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Deterministic Quantum Mechanics d la 't Hooft}

-Motivation: Holographic principle. problems with locality.

=Quantum Mechanics (QM) is not fundamental:

“the apparently quantum mechanical nature of our world is due to the
statistics of fluctuations that occur at the Planck scale, in terms of a regime

of completely deterministic dynamics.”

- Quantum states are derived concepts, with a not strictly locally
formulated definition. Their role is to make statistical predictions.

- The paradox of the holographic principle is then solved by assuming
than the set of the quantum states (~ Surface) is much smaller than
the set of all ontological states (~ Volume).

8G. ’t Hooft, Determinism and dissipation in quantum gravity, Erice lectures
(1999); Quantum gravity as a dissipative deterministic system , Class. Quant.
Grav. (1999);

The Cellular Automaton Interpretation of Quantum Mechanics, Springer (2016)



Q.: is this “hidden variables”? what about Bell’s inequalities?

A.1: most of the symmetries on which is based Bell’s theorem are
absent at the Planck scale.

A.2: the definition of equivalence classes is non-local.

A.3: superdeterminism.



Other motivations

- problems with quantum cosmology;
- non-renormalizability of quantum gravity;

- black holes and QM.

- wish for “reality” behind QM: necessity of removing “every single
bit of mysticism from quantum theory” (Copenhagen Interpretation).



Key idea: any deterministic, time-reversible system can be described
using a QM Hilbert space, where states obey a Schridinger equation,
and where the absolute squares of the coefficients of the wave

functions represent probabilities.

Example:

) = all) +8[2) +713)

Time evolution (discrete):

|w>t+1 =

S = O

0 1
0 0 |[¥)e=Utt+1)[)
1 0



The probabilities for being in a given state are:
P(1) =l P(2) =8 P(3) =/

In a basis in which U is diagonal one has:

0
U = exp(—iHdt); H= —2m/3
—47/3
Oy = %<|1>+\2>+\3>>
Ny = % (1) + e272)2) + e=2m/%)3) )
12)ur = % <|1> + e~ 2m/3)2) 4 62”/3\3))



This idea can be generalized and complicated spectra can be obtained:
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Ontological states and templates

Ontological states |A) are describing the state a deterministic system
is in. Such states form a basis for the Hilbert space: (A|B) = dap.

Hilbert space is generated by linear combinations (superpositions) of
such states. This defines general states, which are quantum states |1):

) =Y Aald), D PalP=1
A A

Quantum states can be used as templates for doing physics:

— A template is a quantum state of the above form describing a
situation in which the probability of finding the system to be in the
ontological state |A) is [Aa|?.
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Beables, Changeables and Superimposables

Three types of operators:

e Beables: operators characterizing ontological states, so they are
diagonal in the ontological basis:

Oop|A) = Opl|A). (beable)

e Changeables: operators that replace an ontological state by
another ontological states, so acting like permutation operators:

Oopl4) = |B). (changeable)

e Superimposables: operators that map ontological states onto
superpositions of ontological states

OoplA) = M|A) + \o|B) + ... (superimposables)
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Systems with continuous time

A quantum theory can be said to be deterministic if (in the

Heisenberg picture) a complete set of operators O;(t) (i =1,..,N)
exist, such that:

[0:(t),0,(")] =0, Vt,t'; i,j=1,.,N.
These operators are called “beables”.

= Classical systems of the form

szpi fi(q)

g = Aa, H} = filq),
dfi(q)
dq;

evolve deterministically even after quantization (the ¢; can be
regarded as beables).

pi = {pi,H}=pi

13



Information loss

However, the above Hamiltonian is not bounded from below.
Information loss is introduced in order to get a lower bound for H.
Example:

@ @_® ®

[¥) = all) + B12) +713) + 6]4)

Time evolution (not unitary!):

Ua(t +1,t) =

o O = O
o = O O

O O =
o O = O

The states |1) and |4) are equivalent, in the sense that they end up in
the same state after a finite time.
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Quantum states have to be identified with equivalence classes:

D ={0:14)} 2 ={2)} 13)={B)}

They represent the stable orbits of the deterministic system.
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Let p(q) be a (positive) function of the ¢; such that [p, H] = 0. We
can then perform the split:

H:HI_HII
H—i(+H)2 H —i( H)?
I_4pp ) 11—4pp .

H, and H|, are positively definite and
[H,,H,] = [p,H]=0.

To get the lower bound for the Hamiltonian we impose the constraint:

HII|'L/)> =0.

projecting out the states which provide the negative part of the
energy spectrum = one gets rid of the unstable trajectories and H,
acquires a discrete spectrum:

d )
HY) =B =pld) o) = i)
If there are stable orbits with period T'(p):
e HT )y = o) pT(p)=2rn, nez



Dissipation and Quantization



Dissipation and Quantization'

e Motivation: find specific models realizing 't Hooft idea;

- We consider a system of dissipative oscillators which has already
revealed to be a useful playground for the quantization of dissipative
systems™ ;

- Our analysis seems to support 't Hooft arguments;

- Novel features: geometric phase, thermodynamical interpretation.

*E.Celeghini, M.Rasetti and G.Vitiello, Ann. Phys. (1992)
M. Blasone, P. Jizba and G. Vitiello, Phys. Lett. A (2001)
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System of damped and amplified harmonic oscillatorst
mi+yr+rkr = 0,
my—yy+wy = 0.

with Lagrangian

L = may+ %(mg)—jﬁy) — kxy .

