Dissipation and Quantization

Massimo Blasone
Università di Salerno and INFN, Salerno, Italy

- 't Hooft proposal for Deterministic Quantum Mechanics (with information loss) ${ }^{*}$;
- System of two dissipative oscillators ${ }^{\dagger}$;
- Electromagnetism: preliminary results. Gupta-Bleuler quantization vs 't Hooft quantization. ${ }^{\ddagger}$.

[^0]
Summary

1. Deterministic Quantum Mechanics à la 't Hooft
2. Dissipation and Quantization
3. Discrete models
4. "Deterministic" Electromagnetism

Deterministic Quantum
Mechanics à la 't Hooft

Fundamental Theories of Physics 185

Gerard 'tHooft

The Cellular Automaton

 Interpretation of Quantum Mechanics
Deterministic Quantum Mechanics à la 't Hoof'

-Motivation: Holographic principle. problems with locality.
\Rightarrow Quantum Mechanics (QM) is not fundamental:
" the apparently quantum mechanical nature of our world is due to the statistics of fluctuations that occur at the Planck scale, in terms of a regime of completely deterministic dynamics."

- Quantum states are derived concepts, with a not strictly locally formulated definition. Their role is to make statistical predictions.
- The paradox of the holographic principle is then solved by assuming than the set of the quantum states (\sim Surface) is much smaller than the set of all ontological states (\sim Volume).

[^1]Q.: is this "hidden variables"? what about Bell's inequalities?
A.1: most of the symmetries on which is based Bell's theorem are absent at the Planck scale.
A.2: the definition of equivalence classes is non-local.
A.3: superdeterminism.

Other motivations

- problems with quantum cosmology;
- non-renormalizability of quantum gravity;
- black holes and QM.
- wish for "reality" behind QM: necessity of removing "every single bit of mysticism from quantum theory" (Copenhagen Interpretation).

Key idea: any deterministic, time-reversible system can be described using a QM Hilbert space, where states obey a Schrödinger equation, and where the absolute squares of the coefficients of the wave functions represent probabilities.

Example:

$$
|\psi\rangle=\alpha|1\rangle+\beta|2\rangle+\gamma|3\rangle
$$

Time evolution (discrete):

$$
|\psi\rangle_{t+1}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)|\psi\rangle_{t}=U(t, t+1)|\psi\rangle_{t}
$$

The probabilities for being in a given state are:

$$
P(1)=|\alpha|^{2} ; \quad P(2)=|\beta|^{2} ; \quad P(3)=|\gamma|^{2}
$$

In a basis in which U is diagonal one has:

$$
\begin{gathered}
U=\exp (-i H \delta t) ; \quad H=\left(\begin{array}{lll}
0 & & \\
& -2 \pi / 3 & \\
& & -4 \pi / 3
\end{array}\right) \\
|0\rangle_{H}=\frac{1}{\sqrt{3}}(|1\rangle+|2\rangle+|3\rangle) \\
|1\rangle_{H}=\frac{1}{\sqrt{3}}\left(|1\rangle+e^{2 \pi i / 3}|2\rangle+e^{-2 \pi i / 3}|3\rangle\right) \\
|2\rangle_{H}=\frac{1}{\sqrt{3}}\left(|1\rangle+e^{-2 \pi i / 3}|2\rangle+e^{2 \pi i / 3}|3\rangle\right)
\end{gathered}
$$

This idea can be generalized and complicated spectra can be obtained:

=- =- =- = = = = =

Ontological states and templates

Ontological states $|A\rangle$ are describing the state a deterministic system is in. Such states form a basis for the Hilbert space: $\langle A \mid B\rangle=\delta_{A B}$.

Hilbert space is generated by linear combinations (superpositions) of such states. This defines general states, which are quantum states $|\psi\rangle$:

$$
|\psi\rangle=\sum_{A} \lambda_{A}|A\rangle, \quad \sum_{A}\left|\lambda_{A}\right|^{2}=1
$$

Quantum states can be used as templates for doing physics:

- A template is a quantum state of the above form describing a situation in which the probability of finding the system to be in the ontological state $|A\rangle$ is $\left|\lambda_{A}\right|^{2}$.

Beables, Changeables and Superimposables

Three types of operators:

- Beables: operators characterizing ontological states, so they are diagonal in the ontological basis:

$$
\mathcal{O}_{o p}|A\rangle=\mathcal{O}_{o p}|A\rangle . \quad \text { (beable) }
$$

- Changeables: operators that replace an ontological state by another ontological states, so acting like permutation operators:

$$
\mathcal{O}_{o p}|A\rangle=|B\rangle . \quad \text { (changeable) }
$$

- Superimposables: operators that map ontological states onto superpositions of ontological states

$$
\mathcal{O}_{o p}|A\rangle=\lambda_{1}|A\rangle+\lambda_{2}|B\rangle+\ldots \quad \text { (superimposables) }
$$

Systems with continuous time

A quantum theory can be said to be deterministic if (in the Heisenberg picture) a complete set of operators $O_{i}(t)(i=1, \ldots, N)$ exist, such that:

$$
\left[O_{i}(t), O_{j}\left(t^{\prime}\right)\right]=0, \quad \forall t, t^{\prime} ; \quad i, j=1, \ldots, N
$$

These operators are called "beables".
\Rightarrow Classical systems of the form

$$
\begin{gathered}
H=\sum_{i} p_{i} f_{i}(q) \\
\dot{q_{i}}=\left\{q_{i}, H\right\}=f_{i}(q), \\
\dot{p_{i}}=\left\{p_{i}, H\right\}=p_{i} \frac{\partial f_{i}(q)}{\partial q_{i}} .
\end{gathered}
$$

evolve deterministically even after quantization (the q_{i} can be regarded as beables).

Information loss

However, the above Hamiltonian is not bounded from below. Information loss is introduced in order to get a lower bound for H.

Example:

$$
|\psi\rangle=\alpha \mid 1)+\beta \mid 2)+\gamma \mid 3)+\delta \mid 4)
$$

Time evolution (not unitary!):

$$
U_{d}(t+1, t)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The states $\mid 1$) and $\mid 4$) are equivalent, in the sense that they end up in the same state after a finite time.

Quantum states have to be identified with equivalence classes:

$$
|1\rangle \equiv\{\mid 1), \mid 4)\}, \quad|2\rangle \equiv\{\mid 2)\}, \quad|3\rangle \equiv\{\mid 3)\}
$$

They represent the stable orbits of the deterministic system.

Let $\rho(q)$ be a (positive) function of the q_{i} such that $[\rho, H]=0$. We can then perform the split:

$$
\begin{aligned}
& H=H_{\mathrm{I}}-H_{\mathrm{II}} \\
& H_{\mathrm{I}}=\frac{1}{4 \rho}(\rho+H)^{2} \quad, \quad H_{\mathrm{II}}=\frac{1}{4 \rho}(\rho-H)^{2} .
\end{aligned}
$$

H_{I} and H_{II} are positively definite and

$$
\left[H_{\mathrm{I}}, H_{\mathrm{II}}\right]=[\rho, H]=0 .
$$

To get the lower bound for the Hamiltonian we impose the constraint:

$$
H_{\mathrm{II}}|\psi\rangle=0 .
$$

projecting out the states which provide the negative part of the energy spectrum \Rightarrow one gets rid of the unstable trajectories and H_{I} acquires a discrete spectrum:

$$
H|\psi\rangle=H_{\mathrm{I}}|\psi\rangle=\rho|\psi\rangle \quad ; \quad \frac{d}{d t}|\psi\rangle=-i H_{\mathrm{I}}|\psi\rangle
$$

If there are stable orbits with period $T(\rho)$:

$$
e^{-i H T}|\psi\rangle=|\psi\rangle \quad ; \quad \rho T(\rho)=2 \pi n, \quad n \in \mathbb{Z}
$$

Dissipation and Quantization

Dissipation and Quantization ${ }^{\dagger}$

- Motivation: find specific models realizing 't Hooft idea;
- We consider a system of dissipative oscillators which has already revealed to be a useful playground for the quantization of dissipative systems* ;
- Our analysis seems to support 't Hooft arguments;
- Novel features: geometric phase, thermodynamical interpretation.

[^2]System of damped and amplified harmonic oscillators ${ }^{\ddagger}$

$$
\begin{aligned}
m \ddot{x}+\gamma \dot{x}+\kappa x & =0 \\
m \ddot{y}-\gamma \dot{y}+\kappa y & =0
\end{aligned}
$$

with Lagrangian

$$
L=m \dot{x} \dot{y}+\frac{\gamma}{2}(x \dot{y}-\dot{x} y)-k x y
$$

The canonical momenta are:

$$
p_{x} \equiv \frac{\partial L}{\partial \dot{x}}=m \dot{y}-\frac{\gamma}{2} y, \quad p_{y} \equiv \frac{\partial L}{\partial \dot{y}}=m \dot{x}+\frac{\gamma}{2} x
$$

The Hamiltonian is

$$
H=\frac{1}{m} p_{x} p_{y}+\frac{\Gamma}{m}\left(y p_{y}-x p_{x}\right)+m \Omega^{2} x y,
$$

where

$$
\Gamma \equiv \gamma / 2 m ; \quad \Omega \equiv \sqrt{\frac{1}{m}\left(\kappa-\frac{\gamma^{2}}{4 m}\right)} \quad, \quad \kappa>\frac{\gamma^{2}}{4 m}
$$

[^3]In the rotated coordinates:

$$
x=\frac{x_{1}+x_{2}}{\sqrt{2}} \quad ; \quad y=\frac{x_{1}-x_{2}}{\sqrt{2}}
$$

the Lagrangian becomes:

$$
\begin{aligned}
L & =L_{0,1}-L_{0,2}+\frac{\gamma}{2}\left(\dot{x}_{1} x_{2}-\dot{x}_{2} x_{1}\right) \\
L_{0, i} & =\frac{m}{2} \dot{x}_{i}^{2}-\frac{k}{2} x_{i}^{2} \quad, \quad i=1,2 .
\end{aligned}
$$

The momenta are

$$
p_{1}=m \dot{x}_{1}+\frac{\gamma}{2} x_{2} ; \quad p_{2}=-m \dot{x}_{2}-\frac{\gamma}{2} x_{1}
$$

Hamiltonian

$$
\begin{aligned}
H & =H_{1}-H_{2} \\
& =\frac{1}{2 m}\left(p_{1}-\frac{\gamma}{2} x_{2}\right)^{2}+\frac{k}{2} x_{1}^{2}-\frac{1}{2 m}\left(p_{2}+\frac{\gamma}{2} x_{1}\right)^{2}-\frac{k}{2} x_{2}^{2} .
\end{aligned}
$$

Equations of motion:

$$
\begin{equation*}
m \ddot{x}_{1}+\gamma \dot{x}_{2}+k x_{1}=0 ; \quad m \ddot{x}_{2}+\gamma \dot{x}_{1}+k x_{2}=0 \tag{19}
\end{equation*}
$$

Hyperbolic polar coordinates:

$$
\begin{aligned}
& x_{1}=r \cosh u \\
& x_{2}=r \sinh u
\end{aligned}
$$

The Hamiltonian becomes:

$$
H=2 \Omega \mathcal{C}-2 \Gamma J_{2}
$$

with

$$
\begin{aligned}
\mathcal{C} & =\frac{1}{4 \Omega m}\left[\left(p_{1}^{2}-p_{2}^{2}\right)+m^{2} \Omega^{2}\left(x_{1}^{2}-x_{2}^{2}\right)\right] \\
& =\frac{1}{4 \Omega m}\left[p_{r}^{2}-\frac{1}{r^{2}} p_{u}^{2}+m^{2} \Omega^{2} r^{2}\right], \\
J_{2} & =\frac{m}{2}\left[\left(\dot{x}_{1} x_{2}-\dot{x}_{2} x_{1}\right)-\Gamma r^{2}\right]=\frac{1}{2} p_{u} .
\end{aligned}
$$

The algebraic structure of the Hamiltonian is that of $s u(1,1)$.

