2018 data release GERDA Phase II: search for 0vββ of ⁷⁶Ge

Istituto Nazionale di Fisica Nucleare

Riccardo Brugnera

Università degli Studi di Padova e INFN Padova on behalf of the GERDA Collaboration

The GERDA Collaboration

GERDA Phase II physics goals

reach background of 10⁻³ cts/(keV·kg·yr)
collect an exposure of 100 kg·yr
sensitivity: T^{0v}_{1/2} > 1.3·10²⁶ yr (90% CL)
discovery potential up to 10²⁶ yr (50% prob. chance for a 3σ signal)
<m > ≤ 0.09-0.15 eV

Phase II started at the end of 2015; past achievements:

- reached background index of **10**⁻³ **cts/(keV·kg·yr)**
- fully analyzed an exposure of 23.2 kg·yr
- sensitivity of $T_{1/2}^{0v} = 5.8 \cdot 10^{25} \text{ yr} (90\% \text{ CL})$
- no signal found: lower limit $T_{1/2}^{0v} > 8.0 \cdot 10^{25} \text{ yr} (90\% \text{ CL})$
- $< m_{ee} > \le 0.12 0.26 \text{ eV}$

Nature 544, 47 (2017) PRL 120, 132503 (2018)

GERDA

May 2018

GERDA physics goal

S. Dell'Oro, S. Marcocci, F. Vissani, PRD 90 (2014)

GERDA

Phase I: Eur. Phys. C 73 (2013) 2330 Phase II: Eur. Phys. C 78 (2018)

a) overview

veto instrumentation

Background reduction tools

Point-like (single-site) energy deposition inside one HP-Ge diode

Multi-site energy deposition inside HP-Ge diode (Compton scattering), or surface events

Anti-coincidence with the muon veto (MV)
Anti-coincidence between detectors (cuts multi-site) (AC)
Active veto using LAr scintillation (LAr Veto)
Pulse shape discrimination (PSD)

Status of Phase II data-taking

Ge detectors

- ◆ 30 enriched BEGe (20.0 kg)
- 7 enriched Coax (15.8 kg)
- 3 natural Coax (7.6 kg)

35.8 kg of enr detectors

3 diodes lost (burn-out JFET)

BEGe detector

May 2018

coaxial detector

R. Brugnera

Ge detectors: energy calibration

Procedure:

- ◆ weekly ²²⁸Th calibrations
- comparison with γ lines in physics data
- stability between calibration: every 20 s pulser injected into FE
- ZAC filter for E reconstruction
 [EPJC 75 (2015) 255]

Average shifts in the *E* scale between calibrations over time. Used to monitor instabilities for data selection

Average resolution versus time Used to monitor detector instabilities

Ge detectors: energy calibration

FWHM resolution curves from calibration: $@Q_{\beta\beta}$: FWHM(**BEGe**) = **3.0 ± 0.1** keV FWHM(**Coax**) = **3.6 ± 0.1** keV

R. Brugnera

GERDA

Phase II GERDA spectra

- Spectra after quality cuts, Muon Veto cut and AntiCoincidence cut
- Most prominent feature: ³⁹Ar β (< 500 keV), $2\nu\beta\beta$, ⁴²K and ⁴⁰K γ lines, α in the high energy part of the spectrum

R. Brugnera

GERDA

Background Model for Phase II data

- full GERDA experimental setup is reproduced in a GEANT4 framework
- bkg contaminations: 2νββ in the enriched detectors , ⁴²K in LAr, ⁴⁰K, ²³²Th, ²³⁸U decay chains, ⁶⁰Co in detector holders, cables, electronic components, LAr instrumentation ...
- PDFs built from the MC output and used later in the fits
- Runtime ON/OFF detectors and run livetimes are taken into account

GERDA

- Both anti-coincidence and coincidence spectra simultaneously taken into account
- Bayesian statistical analysis fits
- Known inventory screening used as priors

May 2018

Background Model

Background Model: Results

Very good agreement between model and screening measurements

GERDA

R. Brugnera

Background Model: Predictions

The background model confirms the **flatness of the background around the ROI** and in the analysis window as in Phase I

The expected spectrum is roughly composed in almost equal percentage of : events from α ,

- e^{-1} from ⁴²K and γ coming from ²¹²Bi + ²⁰⁸Tl and ²¹⁴Bi + ²¹⁴Pb as in Phase I
- ► Use the same **analysis window** as in Phase I
 - 1930 2190 keV excluding the interval 2104 ±5 keV and 2119 ±5 keV of known peaks

LAr Veto

read out all channels if Ge triggers → offline veto

all channels working gain stable with time

low noise \rightarrow veto cut ~0.5 p.e.

