER SYSTEMManipulate 87Rb atoms

OPTICAL FIBERSTransport light

VACUUM SYSTEMLong interaction times

MAGIA - the apparatus
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LASER SYSTEMManipulate 87Rb atoms

OPTICAL FIBERSTransport light

VACUUM SYSTEMLong interaction times

SOURCE MASSES*Gravitational field

MAGIA - the apparatus

*G. Lamporesi, A. Bertoldi, A. Cecchetti, B. Dulach, M. 

Fattori, A. Malengo,, S. Pettorruso, M. Prevedelli, G.M. 

Tino,  Source Masses and Positioning System for an Accurate 

Measurement of G, Rev. Scient. Instr. 78, 075109 (2007)
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The G measurement

Features:

 Source masses modulation

time: 30 mins

 Integration time:

more than 100 hours over 2 

weeks (July 2013)

 Sensitivity: 3x10-9 g/Hz1/2

 Final sensitivity: ~ 10-11 g

G = 6.67191(77)stat(62)sys× 10-11 m3 Kg-1 s-2
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Systematic

Error budget:

 Most of the entries are evaluated through MonteCarlo simulation of the experiment, evaluating

the derivative of Φ with respect to each parameters

 Final inaccuracy: 92 ppm

 Limiting parameters: atomic samples dimensions, source masses position (Radial), Coriolis

Effect
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Current status

6.67191(77)
stat

(62)
sys

× 10-11 m3 Kg-1 s-2
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Current status

6.67191(77)
stat

(62)
sys

× 10-11 m3 Kg-1 s-2

“Although the final uncertainty is not presently competitive,

determinations of G using atom interferometry could be more

competitive in the future.”

How to improve? Two ways:

- Improve the cold atoms technology using the same method

- Change the method maintaining the same technology
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Cancelling gravity gradients

 The tidal forces on the atoms in a uniform gravity field and gradient modify

the wavepacket trajectories. The gravimetric phase shift is

φ = keffgT2 + keffΓzz(z0 + v0T)T2

z0, v0 initial atomic position and velocity.

 The error on z0 and v0 is one of the major sources of noise and

systematics:

● For WEP tests at 10-15 level is required a control on z0 and v0 of 1 nm and

0,3 nm/s.

● In the AI determination of G[1] one of the major sources of systematic error

arises from the limited control on the thermal cloud degrees of freedom.

[1] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli & G. M. Tino, “Precision measurement of the Newtonian gravitational constant using

cold atoms”, Nature 510, 518-521 (2014).
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Cancelling gravity gradients

Readapting the effective wave vector keff of the π pulse it is possible to compensate

the effect of Γzz
[1]

Δkeff = (ΓzzT
2/2)keff

φ no longer depends on z0 and v0.

This procedure simulates the effect of a gravity gradient on the atomic trajectories. 

We implement it to measure gravity gradients, gravity curvature

[1] A. Roura, Phys. Rev. Lett. 118, 160401 (2017).
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For the three gravity gradiometers

(1-2, 2-3, 1-3) we measure the

linear dependence Φ(Δν) vs Δν

(Φ gradiometric phase)

We simultaneously interrogate three clouds with the Raman interferometer for two source 

masses configurations. During the π pulse the frequency of the Raman lasers is changed by 

Δν*.

Gravity gradient is traslated into a

frequency!*

Cancelling gravity gradients
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• Final results*:

Γ23 [10-6 s-2] Γ12 [10-6 s-2] Γ13 [10-6 s-2]

Far -3,32 ± 0,02 -3,48 ± 0,01 -3,40 ± 0,01

Close 0,497 ± 0,006 -4,87 ± 0,01 -2,193 ± 0,006

● Measurements also provide gravity gradient sign.

● As expected Γ13 = (Γ12 + Γ23)/2.

● Measured cloud distances and gravity curvature in close configuration:

d23 = (307,2 ± 0,3)mm  d12 = (308,6 ± 0,4)mm

ξclose = (Γ23 - Γ12)/d = (1,743 ± 0,004) x 10-5 m-1s-2

Far configuration Close configuration

*D’amico et al. PRL 2017

Cancelling gravity gradients
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A new experimental strategy for G*

F C

The value of the gravity constant can be

retrieved by measuring the corresponding

modulation of the gravity gradient and thus

of the zero crossing frequency Δν0 :

𝐺 ∝ ΔΓ ∝

The measurement is independent by the

atomic sample size and velocity

distribution if the gravity gradient produced

by the source mass is perfectly linear

*G. Rosi, Metrologia (2018)

- Advantages: “easy” to implement (same

technology of MAGIA, no need of ultra-cold

atomic samples)

- Disadvanges: need of a large source mass
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Another approach: the gravitational AB effect

𝜑 =
1

ℏ
ර𝑑𝑡ℒ𝑡𝑜𝑡

The idea: determine G by

probing the gravitational

potential produced by a

given source mass while

the force acting on the

wave-packets is zero*

Interferometer phase:

*Hohensee et al., PRL, 2012
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Another approach: the gravitational AB effect