The canonical momenta are:

OL I oL o
e =~ — My — <y, = — =M -
b ot L Py ay 2
The Hamiltonian is
1 r
H = —p,py + — (ypy — xps) + mQ> xy,
m m

where

1 2
I'=~/2m; Q= E(K—L) , K>

fH. Bateman, Phys. Rev. (1931)
H. Feshbach and Y. Tikochinski, Trans. N.Y. Acad. Sci. (1977)
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In the rotated coordinates:
I T+ T2 ) y_l‘l—l‘z
V2 ’ V2

the Lagrangian becomes:

L = Lgi—Loa+ %(iﬁ@ — dox1)
k
Lo; = 5333 — 5333 , i=1,2.
The momenta are
_ ; Yoo _ . Y
pP1 = MmT+ <o Py = —MTg — —Tq
2 2
Hamiltonian
H = H,—H,
- 1 Y o Kk o Y s ko
= %(m 55102) + 571 %(pz + 5561) 572

Equations of motion:

ma1 + Yo + kxy =0 mao + y&1 + kxe =0

19



Hyperbolic polar coordinates:

x1 = rcoshu

ro = rsinhu
The Hamiltonian becomes:

H = 2QC —2T'J,

with
C = o [ =)+ w2 (a3 — a3)
T R
Jy = %[(ﬁclxg—@ml)—rr?} :%pu.

The algebraic structure of the Hamiltonian is that of su(1,1).

20



Let us perform the (nonlinear) canonical transformations:

—1 2P
pec e ]
~2 ~2
_ 1
p2 = J2 ) g2 = 2u — tanh™! {M#} )
2prPu

with p, = P25 and p, =

Pr
ZmQ rm€

We can then write our Hamiltonian in the 't Hooft form:

with fi(q) = 2Q and f2(q) = —2T.

One has {¢;,p;} = 1, and all the other Poisson brackets vanishing.
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Quantum numbers

Ladder operators:

1 1
A= —— —imQx i B=—— —imQx
Jara P 1 orn P2 2

The Hamiltonian is

H = hQ(ATA— B'B) +ihl'(ATB' — AB)

= 20(QC —TJy),
su(1,1) algebra:[J, J_| = =2Js, [J3,J+]| = +J+.
¢ = i(ATA—BTB)Z,
it Lot f
Jo = AB', J=AB, Jh=;(AA+B'B+1),

Denoting with {|na,ng)} the set of simultaneous eigenvectors of ATA and
BB and setting:

1 1
Jzi(nAinB)v mzi(nA+nB)a

22



we get

Cliym) = ljm),  Jalj.m) = (m+ )u m).,
with : [j|=0,3,1,3, ... and m=[j], ||+ 3,4 + 1, ....
We can then define: |, ,,) = exp (ng) l7,m),

Jo|Wjm) = ’(m+ >|‘I’am>
Cl¥jm) = 71¥m)

- Note that J> has a purely imaginary spectrum, although it appears
to be hermitian. This is due to the choice of the (non-unitary)
representation. = modify inner product. Define “bra” vector as:

<¢n,l(t)‘ = [T |¢n,l (t)>]1-

23



Split of H into two positively definite parts:

H = H -H,
H = — (200 —TJ,)>
1To20C 2
F2
Hy = QQC‘]2

We require 72 > 0 in order for C to be invertible (and positive).
Impose now the constraint on the physical states |¢)):

HII|'(/)>:O = J2W>=0,
Consequently,

1) = 1) = 20010) = (st + 572 ) 1.

where K = m?2.

H, thus reduces to the Hamiltonian for the linear (radial) harmonic
oscillator 7 + Q%r = 0.



The generic state [1))y can be written as
—
. i
o(O)n =7 |exp (5 [ 200t )| 100,
to
where 7' denotes time-ordering. We have:

ih%W(t))H = HpO)u

d
L), = 290000,
We can write
(O = (i [ A ) lwio),
Cy
where A(t) = L (i1z2 — d2a1) and [, r? = 0.

For eigenstates of H and H, we have

HW(T)Y(0) 1

=, wO)lesp (i | ) A)at') 160

25



The contour Cy, is the one going from ¢’ = 0 to ¢’ = 7 and back.

Sm(t)

Re(t)

The closed-time-path used for the calculation of the geometric phase.
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We show that

r d
/ A)d = -~ R?S U z} =R*Y =ar .
Cor h A R h

Physical states are periodical, thus

pe) = e io— ;. [“wnmwO)a] 1b0)

= exp (—i2mn) [1(0)),
ie.
h

which by using 7 = F and ¢ = am, gives

B} gy = (n(7) H a(7)) = 12 (n+ )

— ¢ =27mn , n=0,1,2,..

ET .p denotes the effective energy of the n-th energy level of the
physical system, namely the energy given by H; corrected by its

interaction with environment.

27



e The dissipation term .Jy of the Hamiltonian, which manifests as the
geometrical phase ¢ = am, is actually responsible for the n = 0 “zero
point energy”: & = h{)5.

e Setting o =1 gives I' = %
0.5

-0.5

Trajectories for ro = 0 and vg = €2, after three half-periods for k = 20,
v =12 and m = 5.

The ratio fOT/Z(meg — dox1)dt/E = w55 is preserved.