LAr Veto Acceptance

- acceptance stable in time
- first calculated through test pulses and then through random triggers
- ◆ acceptance value: (97.7 ± 0.1)%

LAr veto bkg suppression

- Tested with ²²⁸Th and ²²⁶Ra sources
- Suppression factor higher with ²²⁸Th (98(4)) than with ²²⁶Ra (5.7(2)) source due to more energy in LAr
 Combining with PSD & anticoincidence the overall supp. factors become: 345 (25) for ²²⁸Th 29 (3) for ²²⁶Ra

R. Brugnera

LAr veto background suppression

Event classification using the ratio: Current/Energy i.e. A/E variable

◆ Double escape peak (DEP) events from ²⁰⁸Tl used as proxy for SSE

◆ Full Energy peak (FEP) events from ²¹²Bi used as proxy for MSE

GERDA

- low cut of the A/E distribution to have 90% DEP survival probability
- then a high cut (at 4σ) on A/E distribution is placed in order to cut surface events

R. Brugnera

Event-by-event selection

Acceptance for $0\nu\beta\beta$ events: (87.6 ± 2.5)%

- estimated from ²⁰⁸Tl DEP
- double checked at low energy with $2\nu\beta\beta$ events (after LAr cut): $(85.4 \pm 1.9)\%$

R. Brugnera

GERDA

- PSD for Coax detectors less effective than for BEGes
- Artificial Neural Network (ANN) as in Phase I:
 - Trained on signal (SSE):
 ²⁰⁸Tl (2614 keV) DEP at 1592 keV

R. Brugnera

Background (MSE): ²¹²Bi @ 1620 keV
 γ-line

Current Pulses for SSE

- Acceptance for $0\nu\beta\beta$ events (84 ± 5)%
 - MC simulation of waveforms
 - Double check with $2\nu\beta\beta$ events

• New rejection method for α events based on their (fast) rise time

Events with rise time (10%-90% of the rising part the pulse) faster than 180-220 ns (depending on specific detector) are rejected as α events

R. Brugnera

GERDA

May 2018

Example of Energy stability of the RT method for a particular detector, using different event samples.

Time stability of the RT method for all the detectors

- **RT** Acceptance for $0\nu\beta\beta$ events $(85 \pm 1)\%$
 - estimated from $2\nu\beta\beta$ events
- Total acceptance (ANN and RT) for $0\nu\beta\beta$ events : $(71 \pm 4)\%$

Phase II GERDA spectra

LAr and PSD highly effective cuts
 background index at Q_{ββ} (before unblinding)
 BEGe: 0.6^{+0.4}_{-0.3} 10 ⁻³ counts/(keV·kg·yr)
 Coax: 0.7^{+0.5}_{-0.3} 10 ⁻³ counts/(keV·kg·yr)
 Coax: 0.7^{+0.5}_{-0.3} 10 ⁻³ counts/(keV·kg·yr)
 R. Brugnera
 GERDA
 May 2018
 34

Statistical Analysis

dataset	exposure [kg·yr]	FWHM [keV]	ε	BI [10 ⁻³ cts/(kevkgyr)]
PI golden	17.9	4.3 ± 0.1	0.57 ± 0.03	11±2
PI silver	1.3	4.3 ± 0.1	0.57 ± 0.03	30±10
PI BEGe	2.4	2.7 ± 0.2	0.66 ± 0.02	5 ⁺⁴ -3
PI extra	1.9	4.2 ± 0.2	0.58 ± 0.04	5 ⁺⁴ -3
PII coaxial-1	5.0	3.6 ± 0.1	0.52 ± 0.04	3.5+2.1
PII coaxial-2	23.1	$\textbf{3.6} \pm \textbf{0.1}$	0.48 ± 0.04	0.6 ^{+0.4} _{-0.3}
PII BEGe	30.8	$\textbf{3.0} \pm \textbf{0.1}$	0.60 ± 0.02	0.6 ^{+0.4} -0.3
Total exp.	82.4 kg			