Let us perform the (nonlinear) canonical transformations:

$$
\begin{array}{ll}
p_{1}=\mathcal{C} & , \quad q_{1}=-\cot ^{-1}\left[\frac{2 \hat{p}_{r}}{\hat{p}_{r}^{2}-\hat{p}_{u}^{2}-1}\right], \\
p_{2}=J_{2} & , \quad q_{2}=2 u-\tanh ^{-1}\left[\frac{\hat{p}_{u}^{2}+\hat{p}_{r}^{2}+1}{2 \hat{p}_{r} \hat{p}_{u}}\right],
\end{array}
$$

with $\hat{p}_{u} \equiv \frac{p_{u}}{r^{2} m \Omega}$ and $\hat{p}_{r} \equiv \frac{p_{r}}{r m \Omega}$.
We can then write our Hamiltonian in the 't Hooft form:

$$
H=\sum_{i} p_{i} f_{i}(q)=2 \Omega \mathcal{C}-2 \Gamma J_{2}
$$

with $f_{1}(q)=2 \Omega$ and $f_{2}(q)=-2 \Gamma$.
One has $\left\{q_{i}, p_{i}\right\}=1$, and all the other Poisson brackets vanishing.

Quantum numbers

Ladder operators:

$$
A=\frac{1}{\sqrt{2 \hbar m \Omega}}\left[p_{1}-i m \Omega x_{1}\right] \quad ; \quad B=\frac{1}{\sqrt{2 \hbar m \Omega}}\left[p_{2}-i m \Omega x_{2}\right]
$$

The Hamiltonian is

$$
\begin{aligned}
H & =\hbar \Omega\left(A^{\dagger} A-B^{\dagger} B\right)+i \hbar \Gamma\left(A^{\dagger} B^{\dagger}-A B\right) \\
& =2 \hbar\left(\Omega \mathcal{C}-\Gamma J_{2}\right),
\end{aligned}
$$

$s u(1,1)$ algebra: $\left[J_{+}, J_{-}\right]=-2 J_{3}, \quad\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm}$.

$$
\begin{aligned}
& \mathcal{C}^{2}=\frac{1}{4}\left(A^{\dagger} A-B^{\dagger} B\right)^{2}, \\
& J_{+}=A^{\dagger} B^{\dagger}, \quad J_{-}=A B, \quad J_{3}=\frac{1}{2}\left(A^{\dagger} A+B^{\dagger} B+1\right),
\end{aligned}
$$

Denoting with $\left\{\left|n_{A}, n_{B}\right\rangle\right\}$ the set of simultaneous eigenvectors of $A^{\dagger} A$ and $B^{\dagger} B$ and setting:

$$
j=\frac{1}{2}\left(n_{A}-n_{B}\right), \quad m=\frac{1}{2}\left(n_{A}+n_{B}\right)
$$

we get

$$
\mathcal{C}|j, m\rangle=j|j, m\rangle, \quad J_{3}|j, m\rangle=\left(m+\frac{1}{2}\right)|j, m\rangle
$$

with : $|j|=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ and $m=|j|,|j|+\frac{1}{2},|j|+1, \ldots$
We can then define: $\left|\Psi_{j, m}\right\rangle \equiv \exp \left(\frac{\pi}{2} J_{1}\right)|j, m\rangle$,

$$
\begin{aligned}
J_{2}\left|\Psi_{j, m}\right\rangle & =i\left(m+\frac{1}{2}\right)\left|\Psi_{j, m}\right\rangle \\
\mathcal{C}\left|\Psi_{j, m}\right\rangle & =j\left|\Psi_{j, m}\right\rangle
\end{aligned}
$$

- Note that J_{2} has a purely imaginary spectrum, although it appears to be hermitian. This is due to the choice of the (non-unitary) representation. \Rightarrow modify inner product. Define "bra" vector as: $\left\langle\psi_{n, l}(t)\right| \equiv\left[\mathcal{T}\left|\psi_{n, l}(t)\right\rangle\right]^{\dagger}$.

Split of H into two positively definite parts:

$$
\begin{aligned}
H & =H_{\mathrm{I}}-H_{\mathrm{II}} \\
H_{\mathrm{I}} & =\frac{1}{2 \Omega \mathcal{C}}\left(2 \Omega \mathcal{C}-\Gamma J_{2}\right)^{2} \\
H_{\mathrm{II}} & =\frac{\Gamma^{2}}{2 \Omega \mathcal{C}} J_{2}^{2}
\end{aligned}
$$

We require $r^{2}>0$ in order for \mathcal{C} to be invertible (and positive).
Impose now the constraint on the physical states $|\psi\rangle$:

$$
H_{\mathrm{II}}|\psi\rangle=0 \quad \Rightarrow \quad J_{2}|\psi\rangle=0,
$$

Consequently,

$$
H|\psi\rangle=H_{\mathrm{I}}|\psi\rangle=2 \Omega \mathcal{C}|\psi\rangle=\left(\frac{1}{2 m} p_{r}^{2}+\frac{K}{2} r^{2}\right)|\psi\rangle,
$$

where $K \equiv m \Omega^{2}$.
H_{I} thus reduces to the Hamiltonian for the linear (radial) harmonic oscillator $\ddot{r}+\Omega^{2} r=0$.

The generic state $|\psi\rangle_{H}$ can be written as

$$
|\psi(t)\rangle_{H}=\hat{T}\left[\exp \left(\frac{i}{\hbar} \int_{t_{0}}^{t} 2 \Gamma J_{2} d t^{\prime}\right)\right]|\psi(t)\rangle_{H_{\mathrm{I}}}
$$

where \hat{T} denotes time-ordering. We have:

$$
\begin{aligned}
i \hbar \frac{d}{d t}|\psi(t)\rangle_{H} & =H|\psi(t)\rangle_{H} \\
i \hbar \frac{d}{d t}|\psi(t)\rangle_{H_{\mathrm{I}}} & =2 \Omega \mathcal{C}|\psi(t)\rangle_{H_{\mathrm{I}}}
\end{aligned}
$$

We can write

$$
|\psi(t)\rangle_{H}=\exp \left(i \int_{C_{t}} A\left(t^{\prime}\right) d t^{\prime}\right)|\psi(t)\rangle_{H_{\mathrm{I}}},
$$

where $A(t) \equiv \frac{\Gamma m}{\hbar}\left(\dot{x}_{1} x_{2}-\dot{x}_{2} x_{1}\right)$ and $\int_{C_{t}} r^{2}=0$.
For eigenstates of H and H_{I} we have

$$
\begin{aligned}
& H\langle\psi(\tau) \mid \psi(0)\rangle_{H} \\
= & H_{\mathrm{I}}\langle\psi(0)| \exp \left(i \int_{C_{0 \tau}} A\left(t^{\prime}\right) d t^{\prime}\right)|\psi(0)\rangle_{H_{\mathrm{I}}} \\
\equiv & e^{i \phi},
\end{aligned}
$$

The contour $C_{0 \tau}$ is the one going from $t^{\prime}=0$ to $t^{\prime}=\tau$ and back.

The closed-time-path used for the calculation of the geometric phase.

We show that

$$
\int_{C_{0 \tau}} A\left(t^{\prime}\right) d t^{\prime}=-\frac{\Gamma m}{\hbar} R^{2} \Im\left[\int_{\Delta} \frac{d z}{z}\right]=\pi R^{2} \frac{\gamma}{\hbar} \equiv \alpha \pi .
$$

Physical states are periodical, thus

$$
\begin{aligned}
|\psi(\tau)\rangle & =\exp \left[i \phi-\frac{i}{\hbar} \int_{0}^{\tau}\langle\psi(t)| H|\psi(t)\rangle d t\right]|\psi(0)\rangle \\
& =\exp (-i 2 \pi n)|\psi(0)\rangle
\end{aligned}
$$

i.e.

$$
\frac{\langle\psi(\tau)| H|\psi(\tau)\rangle}{\hbar} \tau-\phi=2 \pi n \quad, \quad n=0,1,2, \ldots
$$

which by using $\tau=\frac{2 \pi}{\Omega}$ and $\phi=\alpha \pi$, gives

$$
E_{I, e f f}^{n}=\left\langle\psi_{n}(\tau)\right| H\left|\psi_{n}(\tau)\right\rangle=\hbar \Omega\left(n+\frac{\alpha}{2}\right)
$$

$E_{I, e f f}^{n}$ denotes the effective energy of the n-th energy level of the physical system, namely the energy given by H_{I} corrected by its interaction with environment.

- The dissipation term J_{2} of the Hamiltonian, which manifests as the geometrical phase $\phi=\alpha \pi$, is actually responsible for the $n=0$ "zero point energy": $\mathcal{E}_{0}=\hbar \Omega \frac{\alpha}{2}$.
- $\operatorname{Setting} \alpha=1$ gives $\Gamma=\frac{\Omega}{2}$.

Trajectories for $r_{0}=0$ and $v_{0}=\Omega$, after three half-periods for $\kappa=20$, $\gamma=1.2$ and $m=5$.

The ratio $\int_{0}^{\tau / 2}\left(\dot{x}_{1} x_{2}-\dot{x}_{2} x_{1}\right) d t / \mathcal{E}=\pi \frac{\Gamma}{m \Omega^{3}}$ is preserved.

"Thermodynamics"

We have (using $u=-\Gamma t$):

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle_{H}=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle_{H}+i \hbar \frac{d u}{d t} \frac{\partial}{\partial u}|\psi(t)\rangle_{H},
$$

The dissipation contribution to the energy is thus described by the "translations" in the u variable.

The "full Hamiltonian" H formally plays role of the free energy \mathcal{F}^{\S} :

$$
H=H_{\mathrm{I}}-(\hbar \Gamma) \frac{2 J_{2}}{\hbar} \equiv U-T S=\mathcal{F}
$$

with $U \equiv H_{\mathrm{I}}=2 \Omega \mathcal{C}, \quad S \equiv \frac{2 J_{2}}{\hbar}$ and $T=\hbar \Gamma$.
$2 \Gamma J_{2}$ represents the heat contribution in H.
It is remarkable that the "temperature" $\hbar \Gamma$ equals the zero point energy: $\hbar \Gamma=\frac{\hbar \Omega}{2}$.