“Thermodynamics”
We have (using v = —I't):

dua

i () = i o))+ in e D

= i V(O

The dissipation contribution to the energy is thus described by the
“translations” in the u variable.

The “full Hamiltonian” H formally plays role of the free energy F3:

H=H — (hr)%_U TS =F

with U = H, =2QC, S=22 and T = Al
21" J, represents the heat contribution in H.

It is remarkable that the “temperature” Al' equals the zero point
energy: hl' = %

$E.Celeghini, M.Rasetti and G.Vitiello, Ann. Phys. (1992)
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Wave functions for the dual oscillator system*

Kernel:
<Xb§ tb|Xa§ ta> = <Xb‘U(tba ta) ‘Xa> :

time evolution operator fulfils Schrédinger equations

o X
ith—Ul(ty, t,) = HU(ty, t,),
Oty
.0 .
ith—Ul(tg,ty) = —U(ta,ts) H , tp > tq,
oty
the kernel satisfies the equations
s tolxasta) = B (<ihde,, %) (o tlxasta)
b
ihaitb{a;ta'x});tb) = 7TH (—ihaxb,xb)T* (xa;ta\xb;tb>
b

with the initial condition

lim (Xq;ta|Xp;ts) = 0(Xa — Xp) -
ty—ta

*M. Blasone and P. Jizba, Annals Phys. (2004) .
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If the Hamiltonian is time-independent:
7 o~
it ) = Gl (5 (0, 1)) ).
For quadratic systems, the kernel can be written as:

(xp; to|Xaita) = Flta, ty] exp <;Scl[x]> oty >t

The function F'[t,, ] is the so called fluctuation factor .

31



These two quantities can be completely expressed in terms of classical

solutions:

S[ bfx]

123
/ dt L,
t

a

= %[Xcl(tb)kcl (ty) — xci(ta)Xei(ta)] -

and, for the Van Vleck determinant:

=

7 028, m
F = — % | = — =
[ta, to] dets (27rh 3X33X5> 2rh V' D

Wronskian:

W(t) _ up 18 5] us 4

u a2 Uz 4

va(ts)

32



Actually the above formula is correct only for sufficiently short times
ty — ta.

In the general case F[t,,t,] will become infinite every time when the
classical (position space) orbit touches (or crosses) a caustic.

A more general expression is:
_im {
(Xp;tplxXasta) = e 2"t Flt,, tp] exp <h5’cl[x]>

Here n, ; is the Morse index of the classical path running from x, to
Xp.

The Morse index then counts how many times the classical orbit
crosses (or touches) the caustic.

33



Explicit form of the kernel:

_ m W _dm (dD , dD ,
PUapn \ae, T A

(ro, up; to|ra, a;ta) = iV D ex
X exp [z;in 1/ % TaTs cosh(Au — a):| .

with a(ta,tb) =T (ta — tb) + 3.

Use the formulas:

exp(iacosh(u)) = Z (-0 I(—ia)e™™,

l=—o0

1-b 1-0b

>

n=0

"T(n+l+1) 1—b

m 7’2 m 7”2
r=— VW2, y=—VW 2
RV plta) VTR plte)

where 72; 77 > 0 and

N2 L ) L G270 R {_bwy] Il (2@) _

34



The kernel can be finally rewritten as:

<Tba Ubj; tb‘rth Ua; ta> =

i nLh (ﬂ\/WTZ/p(t )) Ly, (ﬂx/WrZ/p(tb))
- > T(n+1+1)

X [b*(ta)b(tb ( \/7) 7"a7"b l l(ua—ub-!-a(tmtb))
- 5 3503 s )
ra

It satisfies the time-dependent Schrodinger eq.:

m\S

e
~
~
o
N
I—l
Q‘l\)
[\3
&

9 .
(ih 3% H(Tb,ub)> (T, up; ty|Ta, Uas ta) =0,  ty > ta,
b

where
& _ 1 A2 1 A2 212 2 N
H = = |br— ZDu+m Q77| —I'py
2m r2

. . -~ . -



Wave functions

From the above kernel we can extract the wave functions:

Vi o (s w)

x [0 L (VI ()

Cpu,t) = \/T ¥ i -
wn,z(r’%) - o T'(n+1+1) (\/;(t) )

x [0 O L (VI ()

wn,l (T7 u, t)

() \/W:| r2> ez(w—l“t—%) 7

36



Radial kernel
This is defined as

itp|rast -
<Tb7ub;tb|ra; Uqs ta> = Z <’rb b"ra a>n,l el(a(t) Au) .

T\/TaTb
n,l

It satisfies the time-dependent Schrodinger equation

L0 -
<zh— - Hl(rb)> (o3 to|ra; ta)ns =0, tp > ta,

Oty
N 282 h2 2 2,2

The radial wave function ), ;(r,t) = (r|¢ni(t)) reads

n! m 1/4 it
Yna(ryt) = F(n+'l+1) < o)V ! )
[0 L (VW ()
m [ipt) VW] ,
e (?h km* p(w}r )

37



For | = :I:% the above wave function reduces to the harmonic oscillator
ones (generalized Laguerre polynomials — Hermite polynomials).

