

INFN

Istituto Nazionale di Fisica Nucleare

Continuous and Pulsed Quantum Control

Giovanni Gramegna
Joint work with: P. Facchi, S. Pascazio and D. Burgarth

INFORMATION GEOMETRY, QUANTUM MECHANICS AND APPLICATIONS

$$
26 \text { June } 2018 \text { POLICETA - SAN RUFO (SALERNO) }
$$

Outline

(1) Two techniques to control the evolution of a quantum system

- Strong Continuous Coupling
- Bang-bang evolution
(2) Comparing the two paradigms

Strong continuous coupling

\mathscr{H} finite dimensional Hilbert space.
H be the Hamiltonian of the system

Strong continuous coupling

\mathscr{H} finite dimensional Hilbert space.
H be the Hamiltonian of the system Continuous coupling:

$$
H_{K}=H+K V
$$

Evolution operator: $U_{K}(t)=e^{-i t(H+K V)}$

Control potential

$$
V=\sum_{\mu} \lambda_{\mu} P_{\mu}
$$

Strong continuous coupling

\mathscr{H} finite dimensional Hilbert space.
H be the Hamiltonian of the system Continuous coupling:

$$
H_{K}=H+K V
$$

Evolution operator: $U_{K}(t)=e^{-i t(H+K V)}$

Strong Continuous Coupling ($K \rightarrow \infty$)

Control potential

$$
V=\sum_{\mu} \lambda_{\mu} P_{\mu}
$$

Strong continuous coupling

\mathscr{H} finite dimensional Hilbert space.
H be the Hamiltonian of the system Continuous coupling:

$$
H_{K}=H+K V
$$

Evolution operator: $U_{K}(t)=e^{-i t(H+K V)}$

Strong Continuous Coupling ($K \rightarrow \infty$)

$$
U_{K}(t)=e^{-i K V t} e^{-i H_{Z} t}+O\left(\frac{1}{K}\right)
$$

Control potential

$$
V=\sum_{\mu} \lambda_{\mu} P_{\mu}
$$

Zeno Hamiltonian:

$$
H_{z}=\sum_{\mu} P_{\mu} H P_{\mu}
$$

Strong continuous coupling

\mathscr{H} finite dimensional Hilbert space.
H be the Hamiltonian of the system Continuous coupling:

$$
H_{K}=H+K V
$$

Evolution operator: $U_{K}(t)=e^{-i t(H+K V)}$

Strong Continuous Coupling ($K \rightarrow \infty$)

$$
U_{K}(t)=e^{-i K V t} e^{-i H_{z} t}+O\left(\frac{1}{K}\right)
$$

The total Hilbert space is partitioned into superselection sectors:

$$
\mathscr{H}=\bigoplus_{\mu} \mathscr{H}_{P_{\mu}}, \quad \mathscr{H}_{P_{\mu}}=P_{\mu} \mathscr{H}
$$

Control potential

$$
V=\sum_{\mu} \lambda_{\mu} P_{\mu}
$$

Zeno Hamiltonian:

$$
H_{z}=\sum_{\mu} P_{\mu} H P_{\mu}
$$

A brief detour: the Adiabatic Theorem

Time-dependent Schrödinger equation:

$$
\left\{\begin{array}{l}
i \frac{d \mathcal{U}}{d t}=\mathcal{H}(t) \mathcal{U}(t), \quad t \in[0, T] \\
\mathcal{U}(0)=\mathbb{I}
\end{array}\right.
$$

A brief detour: the Adiabatic Theorem

Time-dependent Schrödinger equation:

$$
\left\{\begin{array}{l}
i \frac{d \mathcal{U}}{d t}=\mathcal{H}(t) \mathcal{U}(t), \quad t \in[0, T] \\
\mathcal{U}(0)=\mathbb{I}
\end{array}\right.
$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

A brief detour: the Adiabatic Theorem

Time-dependent Schrödinger equation:

$$
\left\{\begin{array}{l}
i \frac{d \mathcal{U}}{d t}=\mathcal{H}(t) \mathcal{U}(t), \quad t \in[0, T] \\
\mathcal{U}(0)=\mathbb{I}
\end{array}\right.
$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Introducing the rescaled time $s=t / T \in[0,1]$:

A brief detour: the Adiabatic Theorem

Time-dependent Schrödinger equation:

$$
\left\{\begin{array}{l}
i \frac{d \mathcal{U}}{d t}=\mathcal{H}(t) \mathcal{U}(t), \quad t \in[0, T] \\
\mathcal{U}(0)=\mathbb{I}
\end{array}\right.
$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Introducing the rescaled time $s=t / T \in[0,1]$:

Rescaled Schrödinger equation

$$
i \frac{d U_{T}}{d s}=T H(s) U_{T}(s), \quad U_{T}(0)=1
$$

Where:

$$
\begin{aligned}
H(s) & \equiv \mathcal{H}(s T) \\
U_{T}(s) & \equiv \mathcal{U}(s T)
\end{aligned}
$$

A brief detour: the Adiabatic Theorem

Time-dependent Schrödinger equation:

$$
\left\{\begin{array}{l}
i \frac{d \mathcal{U}}{d t}=\mathcal{H}(t) \mathcal{U}(t), \quad t \in[0, T] \\
\mathcal{U}(0)=\mathbb{I}
\end{array}\right.
$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Where:

$$
\begin{aligned}
H(s) & \equiv \mathcal{H}(s T) \\
U_{T}(s) & \equiv \mathcal{U}(s T)
\end{aligned}
$$

Instantaneous eigenprojection:

$$
H(s) P(s)=\lambda(s) P(s)
$$

A brief detour: the Adiabatic Theorem

Time-dependent Schrödinger equation:

$$
\left\{\begin{array}{l}
i \frac{d \mathcal{U}}{d t}=\mathcal{H}(t) \mathcal{U}(t), \quad t \in[0, T] \\
\mathcal{U}(0)=\mathbb{I}
\end{array}\right.
$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Where:

$$
\begin{aligned}
H(s) & \equiv \mathcal{H}(s T) \\
U_{T}(s) & \equiv \mathcal{U}(s T)
\end{aligned}
$$

Instantaneous eigenprojection:

$$
H(s) P(s)=\lambda(s) P(s)
$$

Assumptions:

- $\lambda(s)$ continuous;
- $P(s) \in C^{2}([0,1])$

A brief detour: the Adiabatic Theorem

Time-dependent Schrödinger equation:

$$
\left\{\begin{array}{l}
i \frac{d \mathcal{U}}{d t}=\mathcal{H}(t) \mathcal{U}(t), \quad t \in[0, T] \\
\mathcal{U}(0)=\mathbb{I}
\end{array}\right.
$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Where:

$$
\begin{aligned}
H(s) & \equiv \mathcal{H}(s T) \\
U_{T}(s) & \equiv \mathcal{U}(s T)
\end{aligned}
$$

Adiabatic limit $(T \rightarrow \infty)$

$$
U_{T}(s) P(0)=e^{-i T \int_{0}^{s} \lambda(\sigma) \mathrm{d} \sigma} U(s) P(0)+O\left(\frac{1}{T}\right)
$$

Intertwining property: $P(s) U(s)=U(s) P(0)$

The strong coupling limit: a sketch of the proof

The evolution $U_{K}(t)$ generated by the continuous coupling satisfies the equation:

$$
i \frac{d U_{K}}{d t}=(H+K V) U_{K}(t)
$$

The strong coupling limit: a sketch of the proof

The evolution $U_{K}(t)$ generated by the continuous coupling satisfies the equation:

$$
i \frac{d U_{K}}{d t}=(H+K V) U_{K}(t)
$$

Going to the interaction picture: $U_{K}^{\prime}(t)=e^{i t H} U_{K}(t), \quad V^{\prime}(t)=e^{i t H} V e^{-i t H}$

$$
\begin{aligned}
& \text { Interaction Picture } \\
& \qquad i \frac{d U_{K}^{\prime}}{d t}=K V^{\prime}(t) U_{K}^{\prime}(t)
\end{aligned}
$$