Combined unbinned maximum likelihood fit (flat background + gaussian signal) of the 7 spectra:

- <u>Frequentist</u>: test statistics and method described in Nature 544, 47 (2017)
- <u>**Bayesian</u>**: flat prior on $1/T^{0v}_{1/2}$ between 0 and 10^{-24} yr⁻¹</u>
- Systematic uncertainties folded as pull terms or by Monte Carlo

Statistical Analysis

► Frequentist (preliminary results): Best fit N^{0v} = 0 $T^{0v}_{1/2} > 0.9 \cdot 10^{26}$ yr @ 90% C.L. Median Sensitivity (NO Signal) $T^{0v}_{1/2} > 1.1 \cdot 10^{26}$ yr @ 90% C.L. 63% of MC realizations yield limit stronger than data ► upper limit on $m_{\beta\beta} < 0.11 - 0.26$ eV

Bayesian (preliminary results): $T^{0v}_{1/2} > 0.7 \cdot 10^{26}$ yr @ 90% C.I. Median Sensitivity:

 $T_{1/2}^{0v}$ > 0.8·10²⁶ yr @ 90% C.I. 59% of MC realizations yield limit stronger than data

> Bayes factor: $P(H_1)/P(H_0) = 0.054$ where:

 H_1 :signal+background hypothesis

 H_0 : background-only hypothesis

• Start on 16th of April; End on 21st of May

Work done:

- **new enriched inverted coaxial detectors (9.5 kg**) in place of the natural coaxial detectors
- **repairs** of some broken JFET + some holders modification (from single to double configuration)
- installation of **protecting diodes** in the FE cards
- **new fiber curtain** with a factor 2 increase in light yield
- exchange of the HV and signal cables with cables having lower radioactivity budget

- In July a brief break to add two inverted coaxial detectors which have shown a too high LC
- plus other repairs

- Results from two prototypes of inverted coaxial detectors. The 5 in GERDA have similar performances
- Similar *E* resolution and PSD performances respect to BEGe detectors
- But of larger masses (~1.8 kg) than BEGe detectors (~ 0.7
 - kg) \rightarrow less electronics channels and less cables \rightarrow lower BI

Energy resolution

PSD (A/E) performances: survival fractions

(%)	Ge-14	Det-X	BEGe
²⁰⁸ Tl DEP	89.8	90.2	90.0
²¹² Bi FEP	9.6	8.4	11.5
$Q_{\beta\beta}$	32.7	35.6	37.8
208 Tl SEP	6.2	5.5	7.5
²⁰⁸ Tl FEP	8.6	8.0	7.7

inverted coaxial prototypes

R. Brugnera

GERDA

May 2018

- New fiber shroud with more fibers
- Better SiPMs modules
- higher light yield

new shroud in the lock

May 2

Conclusions

- ► GERDA has worked **smoothly** and with **high efficiency since** december 2015
- ➤We have collected ~ 59 kg·yr of really good data: i.e. more than 50% of Phase II exposure (100 kg·yr)
- ≻With the present data release we have obtained:
 - Limit on $T_{1/2}^{0v} > 0.9 \cdot 10^{26} \text{ yr} (90\% \text{ CL})$
 - ◆ Median Sensitivity: **1.1**·10²⁶ yr (*the best in the world!*)
 - BI(enr Coax): $0.6^{+0.4}_{-0.3} \cdot 10^{-3} \text{ cts/(keV} \cdot \text{kg} \cdot \text{yr})$ BI(enr BEGe): $0.6^{+0.4}_{-0.3} \cdot 10^{-3} \text{ cts/(keV} \cdot \text{kg} \cdot \text{yr})$
 - $m_{_{ee}} < 0.11 0.26 \text{ eV}$

- Lowest bkg (~10x) in ROI respect to experiments using other isotopes, only roughly a factor 3 higher than the LEGEND-200 BI goal
- Best median sensitivity respect to all other experiments
- ➢Upgrade of the apparatus to go even lower with the BI and test new type of Ge detectors
- ▶ promising future for a Ge experiment with 200 kg and beyond

GERDA

May 2018