1
1 1 m_ i)’
_ 4
P, %(7", t) 227\ I T (n + 2) ( Lup(t) W )

X [bO]" Y Han (\/% w )

<o (G 0w )

—

=
-

=
Il

1 1 W1 2
Yn,-4 22n n!F(nJr%)( hp(t) )

< ot ()
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Geometric phase and zero-point energy

The geometric phase is defined as:

ibBA  _  gidro—idayn
— wOe)en (i [ aweiglio)

We get:

l tfd p2 QQP
= (@n+ +1/ t( + )
Opa = CGnrldl) [odi s D A

— (2n+4+1+1)(rindy) — gn”c

where indy counts the number of revolutions around the origin:

R
lnd’}/—%”. vy oz °

Observe now that:

IO, 8) =, 3 (1 8) = VAT Uy (1, =T+ B/2,0).

and so

wilho(,r, T) =vmr ¢nf% (’I", U, T) |u:B/2—TF

39



By taking into account the periodicity of 1! (r,t) ( period
T =2m/Q),

A (Lho(8) Ly [ho(8)) dt = b (27m — $p.a) -

we get the quantized energy spectrum:

Biho _ 1y (g — $AB
" 2r )

In a simple case (stationary states) the geometric phase is given only
by the Morse index, which is equal to 2. Therefore:

Ehe — h) <n+ ;) .

40



An explicit example

uyq(t) = V2cos (Q2t) cosh (['t), wuig(t) = —V2cos (Qt) sinh (I't),
ug1 (t) = V2 cos (Qt) sinh (I't) , ugg(t) = —v/2cos (Q2t) cosh (I't)
v11(t) = V/2sin (Q2t) cosh (I't), v12(t) = —V2sin (Qt) sinh (T't) ,
vg1 (t) = V2sin (Qt) sinh (I't) , voo(t) = —V2sin (Qt) cosh (T't) .
‘Wronskian
V2 0 0 0
B 0 —VZ 0 0 o2
W= 0 V2r V290 =497,
—V2r 0 0 —V2Q

and D = 4sin? Q(t, — tq)
Classical action:
ms2

cl = m{(ri«kr%)cos [Q(ty — ta)] — 2rqrp cosh [up, — ug — T(ty, 7ta)]} s

S

Fluctuation factor:
m Q
Fltq,tp] = —— ———
2mh sin [Q(ty — ta)]

Wave function:

+1
OO IE JE . — (’"m) PR L (M0,2) i iR,
’ wl(n 4+ 14+ 1) h h

Radial wave function:

|
"b

Yl t) =

al(n 4+ 1+ 1)



Composite system*

Consider two Bateman’s oscillators, labeled by the index i = A, B:
muE; + Y& + ki =0,
m;l; — YiYi + kiyi =0,

where m; = (ma,mg), vi = (va,7v5) and k; = (ka, kp). conjugated
momenta are

oL, . 1

Pz; = o, = MmiYi — 5 YilYi
oL . 1

Dy, = o5 mT; + 5 Vi

Hamiltonian for ith oscillator:

H-:ip Dy + oo (yipy, — wips,) + R0 i TiYi
K3 ml TilYq 2mz WYyq 1T (] 4ml 14 *

*M. Blasone, P. Jizba, F. Scardigli and G. Vitiello, Phys. Lett. A (2009)

42



The algebraic structure for the total system Hyr = Ha + Hp is the
one of su(1,1) ® su(1,1). Indeed, from the dynamical variables pq;
and x,; one may construct the functions

J 1 miQi
PSR L1
14 2szz P1iP2i 2 17424
1
Jog = 5(1011'1522' + p2itii) ,
1 mQ
J3i = 0, (pl; +p3) + Z * (21 4 23)

where ; = ; —), and r; > % . Applying now the

canonical P01sson brackets {Zaispsj} = (5 5(5”vve obtain the Poisson’s
subalgebra

{J2i, J3i} = Jiw {JsisJiit = J2is {J1isJ2it = =3, {Jair I }iz; =0.

43



The quadratic Casimirs for the algebra are defined as
sz = J??i - J22i - J127

The C; explicitly read

1

Ci = g (o = p3)) + mPQ2 (e} — a3)].

In terms of Jo; and C; the Hamiltonians H; are given by
H; = 2(QC; —TiJs)

where T'; = 7, /2m,;.

44



Following 't Hooft, we now write the above Hamiltonians in the form
iy = iy — T
N 1 N 1 N

Hip = —(pi+H)?, Hi = b — H;)? .
e = (i HP (- 1)

Choosing p; = 2Qiéi, and taking éi > 0 (this can be done, because (fi
are constants of motion), the splitting reads

. (H; 4 29,C;)? 1 R -
Hy = - = —(20,C; — T3 J2)?,
* 80,C; QQQ(Z i)
. H; —20,C;)? 1 .
H;~ = ( - S _ 1273 .

Quantization emerges after the information loss condition is imposed
locally, i.e. separately on each of the Bateman oscillator:

J2il 1) phys =0,
which defines/selects the physical states and is equivalent to

Hi |¢)phys =0, i=AB.

45



This implies

Hi|7/1>phys - (ﬁz—k - ﬁi—)‘@ph@/s )

= Hi+|1/)>phys = 29iéi|1/)>phys’

and
. 1 2Js,
20Ci|Y) phys = [sz (prl —|—m292 2) m;i} 9) physs
o)
Dy, mi
= (2m QQ 2) |w>phys .

Thus we obtain, for each one of the systems A and B separately, a

genuine QM oscillator.