The strong coupling limit: a sketch of the proof

The evolution $U_{K}(t)$ generated by the continuous coupling satisfies the equation:

$$
i \frac{d U_{K}}{d t}=(H+K V) U_{K}(t)
$$

Going to the interaction picture: $U_{K}^{\prime}(t)=e^{i t H} U_{K}(t), \quad V^{\prime}(t)=e^{i t H} V e^{-i t H}$
Interaction Picture

$$
i \frac{d U_{K}^{\prime}}{d t}=K V^{\prime}(t) U_{K}^{\prime}(t)
$$

$$
s \leftrightarrow t \quad T \leftrightarrow K \quad H(s) \leftrightarrow V^{\prime}(t) \quad P(s) \leftrightarrow P_{\mu}(t)
$$

The strong coupling limit: a sketch of the proof

The evolution $U_{K}(t)$ generated by the continuous coupling satisfies the equation:

$$
i \frac{d U_{K}}{d t}=(H+K V) U_{K}(t)
$$

Going to the interaction picture: $U_{K}^{\prime}(t)=e^{i t H} U_{K}(t), \quad V^{\prime}(t)=e^{i t H} V e^{-i t H}$

$$
\begin{aligned}
& \hline \text { Interaction Picture } \\
& \qquad \begin{array}{l}
i \frac{d U_{K}^{\prime}}{d t}=K V^{\prime}(t) U_{K}^{\prime}(t) \\
i \frac{d U_{T}}{d s}=T H(s) U_{T}(s) \\
\quad H(s) \leftrightarrow V^{\prime}(t) \quad P(s) \leftrightarrow P_{\mu}(t) \\
V^{\prime}(t)=\sum_{\mu} \lambda_{\mu} P_{\mu}(t) \\
\checkmark \lambda_{\mu} \text { constant } \\
\checkmark P_{\mu}(t)=e^{i t H} P_{\mu} e^{-i t H} \\
\text { analytic }
\end{array}
\end{aligned}
$$

The strong coupling limit: a sketch of the proof

The evolution $U_{K}(t)$ generated by the continuous coupling satisfies the equation:

$$
i \frac{d U_{K}}{d t}=(H+K V) U_{K}(t)
$$

Going to the interaction picture: $U_{K}^{\prime}(t)=e^{i t H} U_{K}(t), \quad V^{\prime}(t)=e^{i t H} V e^{-i t H}$

Interaction Picture

$$
i \frac{d U_{K}^{\prime}}{d t}=K V^{\prime}(t) U_{K}^{\prime}(t)
$$

$V^{\prime}(t)=\sum_{\mu} \lambda_{\mu} P_{\mu}(t)$
$\checkmark \lambda_{\mu}$ constant
$\checkmark P_{\mu}(t)=e^{i t H} P_{\mu} e^{-i t h}$ analytic

$$
i \frac{d U_{T}}{d s}=T H(s) U_{T}(s)
$$

$$
s \leftrightarrow t \quad T \leftrightarrow K \quad H(s) \leftrightarrow V^{\prime}(t) \quad P(s) \leftrightarrow P_{\mu}(t)
$$

Adiabatic limit in interaction picture $(K \rightarrow \infty)$

$$
U_{K}^{\prime}(t) P_{\mu}=e^{-i K \lambda_{\mu} t} U(t) P_{\mu}+O\left(\frac{1}{K}\right)
$$

Intertwining property: $P_{\mu}(t) U(t)=U(t) P_{\mu}$
Rescaled Schrödinger equation

The strong coupling limit: a sketch of the proof

The evolution $U_{K}(t)$ generated by the continuous coupling satisfies the equation:

$$
i \frac{d U_{K}}{d t}=(H+K V) U_{K}(t)
$$

Going to the interaction picture: $U_{K}^{\prime}(t)=e^{i t H} U_{K}(t), \quad V^{\prime}(t)=e^{i t H} V e^{-i t H}$

Interaction Picture

$$
i \frac{d U_{K}^{\prime}}{d t}=K V^{\prime}(t) U_{K}^{\prime}(t)
$$

Rescaled Schrödinger equation

$$
i \frac{d U_{T}}{d s}=T H(s) U_{T}(s)
$$

$$
s \leftrightarrow t \quad T \leftrightarrow K \quad H(s) \leftrightarrow V^{\prime}(t) \quad P(s) \leftrightarrow P_{\mu}(t)
$$

Adiabatic limit in interaction picture $(K \rightarrow \infty)$

$$
U_{K}^{\prime}(t) P_{\mu}=e^{-i K \lambda_{\mu} t} U(t) P_{\mu}+O\left(\frac{1}{K}\right)
$$