𝐺 ∝ ϕ = ω𝑐
Δ𝑈𝑇

𝑐2

- Advantages: phase accumulates at Compton

frequency rate => light and small source masses

- Disadvanges: need of ultracold (1 nK or less) and

small (< 1 mm) atomic samples; technique not yet

experimentally demonstrated
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MEGANTE
MEasuring the Gravitational constant with Atom interferometry 

for Novel fundamental physics TEest



A unique apparatus for independent measurements of G towards the puzzle solution &

precision tests of gravity to unveil new physics scenarios

MEGANTE

G. Rosi MEGANTE at LNF



TASK 1 Target relative accuracy on G: < 10-5

Investigation of the gravitational force

A unique apparatus for independent measurements of G towards the puzzle solution &

precision tests of gravity to unveil new physics scenarios

MEGANTE
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TASK 1 Target relative accuracy on G: < 10-5

Investigation of the gravitational force

A unique apparatus for independent measurements of G towards the puzzle solution &

precision tests of gravity to unveil new physics scenarios

TASK 2
Target relative accuracy on G: ~10-5

Investigation of the gravitational potential

MEGANTE
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TASK 1 Target relative accuracy on G: < 10-5

Investigation of the gravitational force

A unique apparatus for independent measurements of G towards the puzzle solution &

precision tests of gravity to unveil new physics scenarios

TASK 3
Precision test of gravity searching for dark

energy signatures due to Chameleon

scalar fields

TASK 2
Target relative accuracy on G: ~10-5

Investigation of the gravitational potential

MEGANTE
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Statistics

T=0.22 s, d=0.23 , ΔΓ=5x10-6 s-2, keff = 1.6x107

5 μrad on phase for 10 ppm on G! (9 times better 

than MAGIA):

 More atoms (less shot noise)

 Larger keff

Stationary 

point with 

vertical 

coordinates

Focus on task 1

12 stacks of tungsten cylinders (diameter 

10 cm, height 0.6 m) => 4 tons of source 

masses to lift up!

Acceleration (10-6 m/s2)
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Statistics:
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Focus on task 2

The idea: determine G by probing the gravitational potential produced by a given source mass 

while the force acting on the wave-packets is zero (Gravitational Aharonov-Bohm effect1 ). 

MEGANTE experimental strategy:

State-of-art atom optics for wave packet 

manipulation2

+

Source mass design to allow

gradiometric configuration

1 Hohensee et al., PRL, 2012    2 Kovachy et al., Nature, 2015

Issue: Small potential from the source 

mass in a large gravitational field 

Solutions: 

 Gradiometer baseline fixed by splitting 

a single atomic sample

 Systematics from initial position 

fluctuation attenuated by the common 

local value of second derivative of the 

potential

Source mass grav. potential
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Atom optic laser

Atom optic laser
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Focus on task 2

z (m)

Phase (T=1s) 

ΔU

Φ =
𝑚𝑅𝑏2Δ𝑈𝑇

ℏ

Gradiometric phase

= ω𝑐

2Δ𝑈𝑇

𝑐2

Gravitational red 

shift!

Gradiometer displacement (m)

Relative shift on Φ (ppm)

2

4

High immunity from 

sample size and 

position!
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Newtonian ISL test

Several theories (involving extradimensions) predict deviations from the Newtonian law of

Gravitational according to the Yukawa formula

The quantity (GF/GAB-1) can be used as a null test to improve the current constrains in the 

0.01-1 m range! 
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- Λ sets the strength of the self-interaction/Dark energy 

scale;

- M determines the coupling between the chameleon and 

matter;

n=1 n=1

Low density High density

From Burrage C, Sakstein J. Tests of chameleon gravity. Living Reviews in Relativity. 2018

φC φC

Chameleon gravity
Chameleon is a hypothetical scalar particle recently postulated as a dark energy candidate. 

Its main characteristic consists to have a coupling mechanism which gives to the scalar field a value 

depending on the local density of matter:
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MEGANTE experimental 

strategy:

Source mass designed to 

modulate the Chameleon field φC:

𝐺𝑒𝑓𝑓 = 𝐺𝑁 1 + 2λ(Λ, φC)
𝑀𝑃

𝑀

2

• Opposite value of second 

derivative of the potential

• Larger systematic effects  

due to the cloud position 

jittering!

• Target relative accuracy on 

G: 100 ppm 

Source mass grav. potential
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Atom optic laser

Atom optic laser

Focus on task 3
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Expected results

 Complete exploration of M parameter for Λ~2.4 meV (<= cosmic acceleration)
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The Roadmap

Starting date: 1st of February 2019
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Location
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Conclusions

 Lab space (50 m2 for 7 m of 

maximum height)

 Building equipped with a crane

 Design of the vacuum system

 Design of the laser system

 Preliminary Monte Carlo simulation of 

the system

• Infrastructure design

• Source mass handling system design

(4-5 tons to be lifted for 4 m)

• Air conditioning of the room (0.1 °C)

Open points:

Need of the Engineering Support 

for Experimental Apparatus (SPAS)

of the LNF
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