[^4]
Wave functions for the dual oscillator system*

Kernel:

$$
\left\langle\mathbf{x}_{b} ; t_{b} \mid \mathbf{x}_{a} ; t_{a}\right\rangle \equiv\left\langle\mathbf{x}_{b}\right| U\left(t_{b}, t_{a}\right)\left|\mathbf{x}_{a}\right\rangle
$$

time evolution operator fulfils Schrödinger equations

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t_{b}} U\left(t_{b}, t_{a}\right) & =\hat{H} U\left(t_{b}, t_{a}\right) \\
i \hbar \frac{\partial}{\partial t_{b}} U\left(t_{a}, t_{b}\right) & =-U\left(t_{a}, t_{b}\right) \hat{H} \quad, \quad t_{b}>t_{a}
\end{aligned}
$$

the kernel satisfies the equations

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t_{b}}\left\langle\mathbf{x}_{b} ; t_{b} \mid \mathbf{x}_{a} ; t_{a}\right\rangle & =\hat{H}\left(-i \hbar \partial_{\mathbf{x}_{b}}, \mathbf{x}_{b}\right)\left\langle\mathbf{x}_{b} ; t_{b} \mid \mathbf{x}_{a} ; t_{a}\right\rangle \\
i \hbar \frac{\partial}{\partial t_{b}}\left\langle\mathbf{x}_{a} ; t_{a} \mid \mathbf{x}_{b} ; t_{b}\right\rangle & =-\mathcal{T} \hat{H}\left(-i \hbar \partial_{\mathbf{x}_{b}}, \mathbf{x}_{b}\right) \mathcal{T}^{-1}\left\langle\mathbf{x}_{a} ; t_{a} \mid \mathbf{x}_{b} ; t_{b}\right\rangle
\end{aligned}
$$

with the initial condition

$$
\lim _{t_{b} \rightarrow t_{a}}\left\langle\mathbf{x}_{a} ; t_{a} \mid \mathbf{x}_{b} ; t_{b}\right\rangle=\delta\left(\mathbf{x}_{a}-\mathbf{x}_{b}\right)
$$

[^5]If the Hamiltonian is time-independent:

$$
\left\langle\mathbf{x}_{b} ; t_{b} \mid \mathbf{x}_{a} ; t_{a}\right\rangle=\left\langle\mathbf{x}_{b}\right| \exp \left(-\frac{i}{\hbar} \hat{H}\left(t_{b}-t_{a}\right)\right)\left|\mathbf{x}_{a}\right\rangle .
$$

For quadratic systems, the kernel can be written as:

$$
\left\langle\mathbf{x}_{b} ; t_{b} \mid \mathbf{x}_{a} ; t_{a}\right\rangle=F\left[t_{a}, t_{b}\right] \exp \left(\frac{i}{\hbar} S_{c l}[\mathbf{x}]\right), \quad t_{b}>t_{a}
$$

The function $F\left[t_{a}, t_{b}\right]$ is the so called fluctuation factor .

These two quantities can be completely expressed in terms of classical solutions:

$$
\begin{aligned}
S[b f x] & =\int_{t_{a}}^{t_{b}} d t L \\
& =\frac{m}{2}\left[\mathbf{x}_{c l}\left(t_{b}\right) \dot{\mathbf{x}}_{c l}\left(t_{b}\right)-\mathbf{x}_{c l}\left(t_{a}\right) \dot{\mathbf{x}}_{c l}\left(t_{a}\right)\right]
\end{aligned}
$$

and, for the Van Vleck determinant:

$$
F\left[t_{a}, t_{b}\right]=\sqrt{\operatorname{det}_{2}\left(\frac{i}{2 \pi \hbar} \frac{\partial^{2} S_{c l}}{\partial \mathbf{x}_{a}^{\alpha} \partial \mathbf{x}_{b}^{\beta}}\right)}=\frac{m}{2 \pi \hbar} \sqrt{\frac{W}{D}}
$$

Wronskian:
$W(t)=\left|\begin{array}{cccc}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4} \\ \dot{\mathbf{u}}_{1} & \dot{\mathbf{u}}_{2} & \dot{\mathbf{u}}_{3} & \dot{\mathbf{u}}_{4}\end{array}\right|, \quad D=\left|\begin{array}{llll}\mathbf{u}_{1}\left(t_{a}\right) & \mathbf{u}_{2}\left(t_{a}\right) & 0 & 0 \\ \mathbf{u}_{2}\left(t_{b}\right) & \mathbf{u}_{2}\left(t_{b}\right) & \mathbf{v}_{1}\left(t_{b}\right) & \mathbf{v}_{2}\left(t_{b}\right)\end{array}\right|$

Actually the above formula is correct only for sufficiently short times $t_{b}-t_{a}$.

In the general case $F\left[t_{a}, t_{b}\right]$ will become infinite every time when the classical (position space) orbit touches (or crosses) a caustic.

A more general expression is:

$$
\left\langle\mathbf{x}_{b} ; t_{b} \mid \mathbf{x}_{a} ; t_{a}\right\rangle=e^{-i \frac{\pi}{2} n_{a, b}} F\left[t_{a}, t_{b}\right] \exp \left(\frac{i}{\hbar} S_{c l}[\mathbf{x}]\right)
$$

Here $n_{a, b}$ is the Morse index of the classical path running from \mathbf{x}_{a} to x_{b}.

The Morse index then counts how many times the classical orbit crosses (or touches) the caustic.

Explicit form of the kernel:

$$
\begin{aligned}
\left\langle r_{b}, u_{b} ; t_{b} \mid r_{a}, u_{a} ; t_{a}\right\rangle & =\frac{m}{2 \pi \hbar} \sqrt{\frac{W}{D}} \exp \left[-\frac{i m}{4 D \hbar}\left(\frac{d D}{d t_{a}} r_{a}^{2}-\frac{d D}{d t_{b}} r_{b}^{2}\right)\right] \\
& \times \exp \left[\frac{i m}{\hbar} \sqrt{\frac{W}{D}} r_{a} r_{b} \cosh (\Delta u-\alpha)\right]
\end{aligned}
$$

with $\alpha\left(t_{a}, t_{b}\right)=\Gamma\left(t_{a}-t_{b}\right)+\beta$.
Use the formulas:

$$
\begin{gathered}
\exp (i a \cosh (u))=\sum_{l=-\infty}^{\infty}(-1)^{l} I_{l}(-i a) e^{-l u} \\
\sum_{n=0}^{\infty} n!\frac{L_{n}^{l}(x) L_{n}^{l}(y) b^{n}}{\Gamma(n+l+1)}=\frac{(x y b)^{-\frac{1}{2} l}}{1-b} \exp \left[-b \frac{x+y}{1-b}\right] I_{l}\left(2 \frac{\sqrt{x y b}}{1-b}\right) . \\
x=\frac{m}{\hbar} \sqrt{W} \frac{r_{a}^{2}}{\rho\left(t_{a}\right)}, \quad y=\frac{m}{\hbar} \sqrt{W} \frac{r_{b}^{2}}{\rho\left(t_{b}\right)},
\end{gathered}
$$

where $r_{a}^{2} ; r_{b}^{2}>0$ and

$$
\rho(t)=\sqrt{\sum_{i<j}^{4}\left(\mathbf{u}_{i}(t) \wedge \mathbf{u}_{j}(t)\right)^{2}}
$$

The kernel can be finally rewritten as:

$$
\begin{aligned}
& \left\langle r_{b}, u_{b} ; t_{b} \mid r_{a}, u_{a} ; t_{a}\right\rangle= \\
& =\frac{i}{\pi} \sum_{n, l} \frac{n!L_{n}^{l}\left(\frac{m}{\hbar} \sqrt{W} r_{a}^{2} / \rho\left(t_{a}\right)\right) L_{n}^{l}\left(\frac{m}{\hbar} \sqrt{W} r_{b}^{2} / \rho\left(t_{b}\right)\right)}{\Gamma(n+l+1)} \\
& \times\left[b^{*}\left(t_{a}\right) b\left(t_{b}\right)\right]^{n+\frac{l+1}{2}}\left(\frac{m}{\hbar} \sqrt{\frac{W}{\rho\left(t_{a}\right) \rho\left(t_{b}\right)}}\right)^{l+1}\left(r_{a} r_{b}\right)^{l} e^{l\left(u_{a}-u_{b}+\alpha\left(t_{a}, t_{b}\right)\right)} \\
& \times \exp \left(\frac{m}{2 \hbar}\left[\frac{i}{2} \frac{\dot{\rho}\left(t_{b}\right)}{\rho\left(t_{b}\right)}-\frac{\sqrt{W}}{\rho\left(t_{b}\right)}\right] r_{b}^{2}-\frac{m}{2 \hbar}\left[\frac{i}{2} \frac{\dot{\rho}\left(t_{a}\right)}{\rho\left(t_{a}\right)}+\frac{\sqrt{W}}{\rho\left(t_{a}\right)}\right] r_{a}^{2}\right)
\end{aligned}
$$

It satisfies the time-dependent Schrödinger eq.:

$$
\left(i \hbar \frac{\partial}{\partial t_{b}}-\hat{H}\left(r_{b}, u_{b}\right)\right)\left\langle r_{b}, u_{b} ; t_{b} \mid r_{a}, u_{a} ; t_{a}\right\rangle=0, \quad t_{b}>t_{a}
$$

where

$$
\hat{H}=\frac{1}{2 m}\left[\hat{p}_{r}^{2}-\frac{1}{r^{2}} \hat{p}_{u}^{2}+m^{2} \Omega^{2} r^{2}\right]-\Gamma \hat{p}_{u}
$$

From the above kernel we can extract the wave functions:

$$
\begin{aligned}
\psi_{n, l}(r, u, t) & =\sqrt{\frac{1}{\pi}} \sqrt{\frac{n!}{\Gamma(n+l+1)}}\left(\sqrt{\frac{m}{\hbar \rho(t)}} W^{1 / 4}\right)^{l+1} \\
& \times[b(t)]^{n+\frac{l+1}{2}} r^{l} L_{n}^{l}\left(\frac{m}{\hbar} \sqrt{W} r^{2} / \rho(t)\right) \\
& \times \exp \left(\frac{m}{2 \hbar}\left[\frac{i}{2} \frac{\dot{\rho}(t)}{\rho(t)}-\frac{\sqrt{W}}{\rho(t)}\right] r^{2}\right) e^{-l\left(u+\Gamma t-\frac{\beta}{2}\right)} \\
\psi_{n, l}^{(*)}(r, u, t) & =\sqrt{\frac{1}{\pi}} \sqrt{\frac{n!}{\Gamma(n+l+1)}}\left(\sqrt{\frac{m}{\hbar \rho(t)}} W^{1 / 4}\right)^{l+1} \\
& \times\left[b^{*}(t)\right]^{n+\frac{l+1}{2}} r^{l} L_{n}^{l}\left(\frac{m}{\hbar} \sqrt{W} r^{2} / \rho(t)\right) \\
& \times \exp \left(-\frac{m}{2 \hbar}\left[\frac{i}{2} \frac{\dot{\rho}(t)}{\rho(t)}+\frac{\sqrt{W}}{\rho(t)}\right] r^{2}\right) e^{l\left(u+\Gamma t-\frac{\beta}{2}\right)}
\end{aligned}
$$

This is defined as

$$
\left\langle r_{b}, u_{b} ; t_{b} \mid r_{a}, u_{a} ; t_{a}\right\rangle=\sum_{n, l} \frac{\left\langle r_{b} ; t_{b} \mid r_{a} ; t_{a}\right\rangle_{n, l}}{\pi \sqrt{r_{a} r_{b}}} e^{l(\alpha(t)-\Delta u)}
$$

It satisfies the time-dependent Schrödinger equation

$$
\begin{aligned}
& \left(i \hbar \frac{\partial}{\partial t_{b}}-\hat{H}_{l}\left(r_{b}\right)\right)\left\langle r_{b} ; t_{b} \mid r_{a} ; t_{a}\right\rangle_{n, l}=0, \quad t_{b}>t_{a} \\
& \hat{H}_{l}=\frac{1}{2 m}\left[-\hbar^{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\hbar^{2}}{r^{2}}\left(l^{2}-\frac{1}{4}\right)+m^{2} \Omega^{2} r^{2}\right]
\end{aligned}
$$

The radial wave function $\psi_{n, l}(r, t)=\left\langle r \mid \psi_{n, l}(t)\right\rangle$ reads

$$
\begin{aligned}
\psi_{n, l}(r, t) & =\sqrt{\frac{n!}{\Gamma(n+l+1)}}\left(\sqrt{\frac{m}{\hbar \rho(t)}} W^{1 / 4}\right)^{l+1} \\
& \times[b(t)]^{n+\frac{l+1}{2}} r^{l+\frac{1}{2}} L_{n}^{l}\left(\frac{m}{\hbar} \sqrt{W} r^{2} / \rho(t)\right) \\
& \times \exp \left(\frac{m}{2 \hbar}\left[\frac{i}{2} \frac{\dot{\rho}(t)}{\rho(t)}-\frac{\sqrt{W}}{\rho(t)}\right] r^{2}\right) .
\end{aligned}
$$