Intertwining property: $P_{\mu}(t) U(t)=U(t) P_{\mu}$
Going back to the Schrodinger picture we obtain the result

Example: four level system

Bang-Bang
control
Comparison

$$
H=\left(\begin{array}{cccc}
0 & \Omega_{12} & 0 & 0 \\
\Omega_{12} & 0 & \Omega_{23} & 0 \\
0 & \Omega_{23} & 0 & \Omega_{34} \\
0 & 0 & \Omega_{34} & 0
\end{array}\right)
$$

Example: four level system

$$
H=\left(\begin{array}{cccc}
0 & \Omega_{12} & 0 & 0 \\
\Omega_{12} & 0 & \Omega_{23} & 0 \\
0 & \Omega_{23} & 0 & \Omega_{34} \\
0 & 0 & \Omega_{34} & 0
\end{array}\right)
$$

$$
K V=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & K \\
0 & 0 & K & 0
\end{array}\right)
$$

V eigenspaces

$$
\begin{aligned}
& \mathscr{H}_{P_{1}}=\operatorname{Span}\{|1\rangle,|2\rangle\} \\
& \mathscr{H}_{P_{+}}=\operatorname{Span}\{|3\rangle+|4\rangle\} \\
& \mathscr{H}_{P_{-}}=\operatorname{Span}\{|3\rangle-|4\rangle\}
\end{aligned}
$$

Example: four level system

$$
H=\left(\begin{array}{cccc}
0 & \Omega_{12} & 0 & 0 \\
\Omega_{12} & 0 & \Omega_{23} & 0 \\
0 & \Omega_{23} & 0 & \Omega_{34} \\
0 & 0 & \Omega_{34} & 0
\end{array}\right)
$$

$$
K V=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & K \\
0 & 0 & K & 0
\end{array}\right)
$$

V eigenspaces

$$
\begin{aligned}
& \mathscr{H}_{P_{1}}=\operatorname{Span}\{|1\rangle,|2\rangle\} \\
& \mathscr{H}_{P_{+}}=\operatorname{Span}\{|3\rangle+|4\rangle\} \\
& \mathscr{H}_{P_{-}}=\operatorname{Span}\{|3\rangle-|4\rangle\}
\end{aligned}
$$

Example: four level system

$|3\rangle \xlongequal[\Omega_{34} \Omega]{ }|4\rangle-K$

Zeno subspaces

$$
\begin{aligned}
& \mathscr{H}_{P_{1}} \operatorname{Span}\{|1\rangle,|2\rangle\} \\
& \mathscr{H} P_{+}=\operatorname{Span}\{|3\rangle+|4\rangle\} \\
& \mathscr{H} P_{-}=\operatorname{Span}\{|3\rangle-|4\rangle\}
\end{aligned}
$$

Example: transition probabilities

- $K=0$

$$
H=\left(\begin{array}{llll}
0 & \Omega & 0 & 0 \\
\Omega & 0 & \Omega & 0 \\
0 & \Omega & 0 & \Omega \\
0 & 0 & \Omega & 0
\end{array}\right)
$$

Example: transition probabilities

$$
\left.P_{1 \rightarrow j}(t)=\left|\langle j| e^{-i(H+K V) t}\right| 1\right\rangle\left.\right|^{2}
$$

- $K=100 \Omega$

$$
H_{z}=\left(\begin{array}{cccc}
0 & \Omega & 0 & 0 \\
\Omega & 0 & 0 & 0 \\
0 & 0 & 0 & \Omega \\
0 & 0 & \Omega & 0
\end{array}\right)
$$

Dynamical decoupling

Pulsed evolution:

$$
\begin{aligned}
& \text { Kicking Unitary } \\
& U_{\text {kick }}=\sum_{\mu} e^{-i \lambda_{\mu}} P_{\mu}
\end{aligned}
$$

Dynamical decoupling

Pulsed evolution:

Kicking Unitary

$$
U_{\text {kick }}=\sum_{\mu} e^{-i \lambda_{\mu}} P_{\mu}
$$

Idea behind the method: suppose that $U_{\text {kick }}^{m}=\mathbb{I}$ for some $m \in \mathbb{N}$