46



On the other hand, by writing the total Hamiltonian as
Hr = 2QC-2I'J,

= Q(QACA+QBCB) _Z(FAJQA""PBJQB).
with Ca, Cp >0 = C > 0.
(HT+2QC)2 1

_ _ o 2
He = 8QC = 30 XTI

 (Hr—-200?2 1, o,
A= 8QC B 2ch T

ﬁ*‘w>phys = j|w>phys =0.

This implies appearance of nonlinear terms:

L . . T4 -
Hr~H, ~20C,  Jop~—-2Joa,
I'p

2my  maty o 2 2mp 2 2

2 72 H2 22

. , 2.J. 1 X 2 1 R 2 T? J
HT:::<p7A— 24 +mAQir§‘>+(pB +mBQZB7"123>_me§f2A
B B

47



Other dissipative systems*

Consider equation for d.h.o.
&+ oyi 4+ Wl =0

and the canonical variables (expanding coordinate)

Q = x e?t , P = mQ = m(i+§x>€%t.

One gets
. 1 - m A
H., = — P? + —0?Q?
v 2m Ty @

which is a constant of motion providing the equation of motion

Q+ 02Q =0

*D. Schuch and M. Blasone, J.Phys.Conf.Ser. (2017)
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In terms of the physical variables x and p = mx, the Hamil-
tonian is

N m _
Herp = 5 [i® + yiz + w?2?] e’ = const. ,

Identifying, up to a constant, this Hamiltonian with the Bateman one,

HB = I:Iezp )

we get

o . m . . ~ . .
Heypp = Ee” [m2 + yix + wQaﬂ = Hp =p,2 + m% yi + mwizy .

49



For the particular choice ¢ = 0, leading to a = 3 and b= m7, one

obtains for p, and y

1 . 1
Py = %(i—k%x)e”t = §Pe%t and g)zixevt =

Q ezt

N =

Inserting this into Hp yields
. 1 2 .
HBpmpy+m(w2Py>xy Q
m 4

D=

N[22

(ypy - Ip.r) = 0.

Expressing D in terms of z, y, © and gy leads to

~ m . . m . ~
D= Jaldy —2y) + 572y, e, D=7T



Therefore, the constraint ¢ = 0 leading to D = 0 is equivalent to the
constraint Jo = 0. Consequently, H'exp is equivalent to H; of the split
Bateman Hamiltonian,

- 1

. N N 1
Hep = 5= P? + TO°Q? = Hi = —p + T

2m 2m

provided the following relations are fulfilled:

r:xe%tzQ , pT:m<x'+%x>e%t:]5.

That means the dissipative system can be described within the

canonical formalism but the price is a non — canonical transformation
between the physical variables (x,p) and the canonical ones

(Q = 7‘,]5 :pr)'

51



Caldirola-Kanai Lagrangian’

Caldirola and Kanai proposed the explicitly time-dependent
Lagrangian

Lox = [%xQ -V (x)} et

with the canonical momentum

9 .
p= 9 Low =mi et = pett
T
The Hamiltonian reads
N 1
Hoy = —e Mt p?2+ M 22
2 2

TP.Caldirola Nuo. Cim. (1941); E.Kanai Progr. Theor. Phys. (1948)
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The Hamiltonian Hey is explicitly time-dependent, not a constant of
motion and not equivalent to the energy of the dissipative system but
related to it via

Hey = Hox(t) = E .

C-K and expanding coordinates are connected via canonical
transformation:

Q = ezt , P = ﬁe*%t+m gi’e%t.
The explicitly time-dependent generating function Fy(&, P, t)
connecting the corresponding Hamiltonians via

N X o .

Hexp = HCK + §F2
is given by
F2(£7p,t) = 3P e?t — m%i‘Q ezt

turning the time-dependent Hamiltonian fICK into the constant of

motion Heyyp.
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"t Hooft Hamiltonian
Hyy , “be-ables”

C
A
N
0 i Caldeira-Leggett Hamiltonian Bateman Hamiltonian
T R H¢, = Hg + Hg + Hgg Hg = const.
c N>»1 l Jim N=1 I
A elimination of R constraints
L - -
L | E Caldirola-Kanai Hamiltonian | canonical |expanding coordinates
F N < > —~
F Hek(t) # const. Heyp = const.

Figure 1: Relations between different descriptions of dissipative systems
on the canonical level.



Discrete models



Particle on the circle and the quantum oscillator*

’t Hooft’s deterministic system for N = 7.

Deterministic system consisting of N states,

{(v)} ={(0),(1),...(N — 1)}, on a circle:

0 1
0 0
(0) = : (1) = : i (N=1) =
1 0
and (0) = (N).

*G. t Hooft, [hep-th/0104080]; [hep-th/0105105;

o

55



Discrete time evolution:

t—t+7 : (v)— (v+1 mod N)

- Finite dimensional representation Dy (T7) of the translation group.