For $l= \pm \frac{1}{2}$ the above wave function reduces to the harmonic oscillator ones (generalized Laguerre polynomials \rightarrow Hermite polynomials).

$$
\begin{aligned}
\psi_{n, \frac{1}{2}}(r, t) & =\frac{1}{2^{2 n+1}} \sqrt{\frac{1}{n!\Gamma\left(n+\frac{3}{2}\right)}}\left(\sqrt{\frac{m}{\hbar \rho(t)}} W^{\frac{1}{4}}\right)^{\frac{1}{2}} \\
& \times[b(t)]^{n+\frac{3}{4}} H_{2 n+1}\left(\sqrt{\frac{m}{\hbar \rho(t)}} W^{\frac{1}{4}} r\right) \\
& \times \exp \left(\frac{m}{2 \hbar}\left[\frac{i}{2} \frac{\dot{\rho}(t)}{\rho(t)}-\frac{\sqrt{W}}{\rho(t)}\right] r^{2}\right) \\
\psi_{n,-\frac{1}{2}}(r, t) & =\frac{1}{2^{2 n}} \sqrt{\frac{1}{n!\Gamma\left(n+\frac{1}{2}\right)}}\left(\sqrt{\frac{m}{\hbar \rho(t)}} W^{\frac{1}{4}}\right)^{\frac{1}{2}} \\
& \times[b(t)]^{n+\frac{1}{4}} H_{2 n}\left(\sqrt{\frac{m}{\hbar \rho(t)}} W^{\frac{1}{4}} r\right) \\
& \times \exp \left(\frac{m}{2 \hbar}\left[\frac{i}{2} \frac{\dot{\rho}(t)}{\rho(t)}-\frac{\sqrt{W}}{\rho(t)}\right] r^{2}\right) .
\end{aligned}
$$

Geometric phase and zero-point energy

The geometric phase is defined as:

$$
\begin{aligned}
e^{i \phi_{B A}} & =e^{i \phi_{t o t}-i \phi_{d y n}} \\
& =\langle\psi(0) \mid \psi(\tau)\rangle \exp \left(i \int_{0}^{\tau} d t\langle\psi(t)| i \frac{d}{d t}|\psi(t)\rangle\right)
\end{aligned}
$$

We get:

$$
\begin{aligned}
\phi_{B A} & =(2 n+l+1) \int_{t_{i}}^{t_{f}} d t\left(\frac{\dot{\rho}^{2}}{8 \rho \sqrt{W}}+\frac{\Omega^{2} \rho}{2 \sqrt{W}}\right) \\
& -(2 n+l+1)(\pi \text { ind } \gamma)-\frac{\pi}{2} n_{i, f} .
\end{aligned}
$$

where ind γ counts the number of revolutions around the origin: ind $\gamma=\frac{1}{2 \pi i} \oint_{\gamma} \frac{d z}{z}$.

Observe now that:

$$
\psi_{n}^{l h o}(r, t)=\psi_{n,-\frac{1}{2}}(r, t)=\sqrt{\pi r} \psi_{n,-\frac{1}{2}}(r,-\Gamma t+\beta / 2, t) .
$$

and so

$$
\psi_{n}^{l h o}(r, \tau)=\left.\sqrt{\pi r} \psi_{n,-\frac{1}{2}}(r, u, \tau)\right|_{u=\beta / 2-\tau \Gamma}
$$

By taking into account the periodicity of $\psi_{n}^{l h o}(r, t)$ (period $\tau=2 \pi / \Omega)$,

$$
\int_{0}^{\tau}\left\langle\psi_{n}^{l h o}(t)\right| \hat{H}_{-\frac{1}{2}}\left|\psi_{n}^{l h o}(t)\right\rangle d t=\hbar\left(2 \pi n-\phi_{B A}\right) .
$$

we get the quantized energy spectrum:

$$
\mathrm{E}_{n}^{l h o}=\hbar \Omega\left(n-\frac{\phi_{A B}}{2 \pi}\right)
$$

In a simple case (stationary states) the geometric phase is given only by the Morse index, which is equal to 2 . Therefore:

$$
\mathrm{E}_{n}^{l h o}=\hbar \Omega\left(n+\frac{1}{2}\right)
$$

$$
\begin{array}{ll}
u_{11}(t)=\sqrt{2} \cos (\Omega t) \cosh (\Gamma t), & u_{12}(t)=-\sqrt{2} \cos (\Omega t) \sinh (\Gamma t), \\
u_{21}(t)=\sqrt{2} \cos (\Omega t) \sinh (\Gamma t), & u_{22}(t)=-\sqrt{2} \cos (\Omega t) \cosh (\Gamma t), \\
v_{11}(t)=\sqrt{2} \sin (\Omega t) \cosh (\Gamma t), & v_{12}(t)=-\sqrt{2} \sin (\Omega t) \sinh (\Gamma t), \\
v_{21}(t)=\sqrt{2} \sin (\Omega t) \sinh (\Gamma t), & v_{22}(t)=-\sqrt{2} \sin (\Omega t) \cosh (\Gamma t) .
\end{array}
$$

Wronskian

$$
W=\left|\begin{array}{cccc}
\sqrt{2} & 0 & 0 & 0 \\
0 & -\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} \Gamma & \sqrt{2} \Omega & 0 \\
-\sqrt{2} \Gamma & 0 & 0 & -\sqrt{2} \Omega
\end{array}\right|=4 \Omega^{2},
$$

and $D=4 \sin ^{2} \Omega\left(t_{b}-t_{a}\right)$
Classical action:

$$
S_{c l}=\frac{m \Omega}{2 \sin \left[\Omega\left(t_{b}-t_{a}\right)\right]}\left\{\left(r_{a}^{2}+r_{b}^{2}\right) \cos \left[\Omega\left(t_{b}-t_{a}\right)\right]-2 r_{a} r_{b} \cosh \left[u_{b}-u_{a}-\Gamma\left(t_{b}-t_{a}\right)\right]\right\}
$$

Fluctuation factor:

$$
F\left[t_{a}, t_{b}\right]=-\frac{m}{2 \pi \hbar} \frac{\Omega}{\sin \left[\Omega\left(t_{b}-t_{a}\right)\right]}
$$

Wave function:
$\psi_{n, l}(r, u, t)=\sqrt{\frac{n!}{\pi \Gamma(n+l+1)}}\left(\frac{m \sqrt{\Omega}}{\hbar}\right)^{l+\frac{1}{2}} r^{l} e^{-\frac{m \Omega}{2 \hbar} r^{2}} L_{n}^{l}\left(\frac{m \Omega}{\hbar} r^{2}\right) e^{-l(u+\Gamma t)} e^{-i \Omega(2 n+l+1) t}$.
Radial wave function:

$$
\psi_{n, l}(r, t)=\sqrt{\frac{n!}{\pi \Gamma(n+l+1)}}\left(\frac{m \sqrt{\Omega}}{\hbar}\right)^{l+\frac{1}{2}} r^{l+\frac{1}{2}} e^{-\frac{m \Omega}{2 \hbar} r^{2}}
$$

Composite system*

Consider two Bateman's oscillators, labeled by the index $i=A, B$:

$$
\begin{aligned}
& m_{i} \ddot{x}_{i}+\gamma_{i} \dot{x}_{i}+\kappa_{i} x_{i}=0, \\
& m_{i} \ddot{y}_{i}-\gamma_{i} \dot{y}_{i}+\kappa_{i} y_{i}=0
\end{aligned}
$$

where $m_{i}=\left(m_{A}, m_{B}\right), \gamma_{i}=\left(\gamma_{A}, \gamma_{B}\right)$ and $\kappa_{i}=\left(\kappa_{A}, \kappa_{B}\right)$. conjugated momenta are

$$
\begin{aligned}
p_{x_{i}} & =\frac{\partial \mathcal{L}_{i}}{\partial \dot{x}_{i}}=m_{i} \dot{y}_{i}-\frac{1}{2} \gamma_{i} y_{i} \\
p_{y_{i}} & =\frac{\partial \mathcal{L}_{i}}{\partial \dot{y}_{i}}=m_{i} \dot{x}_{i}+\frac{1}{2} \gamma_{i} x_{i}
\end{aligned}
$$

Hamiltonian for i th oscillator:

$$
H_{i}=\frac{1}{m_{i}} p_{x_{i}} p_{y_{i}}+\frac{\gamma_{i}}{2 m_{i}}\left(y_{i} p_{y_{i}}-x_{i} p_{x_{i}}\right)+\left(\kappa_{i}-\frac{\gamma_{i}^{2}}{4 m_{i}}\right) x_{i} y_{i}
$$

[^6]The algebraic structure for the total system $H_{T}=H_{A}+H_{B}$ is the one of $s u(1,1) \otimes s u(1,1)$. Indeed, from the dynamical variables $p_{\alpha i}$ and $x_{\alpha i}$ one may construct the functions

$$
\begin{aligned}
J_{1 i} & =\frac{1}{2 m_{i} \Omega_{i}} p_{1 i} p_{2 i}-\frac{m_{i} \Omega_{i}}{2} x_{1 i} x_{2 i} \\
J_{2 i} & =\frac{1}{2}\left(p_{1 i} x_{2 i}+p_{2 i} x_{1 i}\right) \\
J_{3 i} & =\frac{1}{4 m_{i} \Omega_{i}}\left(p_{1 i}^{2}+p_{2 i}^{2}\right)+\frac{m_{i} \Omega_{i}}{4}\left(x_{1 i}^{2}+x_{2 i}^{2}\right),
\end{aligned}
$$

where $\Omega_{i}=\sqrt{\frac{1}{m_{i}}\left(\kappa_{i}-\frac{\gamma_{i}^{2}}{4 m_{i}}\right)}$, and $\kappa_{i}>\frac{\gamma_{i}^{2}}{4 m_{i}}$. Applying now the canonical Poisson brackets $\left\{x_{\alpha i}, p_{\beta j}\right\}=\delta_{\alpha \beta} \delta_{i j}$ we obtain the Poisson's subalgebra
$\left\{J_{2 i}, J_{3 i}\right\}=J_{1 i}, \quad\left\{J_{3 i}, J_{1 i}\right\}=J_{2 i}, \quad\left\{J_{1 i}, J_{2 i}\right\}=-J_{3 i},\left.\quad\left\{J_{\alpha i}, J_{\beta j}\right\}\right|_{i \neq j}=0$.

The quadratic Casimirs for the algebra are defined as

$$
\mathcal{C}_{i}^{2}=J_{3 i}^{2}-J_{2 i}^{2}-J_{1 i}^{2} .
$$

The \mathcal{C}_{i} explicitly read

$$
\mathcal{C}_{i}=\frac{1}{4 m_{i} \Omega_{i}}\left[\left(p_{1 i}^{2}-p_{2 i}^{2}\right)+m_{i}^{2} \Omega_{i}^{2}\left(x_{1 i}^{2}-x_{2 i}^{2}\right)\right] .
$$

In terms of $J_{2 i}$ and \mathcal{C}_{i} the Hamiltonians H_{i} are given by

$$
H_{i}=2\left(\Omega_{i} \mathcal{C}_{i}-\Gamma_{i} J_{2 i}\right),
$$

where $\Gamma_{i}=\gamma_{i} / 2 m_{i}$.