Dynamical decoupling

Pulsed evolution:

Idea behind the method: suppose that $U_{\text {kick }}^{m}=\mathbb{I}$ for some $m \in \mathbb{N}$
Then, for $n=k m$:

$$
\begin{aligned}
U_{n}(t) & =\underbrace{\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right) \cdots\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)}_{n \text { times }} \\
& =U_{\text {kick }}^{n} U_{\text {kick }}^{\dagger n-1} e^{-i \frac{t}{n} H} U_{\text {kick }}^{n-1} \cdots U_{\text {kick }}^{\dagger} e^{-i \frac{t}{n} H} U_{\text {kick }} e^{-i \frac{t}{n} H} \\
& =e^{-i \frac{t}{n} H_{n-1}} \cdots e^{-i \frac{t}{n} H_{1}} e^{-i \frac{t}{n} H_{0}}
\end{aligned}
$$

Dynamical decoupling

Pulsed evolution:

Kicking Unitary

$$
U_{\text {kick }}=\sum_{\mu} e^{-i \lambda_{\mu}} P_{\mu}
$$

Idea behind the method: suppose that $U_{\text {kick }}^{m}=\mathbb{I}$ for some $m \in \mathbb{N}$
Then, for $n=k m$:

$$
\begin{aligned}
U_{n}(t) & =\underbrace{\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right) \cdots\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)}_{n \text { times }} \\
& =U_{\text {kick }}^{n} U_{\text {kick }}^{\dagger n-1} e^{-i \frac{t}{n} H} U_{\text {kick }}^{n-1} \cdots U_{\text {kick }}^{\dagger} e^{-i \frac{t}{n} H} U_{\text {kick }} e^{-i \frac{t}{n} H} \\
& =e^{-i \frac{t}{n} H_{n-1}} \cdots e^{-i \frac{t}{n} H_{1}} e^{-i \frac{t}{n} H_{0}}
\end{aligned}
$$

Dynamical decoupling

Pulsed evolution:

Kicking Unitary

$$
U_{\text {kick }}=\sum_{\mu} e^{-i \lambda_{\mu}} P_{\mu}
$$

Idea behind the method: suppose that $U_{\text {kick }}^{m}=\mathbb{I}$ for some $m \in \mathbb{N}$
Then, for $n=k m$:

$$
\begin{aligned}
U_{n}(t) & =\underbrace{\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right) \cdots\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)}_{n \text { times }} \\
& =U_{\text {kick }}^{n} U_{\text {kick }}^{\dagger n-1} e^{-i \frac{t}{n} H} U_{\text {kick }}^{n-1} \cdots U_{\text {kick }}^{\dagger} e^{-i \frac{t}{n} H} U_{\text {kick }} e^{-i \frac{t}{n} H} \\
& =e^{-i \frac{t}{n} H_{n-1}} \cdots e^{-i \frac{t}{n} H_{1}} e^{-i \frac{t}{n} H_{0}}
\end{aligned}
$$

$$
H_{\ell}=U_{\text {kick }}^{\dagger \ell} H U_{\text {kick }}^{\ell}
$$

An "effective" average is taking place:

$$
\bar{H}=\frac{1}{n} \sum_{\ell=0}^{n-1} H_{\ell}=\frac{1}{n} \sum_{\ell=0}^{n-1} U_{\text {kick }}^{\dagger \ell} H U_{\text {kick }}^{\ell}=\cdots=\sum_{\mu} P_{\mu} H P_{\mu}=H_{Z} \quad(n=k m)
$$

$\left[H_{Z}, U_{\text {kick }}\right]=0$, only the diagonal part survives the limit while the off-diagonal part
$H_{o d}=H-H_{Z}$ (satisfying $\left[H_{o d}, U_{\text {kick }}\right] \neq 0$) is averaged to zero.