On the basis spanned by the states (v), the evolution operator is
introduced as (h=1):

- The phase factor e *¥ is introduced by hand.
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This matrix satisfies the condition UYN = —1T and it can be
diagonalized as:

2]
[9)

SUS™ = ¢t

e—i%’f(N—n

The eigenstates of H are denoted by |n):
N-1
S 27Tn
)= e " "* k) ; n=01,.,N-1
k=0

and the spectrum is
1 27
Hln)y = wn+=)n), w=—.
n) = wnt ) In) -
- It seems to have the same spectrum as the harmonic oscillator.
However its eigenvalues have an upper bound implied by the finite N

value.
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The SU(2) description
Let us put

N=2+1, n=m+10l, m=-I,..1,

We introduce the notation |I,m) for the states |n) and the operators
L4 and Lgs:

1 1
m ll,m) = (L3+l+§) ‘l7m> = (1’L—|—§) |l,m).
and

L3 |l,m) = m|l,m),
Lyl,m) = Q2—n)n+1)]|l,m+1),
L_|l,m) = /@ —n+1)n]|l,m—1).

su(2) algebra (Ly = Ly +iLs):

[LiaLj] = iGijkLk 3 ivjvk = 17233'
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One can then introduce the analogues of position and momentum

operators:

T =al,, p=pBLy, oz_\/> 5214_1\/»7

satisfying the “deformed” commutation relations
P . . T
[#,p] = aBiL, = z(l— —H) .
T
The Hamiltonian is then rewritten as

1 1 7 [ W?
H = - 2 2, 2 — a2 I B H2 )
QU T T\ T
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e Continuum limit: [ — oo and 7 — 0 with w fixed.
= Hamitonian goes to the one of the harmonic oscillator;
= [Z,p] — 1 and the Weyl-Heisenberg algebra h(1) is obtained.

= the original state space (finite N') changes becoming infinite
dimensional.

e The above limiting procedure is nothing but a group contraction!.

Define o' = L, /v/2l, a=L_/v/2l and restore the |n) notation
(n =m +1) for the states:

Ty = <n+1>|n>
al |n) \/ \/nJr |n+1),
aln) = 20 — n+1f\n—1>

M. Blasone, E. Celeghini, P. Jizba and G. Vitiello, PLA (2003);
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The continuum limit is then the contraction I — oo (fixed w):

i (n+3) ).

al'ln) = Vn+1|n+1),

|
2
I

aln) = Valn—1),
and, by inspection,
[a,a'] [n) = |n)
{at,a} |n) = 2(n+1/2) |n).

We thus have [a,a'] =1 and H/w = 1{a,a} on the representation
{In)}-

- The Hilbert space, originally finite dimensional, becomes infinite
dimensional under the contraction limit. Then we are led to consider

an alternative model where the Hilbert space is not modified in the
continuum limit.
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@)

©

@

G}

t Hooft’s deterministic system for N = 7.
't Hooft system recovered with underlying continuous dynamics:
x(t) = cos(at)cos(ft)
y(t) = —cos(at)sin(pt)
- At the times t; = jm/a the trajectory touches the external circle
and thus 7/« is the frequency of the discrete ('t Hooft) system.
- At time t;, the angle of R(t;) with the positive x axis is given by:
0, =jm—pt; =j(1 - B/a)m.

- When §/a is a rational number ¢ = M /N, the system returns to the

origin after N steps. 62



A deterministic system based on SU(1,1)

Two particles moving along two circles in discrete equidistant
(synchronized) jumps. The ratio (circumference)/(length of the

elementary jump) is an irrational number = the particles never come

back to the original positions:
0= M= 2)s =By
0)p = V) =) =2 @)s--

t—t+71 3

©

(@

[

A

©

o (2,

)

e

(5)e

(0)

@

(@)

(@

Actual states (positions) can be represented by vectors with an

infinite number of components.

63



-The one-time-step evolution operator acts on (n), ® (m), and in
the representation space of the states it reads
U(T) = e—iH‘r _ e—iHAT ® e—iHBT
0 1 0o 0 ... 1
1 0 1
= 1 o @ 1 0
A ' ’ B

We work with finite dimensional matrices of dimension M and at the
end of the computations perform the limit M — oc.
Define ¢ = (1 — M)/M. The energy eigenvectors are:

M—-1 M—1
) = Y e ), 5 fny) = Y eT (),
=0

We have:

2w¢n

Uu(n)ln,) = ™ aln, ) s Uy (7)lng) = €™ 2 |ny)
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Defining (n, —n,)/2 =j and (n, +n,)/2 = m we may pass to the
|7, m) basis:

M—1
|j, m Z 67227‘—4 [m(k+1)+j(k— l)](k)A ® (l)B
1,k=0

Finally, in the M — oo limit we have:

H . H,+H,, . .
?|]7m>:%|]7m>:wm|3am>

(HA 7HB)

2L Jj,m) = wjlj,m).

We then set C = (H, — H,)/2w and Ly = £ + 1 and obtain the
SU(1,1) structure.

We can also define Ly as:

—i2n(N +N ) . i2m(N, +N )
) )

Ly xe L_xe
where N, and N, are the position operators on the circles:

NA(n)A = n(n)Av ) NB(k)B = k(k)B



Other SU(1,1) deterministic systems

- a single particle “jumping” on a 2D torus. If ¢; and @9 are angular
coordinates (longitude and latitude) on the 2D torus and o /cs is
irrational then the positions (states) never return back into the
original configuration at any finite time but instead they fill up all the
torus surface.

- the system of damped-amplified harmonic oscillators

1.5
o

0.5

-0.5

-1.5
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From SU(1,1) to h(1)

We have now

Lsln) = (n+k)n),
Liln) = +/(n+2k)(n+1)n+1),
L_|n) V(n+42k—1nln—1),

where, like in A(1), n > 0 is an integer and the highest weight & > 0 is

integer or half-integer. We set

Hjw=1Ls—k+1/2, o' =L,/V2k, a=L_/V2k.
The SU(1,1) contraction k — oo again recovers the quantum
oscillator, i.e. the h(1) algebra.