Following 't Hooft, we now write the above Hamiltonians in the form

$$
\begin{aligned}
& \hat{H}_{i}=\hat{H}_{i+}-\hat{H}_{i-}, \\
& \hat{H}_{i+}=\frac{1}{4 \hat{\rho}_{i}}\left(\hat{\rho}_{i}+\hat{H}_{i}\right)^{2}, \quad \hat{H}_{i-}=\frac{1}{4 \hat{\rho}_{i}}\left(\hat{\rho}_{i}-\hat{H}_{i}\right)^{2} .
\end{aligned}
$$

Choosing $\hat{\rho}_{i}=2 \Omega_{i} \hat{\mathcal{C}}_{i}$, and taking $\hat{\mathcal{C}}_{i}>0$ (this can be done, because $\hat{\mathcal{C}_{i}}$ are constants of motion), the splitting reads

$$
\begin{aligned}
& \hat{H}_{i+}=\frac{\left(\hat{H}_{i}+2 \Omega_{i} \hat{\mathcal{C}}_{i}\right)^{2}}{8 \Omega_{i} \mathcal{C}_{i}}=\frac{1}{2 \Omega_{i} \hat{\mathcal{C}}_{i}}\left(2 \Omega_{i} \hat{\mathcal{C}}_{i}-\Gamma_{i} \hat{J}_{2 i}\right)^{2}, \\
& \hat{H}_{i-}=\frac{\left(\hat{H}_{i}-2 \Omega_{i} \hat{\mathcal{C}}_{i}\right)^{2}}{8 \Omega_{i} \hat{\mathcal{C}}_{i}}=\frac{1}{2 \Omega_{i} \hat{\mathcal{C}}_{i}} \Gamma_{i}^{2} \hat{J}_{2 i}^{2} .
\end{aligned}
$$

Quantization emerges after the information loss condition is imposed locally, i.e. separately on each of the Bateman oscillator:

$$
\hat{J}_{2 i}|\psi\rangle_{\text {phys }}=0,
$$

which defines/selects the physical states and is equivalent to

$$
\hat{H}_{i-}|\psi\rangle_{\text {phys }}=0, \quad i=A, B .
$$

This implies

$$
\begin{aligned}
\hat{H}_{i}|\psi\rangle_{p h y s} & =\left(\hat{H}_{i+}-\hat{H}_{i-}\right)|\psi\rangle_{p h y s} \\
& =\hat{H}_{i+}|\psi\rangle_{p h y s}=2 \Omega_{i} \hat{\mathcal{C}}_{i}|\psi\rangle_{p h y s}
\end{aligned}
$$

and

$$
\begin{aligned}
2 \Omega_{i} \hat{\mathcal{C}}_{i}|\psi\rangle_{p h y s} & =\left[\frac{1}{2 m_{i}}\left(\hat{p}_{r_{i}}^{2}+m_{i}^{2} \Omega_{i}^{2} \hat{r}_{i}^{2}\right)-\frac{2 \hat{J}_{2 i}^{2}}{m_{i} \hat{r}_{i}^{2}}\right]|\psi\rangle_{p h y s} \\
& =\left(\frac{\hat{p}_{r_{i}}^{2}}{2 m_{i}}+\frac{m_{i}}{2} \Omega_{i}^{2} \hat{r}_{i}^{2}\right)|\psi\rangle_{\text {phys }}
\end{aligned}
$$

Thus we obtain, for each one of the systems A and B separately, a genuine QM oscillator.

On the other hand, by writing the total Hamiltonian as

$$
\begin{aligned}
H_{T} & =2 \Omega \mathcal{C}-2 \Gamma J \\
& =2\left(\Omega_{A} \mathcal{C}_{A}+\Omega_{B} \mathcal{C}_{B}\right)-2\left(\Gamma_{A} J_{2 A}+\Gamma_{B} J_{2 B}\right)
\end{aligned}
$$

with $\mathcal{C}_{A}, \mathcal{C}_{B}>0 \Rightarrow \mathcal{C}>0$.

$$
\begin{aligned}
H_{+}= & \frac{\left(H_{T}+2 \Omega \mathcal{C}\right)^{2}}{8 \Omega \mathcal{C}}=\frac{1}{2 \Omega \mathcal{C}}(2 \Omega \mathcal{C}-\Gamma J)^{2} \\
H_{-}= & \frac{\left(H_{T}-2 \Omega \mathcal{C}\right)^{2}}{8 \Omega \mathcal{C}}=\frac{1}{2 \Omega \mathcal{C}} \Gamma^{2} J^{2} \\
& \hat{H}_{-}|\psi\rangle_{\text {phys }}=\hat{J}|\psi\rangle_{\text {phys }}=0 .
\end{aligned}
$$

This implies appearance of nonlinear terms:

$$
\hat{H}_{T} \approx \hat{H}_{+} \approx 2 \Omega \hat{\mathcal{C}}, \quad \hat{J}_{2 B} \approx-\frac{\Gamma_{A}}{\Gamma_{B}} \hat{J}_{2 A},
$$

$\hat{H}_{T} \approx\left(\frac{\hat{p}_{r_{A}}^{2}}{2 m_{A}}-\frac{2 \hat{J}_{2 A}^{2}}{m_{A} \hat{r}_{A}^{2}}+\frac{1}{2} m_{A} \Omega_{A}^{2} \hat{r}_{A}^{2}\right)+\left(\frac{\hat{p}_{r_{B}}^{2}}{2 m_{B}}+\frac{1}{2} m_{B} \Omega_{B}^{2} \hat{r}_{B}^{2}\right)-\frac{2}{m_{B}} \frac{\Gamma_{A}^{2}}{\Gamma_{B}^{2}} \frac{\hat{j}_{2 A}^{2}}{\hat{r}_{B}^{2}}$

Other dissipative systems*

Consider equation for d.h.o.

$$
\ddot{x}+\gamma \dot{x}+\omega^{2} x=0
$$

and the canonical variables (expanding coordinate)

$$
\hat{Q}=x e^{\frac{\gamma}{2} t}, \quad \hat{P}=m \dot{\hat{Q}}=m\left(\dot{x}+\frac{\gamma}{2} x\right) e^{\frac{\gamma}{2} t} .
$$

One gets

$$
\hat{H}_{\text {exp }}=\frac{1}{2 m} \hat{P}^{2}+\frac{m}{2} \Omega^{2} \hat{Q}^{2}
$$

which is a constant of motion providing the equation of motion

$$
\ddot{\hat{Q}}+\Omega^{2} \hat{Q}=0
$$

[^7]
In terms of the physical variables x and $p=m \dot{x}$, the Hamiltonian is

$$
\hat{H}_{\text {exp }} \hat{=} \frac{m}{2}\left[\dot{x}^{2}+\gamma \dot{x} x+\omega^{2} x^{2}\right] e^{\gamma t}=\text { const. }
$$

Identifying, up to a constant, this Hamiltonian with the Bateman one,

$$
\hat{H}_{\mathrm{B}} \hat{=} \hat{H}_{e x p}
$$

we get

$$
\hat{H}_{e x p} \hat{=} \frac{m}{2} e^{\gamma t}\left[\dot{x}^{2}+\gamma \dot{x} x+\omega^{2} x^{2}\right]=\hat{H}_{\mathrm{B}} \hat{=} p_{x} \dot{x}+m \frac{\gamma}{2} y \dot{x}+m \omega^{2} x y .
$$

For the particular choice $c=0$, leading to $a=\frac{m}{2}$ and $b=m \frac{\gamma}{4}$, one obtains for p_{x} and y
$\hat{p}_{x}=\frac{m}{2}\left(\dot{x}+\frac{\gamma}{2} x\right) e^{\gamma t}=\frac{1}{2} \hat{P} e^{\frac{\gamma}{2} t}$ and $\hat{y}=\frac{1}{2} x e^{\gamma t}=\frac{1}{2} \hat{Q} e^{\frac{\gamma}{2} t}$.
Inserting this into \hat{H}_{B} yields

$$
\begin{gathered}
\hat{H}_{\mathrm{B}}=\frac{1}{m} p_{x} p_{y}+m\left(\omega^{2}-\frac{\gamma^{2}}{4}\right) x y=\hat{H}_{\Omega} \\
\hat{D}=\frac{\gamma}{2}\left(y p_{y}-x p_{x}\right)=0 .
\end{gathered}
$$

Expressing \hat{D} in terms of x, y, \dot{x} and \dot{y} leads to

$$
\hat{D}=\frac{m}{2} \gamma(\dot{x} y-x \dot{y})+\frac{m}{2} \gamma^{2} x y, \text { i.e., } \quad \hat{D}=\gamma \mathcal{J}_{2} .
$$

Therefore, the constraint $c=0$ leading to $\hat{D}=0$ is equivalent to the constraint $\mathcal{J}_{2}=0$. Consequently, $\hat{H}_{\text {exp }}$ is equivalent to \hat{H}_{I} of the split Bateman Hamiltonian,

$$
\hat{H}_{\text {exp }}=\frac{1}{2 m} \hat{P}^{2}+\frac{m}{2} \Omega^{2} \hat{Q}^{2}=\hat{H}_{\mathrm{I}}=\frac{1}{2 m} p_{r}^{2}+\frac{m}{2} \Omega^{2} r^{2}
$$

provided the following relations are fulfilled:

$$
r=x e^{\frac{\gamma}{2} t}=\hat{Q} \quad, \quad p_{r}=m\left(\dot{x}+\frac{\gamma}{2} x\right) e^{\frac{\gamma}{2} t}=\hat{P} .
$$

That means the dissipative system can be described within the canonical formalism but the price is a non - canonical transformation between the physical variables (x, p) and the canonical ones $\left(\hat{Q}=r, \hat{P}=p_{r}\right)$.

Caldirola-Kanai Lagrangian ${ }^{\dagger}$

Caldirola and Kanai proposed the explicitly time-dependent Lagrangian

$$
\hat{L}_{\mathrm{CK}}=\left[\frac{m}{2} \dot{x}^{2}-V(x)\right] e^{\gamma t}
$$

with the canonical momentum

$$
\hat{p}=\frac{\partial}{\partial \dot{x}} \hat{L}_{\mathrm{CK}}=m \dot{x} e^{\gamma t}=p e^{\gamma t}
$$

The Hamiltonian reads

$$
\begin{equation*}
\hat{H}_{\mathrm{CK}}=\frac{1}{2 m} e^{-\gamma t} \hat{p}^{2}+\frac{m}{2} \omega^{2} x^{2} e^{\gamma t} . \tag{1}
\end{equation*}
$$

[^8]The Hamiltonian \hat{H}_{CK} is explicitly time-dependent, not a constant of motion and not equivalent to the energy of the dissipative system but related to it via

$$
\hat{H}_{\mathrm{CK}}=\hat{H}_{\mathrm{CK}}(t)=E e^{\gamma t} .
$$

C-K and expanding coordinates are connected via canonical transformation:

$$
\hat{Q}=\hat{x} e^{\frac{\gamma}{2} t}, \quad \hat{P}=\hat{p} e^{-\frac{\gamma}{2} t}+m \frac{\gamma}{2} \hat{x} e^{\frac{\gamma}{2} t} .
$$

The explicitly time-dependent generating function $\hat{F}_{2}(\hat{x}, \hat{P}, t)$ connecting the corresponding Hamiltonians via

$$
\hat{H}_{\mathrm{exp}}=\hat{H}_{\mathrm{CK}}+\frac{\partial}{\partial t} \hat{F}_{2}
$$

is given by

$$
\hat{F}_{2}(\hat{x}, \hat{P}, t)=\hat{x} \hat{P} e^{\frac{\gamma}{2} t}-m \frac{\gamma}{4} \hat{x}^{2} e^{\frac{\gamma}{2} t},
$$

turning the time-dependent Hamiltonian \hat{H}_{CK} into the constant of motion $\hat{H}_{\text {exp }}$.

Figure 1: Relations between different descriptions of dissipative systems on the canonical level.