Trotter product formula

A and B operators on some finite dimensional Hilbert space \mathscr{H}.

$$
[A, B] \neq 0 \Longrightarrow e^{A+B} \neq e^{A} e^{B}
$$

"Remedy":

Trotter product formula

$$
e^{A+B}=\lim _{n \rightarrow \infty}\left(e^{A / n} e^{B / n}\right)^{n}
$$

n large but finite:

$$
e^{A+B}=\left(e^{A / n} e^{B / n}\right)^{n}+O\left(\frac{1}{n}\right)
$$

This still works with the sum of a finite number of operators A_{1}, \ldots, A_{m} :

$$
e^{A_{1}+\cdots+A_{m}}=\left(e^{A_{1} / n} e^{A_{2} / n} \cdots e^{A_{m} / n}\right)^{n}+O\left(\frac{1}{n}\right)
$$

We cannot go further if we want to retain this rate of convergence.

Dynamical decoupling

Pulsed evolution:

Kicking Unitary

$$
U_{\text {kick }}=\sum_{\mu} e^{-i \lambda_{\mu}} P_{\mu}
$$

Idea behind the method: suppose that $U_{\text {kick }}^{m}=\mathbb{I}$ for some $m \in \mathbb{N}$
Then, for $n=k m$:

$$
\begin{aligned}
U_{n}(t) & =\underbrace{\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right) \cdots\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)}_{n \text { times }} \\
& =U_{\text {kick }}^{n} U_{\text {kick }}^{\dagger n-1} e^{-i \frac{t}{n} H} U_{\text {kick }}^{n-1} \cdots U_{\text {kick }}^{\dagger} e^{-i \frac{t}{n} H} U_{\text {kick }} e^{-i \frac{t}{n} H} \\
& =e^{-i \frac{t t_{n}}{n} H_{n-1} \cdots e^{-i \frac{t}{n} H_{1}} e^{-i \frac{t}{n} H_{0}}}
\end{aligned}
$$

$$
H_{\ell}=U_{\text {kick }}^{\dagger \ell} H U_{\text {kick }}^{\ell}
$$

An "effective" average is taking place:

$$
\bar{H}=\frac{1}{n} \sum_{\ell=0}^{n-1} H_{\ell}=\frac{1}{n} \sum_{\ell=0}^{n-1} U_{\text {kick }}^{\dagger \ell} H U_{\text {kick }}^{\ell}=\cdots=\sum_{\mu} P_{\mu} H P_{\mu}=H_{Z} \quad(n=k m)
$$

$\left[H_{Z}, U_{\text {kick }}\right]=0$, only the diagonal part survives the limit while the off-diagonal part
$H_{o d}=H-H_{Z}$ (satisfying $\left[H_{o d}, U_{\text {kick }}\right] \neq 0$) is averaged to zero.

Dynamical decoupling

For a finite number of operators $A_{1}, A_{2}, \ldots, A_{m}$:

Kicking Unitary

$$
\left(e^{A_{1} / n} e^{A_{2} / n} \cdots e^{A_{m} / n}\right)^{n}=e^{A_{1}+\cdots+A_{m}}+O\left(\frac{1}{n}\right)
$$

$$
U_{\text {kick }}=\sum_{\mu} e^{-i \lambda_{\mu}} P_{\mu}
$$

Idea behind the method: suppose that $U_{\text {kick }}^{m}=\mathbb{I}$ for some $m \in \mathbb{N}$
Then, for $n=k m$:

$$
\begin{aligned}
U_{n}(t) & =\underbrace{\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right) \cdots\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)}_{n \text { times }} \\
& =U_{\text {kick }}^{n} U_{\text {kick }}^{\dagger n-1} e^{-i \frac{t}{n} H} U_{\text {kick }}^{n-1} \cdots U_{\text {kick }}^{\dagger} e^{-i \frac{t}{n} H} U_{\text {kick }} e^{-i \frac{t}{n} H} \\
& =e^{-i \frac{t}{n} H_{n-1}} \cdots e^{-i \frac{t}{n} H_{1}} e^{-i \frac{t}{n} H_{0}}
\end{aligned}
$$

$$
H_{\ell}=U_{\text {kick }}^{\dagger \ell} H U_{\text {kick }}^{\ell}
$$

An "effective" average is taking place:

$$
\bar{H}=\frac{1}{n} \sum_{\ell=0}^{n-1} H_{\ell}=\frac{1}{n} \sum_{\ell=0}^{n-1} U_{\text {kick }}^{\dagger \ell} H U_{\text {kick }}^{\ell}=\cdots=\sum_{\mu} P_{\mu} H P_{\mu}=H_{Z} \quad(n=k m)
$$

[$\left.H_{Z}, U_{\text {kick }}\right]=0$, only the diagonal part survives the limit while the off-diagonal part $H_{o d}=H-H_{Z}$ (satisfying $\left[H_{o d}, U_{\text {kick }}\right] \neq 0$) is averaged to zero.