- The contraction k£ — oo does not modify L3 and its spectrum but
only the matrix elements of L.

- While in the SU(2) case the Hilbert space gets modified in the
contraction limit, in the SU(1, 1) case this does not happen.
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The zero point energy

- The SU(2) model considered above says nothing about the inclusion
of the phase factor.

- The SU(1,1) setting, with H = wL3, always implies a
non-vanishing phase, since k£ > 0. In particular, the fundamental
representation has k = 1/2 and thus

Lyn) = (n+1/2)/n),
L) = (ntDn+1),
L_|n) = nln—1).

We note that the rising and lowering operator matrix elements do not
carry the square roots, as on the contrary happens for h(1).

Then we introduce the following mapping in the universal enveloping
algebra of su(1,1):

1 1
a=—— I ; al=L, —
Ls+1/2 Ls+1/2

which gives us the wanted h(1) structure, with H = wLs.
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- no limit (contraction) is necessary!

- one-to-one (non-linear) mapping between the deterministic SU(1,1)
system and the quantum harmonic oscillator.

- Non-compact analog of the well-known Holstein-Primakoff
representation for SU(2) spin systems?.

- The 1/2 term in the L3 eigenvalues now is implied by the

representation.

- After a period T' = 27 /w, the evolution of the state presents a phase
7 that it is not of dynamical origin (e=*#7 £ 1): it is a geometric-like
phase related to the isomorphism between SO(2,1) and SU(1,1)/Z5
(ei2><27'rL3 — 1)

¥T. Holstein and H. Primakoff, Phys. Rev. (1940).
C. C. Gerry, J. Phys. A (1983).
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A schematic representation of the different quantization routes
explored.

T

\% / R

Lz\w )=0
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“Deterministic”

Electromagnetism



Gupta-Bleuler quantization of EM fieldf

Canonical quantization of the Maxwell field in the Lorenz gauge
requires the introduction of a gauge fixing term leading to the Fermi
Lagrangian density*

1. 1 2
;C - —ZF'LL FNV - ig (6“14#)
Equations of motions are
0A" —(1-¢)0,(0,4°) = 0

If we restrict to the case ( = 1 (Feynman gauge), Lagrangian and
equations of motion assume the simple form:

1 v
L= —50A0"A
A" = 0

*E.Fermi, (1932).
tS.Gupta, Proc. Roy. Soc. (1950); K.Bleuler, Helv.Phys.Acta (1950).



By introducing the conjugate momenta

L
T = GAn ~ 04

we obtain the Hamiltonian density

H = —%W#W“—F}akz‘lyakfl”
1< 1, -
= SO0 (A2 (VA — S [(A0) + (VA"
k=1

not positive definite!
Fourier expansion of the A* field:

3
D (e (k, Ne ™™ + aj e (k, N)e' ")

/W
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Quantization is achieved by imposing commutation relations for the
field operators A" and 7*:

[AM(x, 1), 7" (y,1)] = ig""6°(x —y)

Commutation relations for the ladder operators:
1 . 53 k/ o k
ax x| = —gan6( )

Wrong sign for scalar photons = negative norm states.

The Hamiltonian becomes

H = /d3kwk Z aL)\ak,,\ —aLOaho
A=1,3
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Lorenz gauge condition cannot be enforced at operatorial level, but
only on the (physical) states (Gupta-Bleuler condition):

+ _
MAP|®) = 0
or, equivalently,
Ek|¢’> = (ak)o —ak,3)|<I>> =0

which implies that physical states |®) should contain an equal
number of longitudinal and scalar photons:

(@]af, gax0|®) = (@|af, yax3|®)

In this way, negative norm states are eliminated and Hamiltonian is
positive definite:

@) = [dko Y m

A=1,2
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In the GB construction, the physical states can be generated from the
purely transverse states |®r) in the following way:

@) = Re|®r)
where
R. =1+ / dPke(k) L + / Prd*k e(k)e(K)LLLL + . ..

and the states |®7) are those which do not contain any longitudinal
or scalar photon:

ax,o|®Pr) = ax3|Pr) = 0
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Symbolic picture of the Hilbert space of photons. In the shaded
region, the Lorenz gauge condition is violated. States on the same
fibers (thin lines) are gauge equivalent:*

(@A, (2)|®) = (Dr|Au(z) + 0uA(2)|Pr) = (Pr|Au(2)[PT) + DA (2).

*W.Greiner and J.Reinhardt, Field Quantization, Springer (1996).
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't Hooft quantization for the EM field®

We define the following operators:

1 .
Jp = aljace, Jo=al,m, Js = 5 (aLlak,l *aLgak,Q)
(i, J-] =2J5, [Js,J4] = +Jy, [Js,J-] = —J-
and
K. = al .a K_=al a KZE(aTa —i—aTa)
+ = Uk 3Uk,0, - = Uk o0%,3> 3 = 9 k,0%k,0 k,3%k,3
Ky, K] = —2K3, [K3 K] =+Ky, [K3 K. |=-K_

We have su(2) algebra for the J operators and su(1,1) algebra for the
K operators.