Discrete models

Particle on the circle and the quantum oscillator*

't Hooft's deterministic system for $N=7$.
Deterministic system consisting of N states, $\{(\nu)\} \equiv\{(0),(1), \ldots(N-1)\}$, on a circle:

$$
(0)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right) ;(1)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) ; \ldots ;(N-1)=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
0
\end{array}\right),
$$

and $(0) \equiv(N)$.
*G. 't Hooft, [hep-th/0104080]; [hep-th/0105105];

Discrete time evolution:

$$
t \rightarrow t+\tau \quad: \quad(\nu) \rightarrow(\nu+1 \bmod N)
$$

- Finite dimensional representation $D_{N}\left(T_{1}\right)$ of the translation group.

On the basis spanned by the states (ν), the evolution operator is introduced as $(\hbar=1)$:

$$
U(\Delta t=\tau)=e^{-i H \tau}=e^{-i \frac{\pi}{N}}\left(\begin{array}{ccccc}
0 & & & & 1 \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & \ddots & \ddots & \\
& & & 1 & 0
\end{array}\right)
$$

- The phase factor $e^{-i \frac{\pi}{N}}$ is introduced by hand.

This matrix satisfies the condition $U^{N}=-\mathbb{I}$ and it can be diagonalized as:

$$
S U S^{-1}=e^{-i \frac{\pi}{N}}\left(\begin{array}{lllll}
1 & & & & \\
& e^{-i \frac{2 \pi}{N}} & & & \\
& & e^{-i \frac{2 \pi}{N} 2} & & \\
& & & \ddots & \\
& & & & e^{-i \frac{2 \pi}{N}(N-1)}
\end{array}\right)
$$

The eigenstates of H are denoted by $|n\rangle$:

$$
|n\rangle=\sum_{k=0}^{N-1} e^{-i \frac{2 \pi n}{N} k}(k) \quad ; \quad n=0,1, \ldots, N-1
$$

and the spectrum is

$$
H|n\rangle=\omega\left(n+\frac{1}{2}\right)|n\rangle, \quad \omega \equiv \frac{2 \pi}{N \tau}
$$

- It seems to have the same spectrum as the harmonic oscillator.

However its eigenvalues have an upper bound implied by the finite N value.

Let us put

$$
N \equiv 2 l+1, \quad n \equiv m+l, \quad m \equiv-l, \ldots, l,
$$

We introduce the notation $|l, m\rangle$ for the states $|n\rangle$ and the operators $L_{ \pm}$and L_{3} :

$$
\frac{H}{\omega}|l, m\rangle=\left(L_{3}+l+\frac{1}{2}\right)|l, m\rangle=\left(n+\frac{1}{2}\right)|l, m\rangle .
$$

and

$$
\begin{aligned}
L_{3}|l, m\rangle & =m|l, m\rangle \\
L_{+}|l, m\rangle & =\sqrt{(2 l-n)(n+1)}|l, m+1\rangle \\
L_{-}|l, m\rangle & =\sqrt{(2 l-n+1) n}|l, m-1\rangle
\end{aligned}
$$

su(2) algebra $\left(L_{ \pm} \equiv L_{1} \pm i L_{2}\right):$

$$
\left[L_{i}, L_{j}\right]=i \epsilon_{i j k} L_{k}, \quad i, j, k=1,2,3 .
$$

One can then introduce the analogues of position and momentum operators:

$$
\hat{x} \equiv \alpha L_{x}, \quad \hat{p} \equiv \beta L_{y}, \quad \alpha \equiv \sqrt{\frac{\tau}{\pi}}, \quad \beta \equiv \frac{-2}{2 l+1} \sqrt{\frac{\pi}{\tau}},
$$

satisfying the "deformed" commutation relations

$$
[\hat{x}, \hat{p}]=\alpha \beta i L_{z}=i\left(1-\frac{\tau}{\pi} H\right) .
$$

The Hamiltonian is then rewritten as

$$
H=\frac{1}{2} \omega^{2} \hat{x}^{2}+\frac{1}{2} \hat{p}^{2}+\frac{\tau}{2 \pi}\left(\frac{\omega^{2}}{4}+H^{2}\right) .
$$

- Continuum limit: $l \rightarrow \infty$ and $\tau \rightarrow 0$ with ω fixed.
\Rightarrow Hamitonian goes to the one of the harmonic oscillator;
$\Rightarrow[\hat{x}, \hat{p}] \rightarrow 1$ and the Weyl-Heisenberg algebra $h(1)$ is obtained.
\Rightarrow the original state space (finite N) changes becoming infinite dimensional.
- The above limiting procedure is nothing but a group contraction ${ }^{\dagger}$.

Define $a^{\dagger} \equiv L_{+} / \sqrt{2 l}, \quad a \equiv L_{-} / \sqrt{2 l}$ and restore the $|n\rangle$ notation ($n=m+l$) for the states:

$$
\begin{aligned}
\frac{H}{\omega}|n\rangle & =\left(n+\frac{1}{2}\right)|n\rangle \\
a^{\dagger}|n\rangle & =\sqrt{\frac{(2 l-n)}{2 l} \sqrt{n+1}|n+1\rangle} \\
a|n\rangle & =\sqrt{\frac{2 l-n+1}{2 l}} \sqrt{n}|n-1\rangle .
\end{aligned}
$$

${ }^{\dagger}$ M. Blasone, E. Celeghini, P. Jizba and G. Vitiello, PLA (2003);

The continuum limit is then the contraction $l \rightarrow \infty$ (fixed ω):

$$
\begin{aligned}
\frac{H}{\omega}|n\rangle & =\left(n+\frac{1}{2}\right)|n\rangle \\
a^{\dagger}|n\rangle & =\sqrt{n+1}|n+1\rangle \\
a|n\rangle & =\sqrt{n}|n-1\rangle
\end{aligned}
$$

and, by inspection,

$$
\begin{aligned}
{\left[a, a^{\dagger}\right]|n\rangle } & =|n\rangle \\
\left\{a^{\dagger}, a\right\}|n\rangle & =2(n+1 / 2)|n\rangle
\end{aligned}
$$

We thus have $\left[a, a^{\dagger}\right]=1$ and $H / \omega=\frac{1}{2}\left\{a^{\dagger}, a\right\}$ on the representation $\{|n\rangle\}$.

- The Hilbert space, originally finite dimensional, becomes infinite dimensional under the contraction limit. Then we are led to consider an alternative model where the Hilbert space is not modified in the continuum limit.

't Hooft's deterministic system for $N=7$.
't Hooft system recovered with underlying continuous dynamics:

$$
\begin{aligned}
x(t) & =\cos (\alpha t) \cos (\beta t) \\
y(t) & =-\cos (\alpha t) \sin (\beta t)
\end{aligned}
$$

- At the times $t_{j}=j \pi / \alpha$ the trajectory touches the external circle and thus π / α is the frequency of the discrete ('t Hooft) system.
- At time t_{j}, the angle of $R\left(t_{j}\right)$ with the positive x axis is given by: $\theta_{j}=j \pi-\beta t_{j}=j(1-\beta / \alpha) \pi$.
- When β / α is a rational number $q=M / N$, the system returns to the origin after N steps.

A deterministic system based on $S U(1,1)$

Two particles moving along two circles in discrete equidistant (synchronized) jumps. The ratio (circumference)/(length of the elementary jump) is an irrational number \Rightarrow the particles never come back to the original positions:

$$
\left.\begin{array}{rl}
t \rightarrow t+\tau ; \quad & (0)_{A}
\end{array}\right)(1)_{A} \rightarrow(2)_{A} \rightarrow(3)_{A} \ldots, ~ 子, ~(0)_{B} \rightarrow(1)_{B} \rightarrow(2)_{B} \rightarrow(3)_{B} \ldots .
$$

Actual states (positions) can be represented by vectors with an infinite number of components.
-The one-time-step evolution operator acts on $(n)_{A} \otimes(m)_{B}$ and in the representation space of the states it reads

$$
\begin{aligned}
U(\tau) & \equiv e^{-i H \tau}=e^{-i H_{A} \tau} \otimes e^{-i H_{B} \tau} \\
& =\left(\begin{array}{llll}
0 & 0 & \ldots & 1 \\
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
& \ddots & \ddots &)_{A}
\end{array} \otimes\left(\begin{array}{cccc}
0 & 0 & \ldots & 1 \\
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
& \ddots & \ddots &
\end{array}\right)_{B} .\right.
\end{aligned}
$$

We work with finite dimensional matrices of dimension M and at the end of the computations perform the limit $M \rightarrow \infty$.

Define $\zeta=(1-M) / M$. The energy eigenvectors are:

$$
\left|n_{A}\right\rangle=\sum_{l=0}^{M-1} e^{-i 2 \pi \zeta n_{A} l}(l)_{A} ; \quad\left|n_{B}\right\rangle=\sum_{l=0}^{M-1} e^{-i 2 \pi \zeta n_{B} l}(l)_{B}
$$

We have:

$$
U_{A}(\tau)\left|n_{A}\right\rangle=e^{i 2 \pi \zeta n_{A}}\left|n_{A}\right\rangle ; \quad U_{B}(\tau)\left|n_{B}\right\rangle=e^{i 2 \pi \zeta n_{B}}\left|n_{B}\right\rangle
$$

Defining $\left(n_{A}-n_{B}\right) / 2=j$ and $\left(n_{A}+n_{B}\right) / 2=m$ we may pass to the $|j, m\rangle$ basis:

$$
|j, m\rangle=\sum_{l, k=0}^{M-1} e^{-i 2 \pi \zeta[m(k+l)+j(k-l)]}(k)_{A} \otimes(l)_{B} .
$$

Finally, in the $M \rightarrow \infty$ limit we have:

$$
\begin{aligned}
& \frac{H}{2}|j, m\rangle=\frac{H_{A}+H_{B}}{2}|j, m\rangle=\omega m|j, m\rangle \\
& \frac{\left(H_{A}-H_{B}\right)}{2}|j, m\rangle=\omega j|j, m\rangle .
\end{aligned}
$$

We then set $\mathcal{C} \equiv\left(H_{A}-H_{B}\right) / 2 \omega$ and $L_{3} \equiv \frac{H}{\omega}+\frac{1}{2}$ and obtain the $\operatorname{SU}(1,1)$ structure.

We can also define $L_{ \pm}$as:

$$
L_{+} \propto e^{-i 2 \pi\left(N_{A}+N_{B}\right)} ; \quad L_{-} \propto e^{i 2 \pi\left(N_{A}+N_{B}\right)}
$$

where N_{A} and N_{B} are the position operators on the circles:

$$
N_{A}(n)_{A}=n(n)_{A}, ; \quad N_{B}(k)_{B}=k(k)_{B},
$$

- a single particle "jumping" on a 2D torus. If φ_{1} and φ_{2} are angular coordinates (longitude and latitude) on the 2D torus and α_{1} / α_{2} is irrational then the positions (states) never return back into the original configuration at any finite time but instead they fill up all the torus surface.
- the system of damped-amplified harmonic oscillators

We have now

$$
\begin{aligned}
L_{3}|n\rangle & =(n+k)|n\rangle \\
L_{+}|n\rangle & =\sqrt{(n+2 k)(n+1)}|n+1\rangle \\
L_{-}|n\rangle & =\sqrt{(n+2 k-1) n}|n-1\rangle
\end{aligned}
$$

where, like in $h(1), n \geq 0$ is an integer and the highest weight $k>0$ is integer or half-integer. We set

$$
H / \omega=L_{3}-k+1 / 2, \quad a^{\dagger}=L_{+} / \sqrt{2 k}, \quad a=L_{-} / \sqrt{2 k}
$$

The $S U(1,1)$ contraction $k \rightarrow \infty$ again recovers the quantum oscillator, i.e. the $h(1)$ algebra.