Dynamical decoupling

For a finite number of operators $A_{1}, A_{2}, \ldots, A_{m}$:

$$
\left(e^{A_{1} / n} e^{A_{2} / n} \cdots e^{A_{m} / n}\right)^{n}=e^{A_{1}+\cdots+A_{m}}+O\left(\frac{1}{n}\right)
$$

Kicking Unitary

$$
U_{\text {kick }}=\sum_{\mu} e^{-i \lambda_{\mu}} P_{\mu}
$$

Idea behind the method: suppose that $U_{\text {kick }}^{m}=\mathbb{I}$ for some $m \in \mathbb{N}$
Then, for $n=k m$:

$$
\begin{aligned}
U_{n}(t) & =[\underbrace{\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right) \cdots\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)}_{m \text { times }}]^{k} \\
& =\left[U_{\text {kick }}^{m} U_{\text {kick }}^{\dagger m-1} e^{-i \frac{t}{n} H} U_{\text {kick }}^{n-1} \cdots U_{\text {kick }}^{\dagger} e^{-i \frac{t}{n} H} U_{\text {kick }} e^{-i \frac{t}{n} H}\right]^{k} \\
& =\left[e^{-i \frac{t}{k m} H_{m-1}} \cdots e^{-i \frac{t}{k m} H_{1}} e^{-i \frac{t}{k m} H_{0}}\right]^{k}=e^{-i t \bar{H}}+O\left(\frac{1}{k}\right)
\end{aligned}
$$

$$
H_{\ell}=U_{\text {kick }}^{\dagger \ell} H U_{\text {kick }}^{\ell}
$$

An "effective" average is taking place:

$$
\bar{H}=\frac{1}{m} \sum_{\ell=0}^{m-1} H_{\ell}=\frac{1}{m} \sum_{\ell=0}^{m-1} U_{\text {kick }}^{\dagger \ell} H U_{\text {kick }}^{\ell}=\cdots=\sum_{\mu} P_{\mu} H P_{\mu}=H_{Z}
$$

[$\left.H_{Z}, U_{\text {kick }}\right]=0$, only the diagonal part survives the limit while the off-diagonal part $H_{o d}=H-H_{z}$ (satisfying $\left[H_{o d}, U_{\text {kick }}\right] \neq 0$) is averaged to zero.

Bang-bang control

Pulsed evolution:

Evolution operator:

$$
U_{n}(t)=\left(U_{\text {kick }} e^{-i \frac{t}{n} H}\right)^{n}
$$

Kicking Unitary

$$
U_{\text {kick }}=\sum_{\mu} e^{-i \lambda_{\mu}} P_{\mu}
$$

Very frequent kicks: $n \rightarrow \infty$

$$
\left(U_{\text {kick }} e^{-i H t / n}\right)^{n}-U_{\text {kick }}^{n} e^{-i H_{z} t}=O\left(\frac{1}{n}\right)
$$

$$
H_{z}=\sum_{\mu} P_{\mu} H P_{\mu}
$$

Example: bang-bang control

Continuous
Coupling Bang-Bang control

$$
\begin{aligned}
H & =\left(\begin{array}{cccc}
0 & \Omega_{12} & 0 & 0 \\
\Omega_{12} & 0 & \Omega_{23} & 0 \\
0 & \Omega_{23} & 0 & \Omega_{34} \\
0 & 0 & \Omega_{34} & 0
\end{array}\right) \\
U_{\text {kick }} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos (\lambda) & -i \sin (\lambda) \\
0 & 0 & -i \sin (\lambda) & \cos (\lambda)
\end{array}\right)
\end{aligned}
$$

Comparison

Continuous Coupling

$$
U_{K}(t)=e^{-i t(K V+H)}
$$

Both evolutions yield a dynamics generated by

$$
H_{z}=\sum_{\mu} P_{\mu} H P_{\mu}
$$

Thank you for your attention.