Casimir operators:

1 1
Jo = 3 ( Llak,l + aLzak,z) ; Ky = 5 ( Loak,o - aLgak,S) .
§M.B., E.Celeghini, P.Jizba, F.Scardigli and G.Vitiello, arXiv:1801.06311

[quant-ph], to appear in the Proceedings of Symmetries in Science XVII.
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Thus the Hamiltonian can be written as
H = /dgkwk (JQ — Ko)

K is responsible for the Hamiltonian to be not bounded from below
= define the physical states as those for which

K0|1/}>phys =0

Such condition appears to be too restrictive, isolating only purely
tranverse states. Thus we impose

phys <w|K0|’L/)>Ph.U5 =0

which turns out to be equivalent to the Gupta—Bleuler condition.
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Explicit form of the physical states:

V) phys = H 17,101 @ |[ni2)2 @ Ja)
Kk

with |ay) a generic state (to be determined) for the longitudinal and
scalar photons.

We require:
(o (ach,oak’O - alﬁak,g) |a) = 0.

Furthermore, we restrict to states of the form |a) = |a)s ® |a)¢ where
|a)s and |ar)¢ denote (Glauber) coherent states for ag and ag:

akzla)s = agla)s

axola)o = akla)o
with the same ay, for any k.
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The coherent state generators are

Gs(a) = exp Z (oz,*C ak 3 — aLS)
Kk

la)s = G5 (@)[0)
ak,S(Oé) = G;l(a)akngg(a) = ak,3 — Ok

and

Gola) = expz (fozz axo + o aLO)
k

) = G ' (a)|0)
ak,o(a)Gal(a)ak,oGa = ak,0 — O -

The sign difference in the commutator for ag and a(]; has dictated the
choice of the sign in the definition of the Gy generator. We thus obtain

(a0 — ax3)la) =0

(al (afo —afs) =0,

which immediately extends to the physical states |¢)pnys-
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Let us now consider the explicit form of the coherent states |a)o and
|a)s. We obtain

1
lays = exp (—2/d3k|ak2> exp (/d kakak3) [0)3
1 3 2
la)o = exp B &’k |ag|* | exp d kakako [0)o

) = lahssla)y=ew ([ @har (s —al,) ) 0
= (1+/d3k:(ak)LlT(Jr/dSdek’WLLLL + > |0)

Thus a one-to-one correspondence exists between the coherent states
above defined and those used in the Gupta-Bleuler quantization.

We can therefore identify the physical states of the Gupta-Bleuler
condition with the ones defined by the 't Hooft condition.
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Things to do...

— Find the beables for this system in terms of field components: to
this end consider inversion formula for ladder operators

ak )y = igx /d3x e'(k,\) (Au(x) —ikau(x))

2wy (2m)3
where the polarization vectors satisfy the orthogonality relation:

e (k, Neu(k, N) = gan

— Construction of Hilbert space from above group structure
SU(2) ® SU(1,1).

— Emergence of gauge symmetry.
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Thermo—field dynamicsY

Thermal averages < vacuum expectation values
(4) = Z7H(B)Tr [ A] = (0(8)| Al0(8))
Needs to “double” the degrees of freedom:

0(8)) = 273(8) > e 55

n,n)

where |n,n) = |n) ® |n).

Thermal vacuum

1 -
|0(0)) = H cosh o exp [tanh QkaLaH |0)
k

Y. Takahashi and H.Umezawa, Collect. Phenom. (1975)
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Number of particles in [0(0))

1

_ i _en2pg
nk = <O(6)|akak‘0(9)> = sinh” Oy = efu — 1

gives the correct thermal average, i.e. the Bose—Einstein distribution.

“Thermal” Bogoliubov transformation:
ax(0) = ax cosh Oy — ELL sinh 0y
a(0) = ax cosh Oy — aL sinh Oy

where 0y = Hk(ﬁ)

Thermal state condition:

(aj(ak - aLak) 0(6)) = 0.
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Abstract. We propose the use of specific dynamical processes and more
in general of ideas from Physics to model the evolution in time of
musical structures. We apply this approach to two Etudes by F. Chopin,
namely Op.10 n.3 and Op.25 n.1, proposing some original descrip-
tion based on concepts of symmetry breaking/restoration and quantum
coherence, which could be useful for interpretation. In this analysis, we
take advantage of colored musical scores, obtained by implementing
Scriabin’s color code for sounds to musical notation.
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Cosmic Bell Test

Alice - OENB Source - 1Q0QI Bob - BOKU
m— - —— —

flo=telescope aichroic mirror 4 polanzing baam spiitter D single phaton detector (W] peKTP crystal | half-waveplate
N mirrer 1 [F-fiter ¥ electrs optical modulater @M polarization control L optical fiber L~ alactrical wire
Front View \ Top View
® i lne o ex%
. o \ X 8z,
b i
) = I

I3 Handsteine et al., Cosmic Bell Test: Measurement Settings From Milky
Way Stars, Phys. Rev. Lett. 118 060401 (2017)

87



Cosmic Bell Test

Run Side HIP ID az; alt, dy Loy, ly] 7 alus) Sexp p-value v

1 A 56127 199 37 604 £ 35 2.55 243 1.8 x 10712 73
B 105259A 25 24 1930 + 605 6.93

2 A 80620 171 34 577 £40 2.58 250 40x 10 119
B 2876 25 26 3624 + 1370 6.85
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