- The contraction $k \rightarrow \infty$ does not modify L_{3} and its spectrum but only the matrix elements of $L_{ \pm}$.
- While in the $S U(2)$ case the Hilbert space gets modified in the contraction limit, in the $S U(1,1)$ case this does not happen.
- The $S U(2)$ model considered above says nothing about the inclusion of the phase factor.
- The $\operatorname{SU}(1,1)$ setting, with $H=\omega L_{3}$, always implies a non-vanishing phase, since $k>0$. In particular, the fundamental representation has $k=1 / 2$ and thus

$$
\begin{aligned}
L_{3}|n\rangle & =(n+1 / 2)|n\rangle \\
L_{+}|n\rangle & =(n+1)|n+1\rangle \\
L_{-}|n\rangle & =n|n-1\rangle
\end{aligned}
$$

We note that the rising and lowering operator matrix elements do not carry the square roots, as on the contrary happens for $h(1)$.

Then we introduce the following mapping in the universal enveloping algebra of $s u(1,1)$:

$$
a=\frac{1}{\sqrt{L_{3}+1 / 2}} L_{-} \quad ; \quad a^{\dagger}=L_{+} \frac{1}{\sqrt{L_{3}+1 / 2}}
$$

which gives us the wanted $h(1)$ structure, with $H=\omega L_{3}$.

- no limit (contraction) is necessary!
- one-to-one (non-linear) mapping between the deterministic $S U(1,1)$ system and the quantum harmonic oscillator.
- Non-compact analog of the well-known Holstein-Primakoff representation for $S U(2)$ spin systems ${ }^{\ddagger}$.
- The $1 / 2$ term in the L_{3} eigenvalues now is implied by the representation.
- After a period $T=2 \pi / \omega$, the evolution of the state presents a phase π that it is not of dynamical origin $\left(e^{-i H T} \neq 1\right)$: it is a geometric-like phase related to the isomorphism between $S O(2,1)$ and $S U(1,1) / Z_{2}$ $\left(e^{i 2 \times 2 \pi L_{3}}=1\right)$

[^9]A schematic representation of the different quantization routes explored.

"Deterministic"
Electromagnetism

Gupta-Bleuler quantization of EM field ${ }^{\dagger}$

Canonical quantization of the Maxwell field in the Lorenz gauge requires the introduction of a gauge fixing term leading to the Fermi Lagrangian density*

$$
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\frac{1}{2} \zeta\left(\partial_{\mu} A^{\mu}\right)^{2}
$$

Equations of motions are

$$
\square A^{\mu}-(1-\zeta) \partial_{\mu}\left(\partial_{\sigma} A^{\sigma}\right)=0
$$

If we restrict to the case $\zeta=1$ (Feynman gauge), Lagrangian and equations of motion assume the simple form:

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{2} \partial_{\mu} A_{\nu} \partial^{\mu} A^{\nu} \\
\square A^{\mu} & =0
\end{aligned}
$$

[^10]By introducing the conjugate momenta

$$
\pi_{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} A^{\mu}\right)}=-\partial^{0} A^{\mu}
$$

we obtain the Hamiltonian density

$$
\begin{aligned}
\mathcal{H} & =-\frac{1}{2} \pi_{\mu} \pi^{\mu}+\frac{1}{2} \partial_{k} A_{\nu} \partial^{k} A^{\nu} \\
& =\frac{1}{2} \sum_{k=1}^{3}\left[\left(\dot{A^{k}}\right)^{2}+\left(\nabla A^{k}\right)^{2}\right]-\frac{1}{2}\left[\left(\dot{A^{0}}\right)^{2}+\left(\nabla A^{0}\right)^{2}\right]
\end{aligned}
$$

not positive definite!
Fourier expansion of the A^{μ} field:

$$
A^{\mu}(x)=\int \frac{d^{3} k}{\sqrt{2 \omega_{k}(2 \pi)^{3}}} \sum_{\lambda=0}^{3}\left(a_{\mathbf{k} \lambda} \epsilon^{\mu}(\mathbf{k}, \lambda) e^{-i k \cdot x}+a_{\mathbf{k} \lambda}^{*} \epsilon^{\mu}(\mathbf{k}, \lambda) e^{i k \cdot x}\right)
$$

Quantization is achieved by imposing commutation relations for the field operators A^{μ} and π^{μ} :

$$
\left[A^{\mu}(\mathbf{x}, t), \pi^{\nu}(\mathbf{y}, t)\right]=i g^{\mu \nu} \delta^{3}(\mathbf{x}-\mathbf{y})
$$

Commutation relations for the ladder operators:

$$
\left[a_{\mathbf{k}^{\prime}, \lambda^{\prime}}, a_{\mathbf{k}, \lambda}^{\dagger}\right]=-g_{\lambda \lambda^{\prime}} \delta^{3}\left(\mathbf{k}^{\prime}-\mathbf{k}\right)
$$

Wrong sign for scalar photons \Rightarrow negative norm states.
The Hamiltonian becomes

$$
H=\int d^{3} \mathbf{k} \omega_{k}\left(\sum_{\lambda=1,3} a_{\mathbf{k}, \lambda}^{\dagger} a_{\mathbf{k}, \lambda}-a_{\mathbf{k}, 0}^{\dagger} a_{\mathbf{k}, 0}\right)
$$

Lorenz gauge condition cannot be enforced at operatorial level, but only on the (physical) states (Gupta-Bleuler condition):

$$
\partial^{\mu} A_{\mu}^{(+)}|\Phi\rangle=0
$$

or, equivalently,

$$
\widehat{L}_{\mathbf{k}}|\Phi\rangle=\left(a_{\mathbf{k}, 0}-a_{\mathbf{k}, 3}\right)|\Phi\rangle=0
$$

which implies that physical states $|\Phi\rangle$ should contain an equal number of longitudinal and scalar photons:

$$
\langle\Phi| a_{\mathbf{k}, 0}^{\dagger} a_{\mathbf{k}, 0}|\Phi\rangle=\langle\Phi| a_{\mathbf{k}, 3}^{\dagger} a_{\mathbf{k}, 3}|\Phi\rangle
$$

In this way, negative norm states are eliminated and Hamiltonian is positive definite:

$$
\langle\Phi| H|\Phi\rangle=\int d^{3} \mathbf{k} \omega_{k} \sum_{\lambda=1,2} n_{\mathbf{k}, \lambda}
$$

In the GB construction, the physical states can be generated from the purely transverse states $\left|\Phi_{T}\right\rangle$ in the following way:

$$
|\Phi\rangle=R_{c}\left|\Phi_{T}\right\rangle
$$

where

$$
R_{c}=1+\int d^{3} k c(\mathbf{k}) \widehat{L}_{\mathbf{k}}^{\dagger}+\int d^{3} k d^{3} k^{\prime} c(\mathbf{k}) c\left(\mathbf{k}^{\prime}\right) \widehat{L}_{\mathbf{k}}^{\dagger} \widehat{L}_{\mathbf{k}^{\prime}}^{\dagger}+\ldots
$$

and the states $\left|\Phi_{T}\right\rangle$ are those which do not contain any longitudinal or scalar photon:

$$
a_{\mathbf{k}, 0}\left|\Phi_{T}\right\rangle=a_{\mathbf{k}, 3}\left|\Phi_{T}\right\rangle=0
$$

Symbolic picture of the Hilbert space of photons. In the shaded region, the Lorenz gauge condition is violated. States on the same fibers (thin lines) are gauge equivalent: ${ }^{\ddagger}$

$$
\langle\Phi| A_{\mu}(x)|\Phi\rangle=\left\langle\Phi_{T}\right| A_{\mu}(x)+\partial_{\mu} \Lambda(x)\left|\Phi_{T}\right\rangle=\left\langle\Phi_{T}\right| A_{\mu}(x)\left|\Phi_{T}\right\rangle+\partial_{\mu} \Lambda(x) .
$$

[^11]
't Hooft quantization for the EM field ${ }^{8}$

We define the following operators:

$$
\begin{aligned}
& J_{+} \equiv a_{\mathbf{k}, 1}^{\dagger} a_{\mathbf{k}, 2}, \quad J_{-} \equiv a_{\mathbf{k}, 2}^{\dagger} a_{\mathbf{k}, 1}, \quad J_{3} \equiv \frac{1}{2}\left(a_{\mathbf{k}, 1}^{\dagger} a_{\mathbf{k}, 1}-a_{\mathbf{k}, 2}^{\dagger} a_{\mathbf{k}, 2}\right) \\
& {\left[J_{+}, J_{-}\right]=2 J_{3}, \quad\left[J_{3}, J_{+}\right]=+J_{+}, \quad\left[J_{3}, J_{-}\right]=-J_{-}}
\end{aligned}
$$

and

$$
\begin{aligned}
& K_{+} \equiv a_{\mathbf{k}, 3}^{\dagger} a_{\mathbf{k}, 0}, \quad K_{-} \equiv a_{\mathbf{k}, 0}^{\dagger} a_{\mathbf{k}, 3}, \quad K_{3} \equiv \frac{1}{2}\left(a_{\mathbf{k}, 0}^{\dagger} a_{\mathbf{k}, 0}+a_{\mathbf{k}, 3}^{\dagger} a_{\mathbf{k}, 3}\right) \\
& {\left[K_{+}, K_{-}\right]=-2 K_{3}, \quad\left[K_{3}, K_{+}\right]=+K_{+}, \quad\left[K_{3}, K_{-}\right]=-K_{-}}
\end{aligned}
$$

We have $s u(2)$ algebra for the J operators and $s u(1,1)$ algebra for the K operators.

Casimir operators:

$$
J_{0}=\frac{1}{2}\left(a_{\mathbf{k}, 1}^{\dagger} a_{\mathbf{k}, 1}+a_{\mathbf{k}, 2}^{\dagger} a_{\mathbf{k}, 2}\right), \quad K_{0}=\frac{1}{2}\left(a_{\mathbf{k}, 0}^{\dagger} a_{\mathbf{k}, 0}-a_{\mathbf{k}, 3}^{\dagger} a_{\mathbf{k}, 3}\right) .
$$

[^12]Thus the Hamiltonian can be written as

$$
H=\int d^{3} \mathbf{k} \omega_{k}\left(J_{0}-K_{0}\right)
$$

K_{0} is responsible for the Hamiltonian to be not bounded from below \Rightarrow define the physical states as those for which

$$
K_{0}|\psi\rangle_{\text {phys }}=0
$$

Such condition appears to be too restrictive, isolating only purely tranverse states. Thus we impose

$$
{ }_{\text {phys }}\langle\psi| K_{0}|\psi\rangle_{\text {phys }}=0
$$

which turns out to be equivalent to the Gupta-Bleuler condition.

Explicit form of the physical states:

$$
|\psi\rangle_{p h y s}=\prod_{\mathbf{k}}\left|n_{\mathbf{k}, 1}\right\rangle_{1} \otimes\left|n_{\mathbf{k}, 2}\right\rangle_{2} \otimes\left|\alpha_{\mathbf{k}}\right\rangle
$$

with $\left|\alpha_{\mathbf{k}}\right\rangle$ a generic state (to be determined) for the longitudinal and scalar photons.

We require:

$$
\langle\alpha|\left(a_{\mathbf{k}, 0}^{\dagger} a_{\mathbf{k}, 0}-a_{\mathbf{k}, 3}^{\dagger} a_{\mathbf{k}, 3}\right)|\alpha\rangle=0
$$

Furthermore, we restrict to states of the form $|\alpha\rangle=|\alpha\rangle_{3} \otimes|\alpha\rangle_{0}$ where $|\alpha\rangle_{3}$ and $|\alpha\rangle_{0}$ denote (Glauber) coherent states for a_{3} and a_{0} :

$$
\begin{aligned}
& a_{\mathbf{k}, 3}|\alpha\rangle_{3}=\alpha_{k}|\alpha\rangle_{3} \\
& a_{\mathbf{k}, 0}|\alpha\rangle_{0}=\alpha_{k}|\alpha\rangle_{0}
\end{aligned}
$$

with the same α_{k}, for any \mathbf{k}.

The coherent state generators are

$$
\begin{aligned}
& G_{3}(\alpha)=\exp \sum_{\mathbf{k}}\left(\alpha_{k}^{*} a_{\mathbf{k}, 3}-\alpha_{k} a_{\mathbf{k}, 3}^{\dagger}\right) \\
& |\alpha\rangle_{3}=G_{3}^{-1}(\alpha)|0\rangle \\
& a_{\mathbf{k}, 3}(\alpha) \equiv G_{3}^{-1}(\alpha) a_{\mathbf{k}, 3} G_{3}(\alpha)=a_{\mathbf{k}, 3}-\alpha_{k}
\end{aligned}
$$

and

$$
\begin{aligned}
& G_{0}(\alpha)=\exp \sum_{\mathbf{k}}\left(-\alpha_{k}^{*} a_{\mathbf{k}, 0}+\alpha_{k} a_{\mathbf{k}, 0}^{\dagger}\right) \\
& |\alpha\rangle_{0}=G_{0}^{-1}(\alpha)|0\rangle \\
& a_{\mathbf{k}, 0}(\alpha) G_{0}^{-1}(\alpha) a_{\mathbf{k}, 0} G_{\alpha}=a_{\mathbf{k}, 0}-\alpha_{k}
\end{aligned}
$$

The sign difference in the commutator for a_{0} and a_{0}^{\dagger} has dictated the choice of the sign in the definition of the G_{0} generator. We thus obtain

$$
\begin{aligned}
\left(a_{\mathbf{k}, 0}-a_{\mathbf{k}, 3}\right)|\alpha\rangle & =0 \\
\langle\alpha|\left(a_{\mathbf{k}, 0}^{\dagger}-a_{\mathbf{k}, 3}^{\dagger}\right) & =0
\end{aligned}
$$

which immediately extends to the physical states $|\psi\rangle_{p h y s}$.

Let us now consider the explicit form of the coherent states $|\alpha\rangle_{0}$ and $|\alpha\rangle_{3}$. We obtain

$$
\begin{aligned}
|\alpha\rangle_{3} & =\exp \left(-\frac{1}{2} \int d^{3} k\left|\alpha_{k}\right|^{2}\right) \exp \left(\int d^{3} k \alpha_{k} a_{\mathbf{k}, 3}^{\dagger}\right)|0\rangle_{3} \\
|\alpha\rangle_{0} & =\exp \left(\frac{1}{2} \int d^{3} k\left|\alpha_{k}\right|^{2}\right) \exp \left(-\int d^{3} k \alpha_{k} a_{\mathbf{k}, 0}^{\dagger}\right)|0\rangle_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
|\alpha\rangle & \equiv|\alpha\rangle_{3} \otimes|\alpha\rangle_{0}=\exp \left(\int d^{3} k \alpha_{k}\left(a_{\mathbf{k}, 3}^{\dagger}-a_{\mathbf{k}, 0}^{\dagger}\right)\right)|0\rangle \\
& =\left(1+\int d^{3} k\left(-\alpha_{k}\right) L_{\mathbf{k}}^{\dagger}+\int d^{3} k d^{3} k^{\prime} \frac{\left(-\alpha_{k}\right)\left(-\alpha_{k^{\prime}}\right)}{2!} L_{\mathbf{k}}^{\dagger} L_{\mathbf{k}^{\prime}}^{\dagger}+\ldots\right)|0\rangle
\end{aligned}
$$

Thus a one-to-one correspondence exists between the coherent states above defined and those used in the Gupta-Bleuler quantization.

We can therefore identify the physical states of the Gupta-Bleuler condition with the ones defined by the 't Hooft condition.

Things to do..

- Find the beables for this system in terms of field components: to this end consider inversion formula for ladder operators

$$
a_{\mathbf{k}, \lambda}=i g_{\lambda, \lambda} \int d^{3} \mathbf{x} \frac{e^{i k \cdot x}}{\sqrt{2 \omega_{k}(2 \pi)^{3}}} \epsilon^{\mu}(\mathbf{k}, \lambda)\left(\dot{A}_{\mu}(x)-i \omega_{k} A_{\mu}(x)\right)
$$

where the polarization vectors satisfy the orthogonality relation:

$$
\epsilon^{\mu}(\mathbf{k}, \lambda) \epsilon_{\mu}\left(\mathbf{k}, \lambda^{\prime}\right)=g_{\lambda, \lambda^{\prime}}
$$

- Construction of Hilbert space from above group structure $S U(2) \otimes S U(1,1)$.
- Emergence of gauge symmetry.

Thermo-field dynamics ${ }^{\llbracket}$

Thermal averages \Leftrightarrow vacuum expectation values

$$
\langle A\rangle=Z^{-1}(\beta) \operatorname{Tr}\left[e^{-\beta H} A\right]=\langle 0(\beta)| A|0(\beta)\rangle
$$

Needs to "double" the degrees of freedom:

$$
|0(\beta)\rangle=Z^{-\frac{1}{2}}(\beta) \sum_{n} e^{-\frac{\beta}{2} E_{n}}|n, \tilde{n}\rangle
$$

where $|n, \tilde{n}\rangle=|n\rangle \otimes|\tilde{n}\rangle$.
Thermal vacuum

$$
|0(\theta)\rangle=\prod_{\mathbf{k}} \frac{1}{\cosh \theta_{\mathbf{k}}} \exp \left[\tanh \theta_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} \tilde{a}_{\mathbf{k}}^{\dagger}\right]|0\rangle
$$

[^13]Number of particles in $|0(\theta)\rangle$

$$
n_{\mathbf{k}} \equiv\langle 0(\theta)| a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}|0(\theta)\rangle=\sinh ^{2} \theta_{\mathbf{k}}=\frac{1}{e^{\beta \omega_{\mathbf{k}}}-1}
$$

gives the correct thermal average, i.e. the Bose-Einstein distribution.
"Thermal" Bogoliubov transformation:

$$
\begin{aligned}
& a_{\mathbf{k}}(\theta)=a_{\mathbf{k}} \cosh \theta_{\mathbf{k}}-\tilde{a}_{\mathbf{k}}^{\dagger} \sinh \theta_{\mathbf{k}} \\
& \tilde{a}_{\mathbf{k}}(\theta)=\tilde{a}_{\mathbf{k}} \cosh \theta_{\mathbf{k}}-a_{\mathbf{k}}^{\dagger} \sinh \theta_{\mathbf{k}}
\end{aligned}
$$

where $\theta_{\mathbf{k}}=\theta_{\mathbf{k}}(\beta)$.
Thermal state condition:

$$
\left(a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}-\tilde{a}_{\mathbf{k}}^{\dagger} \tilde{a}_{\mathbf{k}}\right)|0(\theta)\rangle=0
$$

Advertisments

Quantum Field Theory and its Macroscopic Manifestations

Boson Condensation, Ordered Patterns and Topological Defects

Massimo Blasone, Petr Jizba at Giuseppe Vitiello

The European
 PhYsical Journal
 SPECIAL TOPICS

(C) EDP Sciences, Springer-Verlag 2017

DOI: 10.1140/epjst/e2017-70008-6

Regular Article

A Physicist's view on Chopin's Études

Massimo Blasone ${ }^{\text {a }}$
Dipartimento di Fisica \& INFN, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy

Received 9 January 2017 / Received in final form 7 March 2017
Published online 26 July 2017
Abstract. We propose the use of specific dynamical processes and more in general of ideas from Physics to model the evolution in time of musical structures. We apply this approach to two Études by F. Chopin, namely Op. 10 n .3 and Op. 25 n .1 , proposing some original description based on concepts of symmetry breaking/restoration and quantum coherence, which could be useful for interpretation. In this analysis, we take advantage of colored musical scores, obtained by implementing Scriabin's color code for sounds to musical notation.

Cosmic Bell Test

${ }^{\text {| }}$ J.Handsteine et al., Cosmic Bell Test: Measurement Settings From Milky Way Stars, Phys. Rev. Lett. 118060401 (2017)

Cosmic Bell Test

Run	Side	HIP ID	azz $_{k}^{\circ}$	alt $_{k}^{\circ}$	$d_{k} \pm \sigma_{d_{k}}[\mathrm{y}]$	$\bar{\tau}_{\text {valid }}^{k}[\mu \mathrm{~s}]$	$S_{\text {exp }}$	p-value	ν
1	A	56127	199	37	604 ± 35	2.55	2.43	1.8×10^{-13}	7.3
	B	105259 A	25	24	1930 ± 605	6.93			11.9
2	A	80620	171	34	577 ± 40	2.58	2.50	4.0×10^{-33}	
	B	2876	25	26	3624 ± 1370	6.85			

[^0]: *G. 't Hooft, Erice lectures (1999); Class. Quant. Grav. (1999); The Cellular Automaton Interpretation of Quantum Mechanics, Springer (2016).
 ${ }^{\dagger}$ M. B., P. Jizba and G. Vitiello, PLA (2001); M. B., F. Scardigli, P. Jizba and G. Vitiello, PLA (2009).
 ${ }^{\ddagger}$ M. B., E. Celeghini, P. Jizba, F. Scardigli and G. Vitiello, arXiv:1801.06311 [quant-ph], to appear in the Proceedings of Symmetries in Science XVII.

[^1]: ${ }^{\text {§ }}$ G. 't Hooft, Determinism and dissipation in quantum gravity, Brice lectures (1999); Quantum gravity as a dissipative deterministic system, Class. Quant. Grav. (1999);
 The Cellular Automaton Interpretation of Quantum Mechanics, Springer (2016)

[^2]: *E.Celeghini, M.Rasetti and G.Vitiello, Ann. Phys. (1992)
 ${ }^{\dagger}$ M. Blasone, P. Jizba and G. Vitiello, Phys. Lett. A (2001)

[^3]: ${ }^{\ddagger}$ H. Bateman, Phys. Rev. (1931)
 H. Feshbach and Y. Tikochinski, Trans. N.Y. Acad. Sci. (1977)

[^4]: §E.Celeghini, M.Rasetti and G.Vitiello, Ann. Phys. (1992)

[^5]: *M. Blasone and P. Jizba, Annals Phys. (2004) .

[^6]: ${ }^{*}$ M. Blasone, P. Jizba, F. Scardigli and G. Vitiello, Phys. Lett. A (2009)

[^7]: *D. Schuch and M. Blasone, J.Phys.Conf.Ser. (2017)

[^8]: ${ }^{\dagger}$ P.Caldirola Nuo. Cim. (1941); E.Kanai Progr. Theor. Phys. (1948)

[^9]: ${ }^{\ddagger}$ T. Holstein and H. Primakoff, Phys. Rev. (1940).
 C. C. Gerry, J. Phys. A (1983).

[^10]: * E.Fermi, (1932).
 \dagger 'S.Gupta, Proc. Roy. Soc. (1950); K.Bleuler, Helv.Phys.Acta (1950).

[^11]: ${ }^{\ddagger}$ W.Greiner and J.Reinhardt, Field Quantization, Springer (1996).

[^12]: §M.B., E.Celeghini, P.Jizba, F.Scardigli and G.Vitiello, arXiv:1801.06311 [quant-ph], to appear in the Proceedings of Symmetries in Science XVII.

[^13]: ${ }^{\top}$ Y.Takahashi and H.Umezawa, Collect. Phenom. (1975)

