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• The aim of this talk is to present the setting and the main results of a paper
written with G.Marmo and P.Vitale (2018).

• It concerns the problem of introducing a differential calculus on a family of
algebras A with a 3d Lie type non commutativity.

• The algebras A will be realised as subalgebras of Mθ, the Moyal 4d alge-
bra. The differential calculi will be constructed starting from a suitable Lie
algebra of (undeformed) derivations forMθ which can be reduced to A.
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What is a derivation based differential calculus?

• On an orientable N -dim. differentiable manifold M , the differential calculus
is the differential graded algebra

(Ω(M) = ⊕Nk=0Ωk(M),∧, d, d2 = 0),

with F(M) = Ω0(M).

• The F(M)-bimodule Ω1(M) is dual to the module X(M) of vector fields,
which coincides with the space of all derivations for F(M).

iX : Ωk(M)→ Ωk−1(M), LX = diX + iXd

• The set X (M) is an infinite dimensional Lie algebra w.r.t.the commutator

[X1, X2]f = X1(X2f )−X2(X1f )
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•When, following the Gelfand duality approach, F(M) is replaced by a (non
commutative) algebra A, the problem of defining a differential calculus for
it has been widely studied (see the spectral triple formalism for C∗-algebras,
the covariant calculus approach for quantum spaces and groups, the twisted-
deformed approach)

•We start from a (finite dimensional) Lie algebra of derivations,
i.e. ρ : l → End(A) with

[ρ(Xa), ρ(Xb)] = ρ([Xa, Xb])

ρ(X)(a1a2) = (ρ(X)a1)a2 + a1(ρ(X)a2)

•We denote by Cn
∧(l,A) the set of Z(A)-multilinear alternating mappings

ω : X1 ∧ · · · ∧Xn 7→ ω(X1, . . . , Xn)

from l⊗n to A
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• On the graded vector space C∧(l,A) = ⊕j=dim l
j=0 Cn

∧(l,A),

with C0
∧(l,A) = A, one can define

– a wedge product

(ω ∧ ω′)(X1, . . . , Xk+s)

=
1

k!s!

∑
σ∈Sk+s

(sign(σ))ω(Xσ(1), . . . , Xσ(k))ω
′(Xσ(k+1), . . . , Xσ(k+s))

– an operator d : Cn
∧(l,A)→ Cn+1

∧ (l,A) by

(dω)(X0, X1, . . . , Xn) =

n∑
k=0

(−1)kρ(Xk)(ω(X0, . . . , X̂k, . . . , Xn))

+
1

2

∑
r,s

(−1)k+sω([Xr, Xs], X0, . . . , X̂r, . . . , X̂s, . . . , Xn)

(with X̂r denoting that the r-th term is omitted), such that d a graded
antiderivation with d2 = 0, so (C∧(l,A),∧, d) is a graded differential
algebra.
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• On 1-forms we have an A-bimodule structure with

(f1df2)(X) = f1 (ρ(X)f2) and ((df2)f1)(X) = (ρ(X)f2)f1

• The operator

(iXω)(X1, . . . , Xn) = ω(X,X1, . . . , Xn)

gives a degree (−1) antiderivation from Cn+1
∧ (l,A) → Cn

∧(l,A).

• The operator defined by LX = iXd + diX is the degree zero Lie derivative
along X , so we have an exterior Cartan calculus on A depending on a Lie
algebra of derivations.
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• This exterior algebra is an example of a derivation based calculus.
We denote it by Ωl(A).

• The subset Ωl(A) ⊂ Ωl(A) is defined as the smallest differential graded
subalgebra of Ωl(A) generated in degree 0 by A.
By construction, every element in Ωn

l (A) can be written as a0da1∧· · ·∧dan
terms with aj ∈ A, while this is not necessary for elements in Ωl(A).

• In terms of dual modules, it is

(Ω1
l (A))∗ = Derl(A) and (Derl(A))∗ = Ωl(A)

• This difference will be seen in some of the examples we shall describe.
If A = F(M) for a paracompact manifold, then Ωl(A) = Ωl(A).
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The Moyal algebra

• Given (R2N , ω = dqa ∧ dpa), for f, g ∈ S(R2N) one defines the Moyal
product via (with θ > 0)

(f ∗ g)(x) =
1

(πθ)2N

∫ ∫
dudv f (x + u)g(x + v) e−2iω

−1(u,v)/θ,

The set Aθ = (S(R2N), ∗) is a non unital pre C∗-algebra.

• The setMθ =Mθ
L ∩Mθ

R of multipliers is a unital ∗-algebra, and provides
the maximal compactification of Aθ defined by duality. It contains polyno-
mial, plane waves, Dirac’s δ and its derivatives.
The set (Mθ, ∗) is what we call the Moyal algebra.

• The Moyal product is a non commutative deformation of the pointwise one

f ∗ g ∼ fg +
iθ

2
{f, g} +

∞∑
k=2

(
iθ

2
)k

1

k!
Dk(f, g) as θ → 0
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• The commutator deforms the Poisson structure

[f, g]θ = f ∗ g − g ∗ f = iθ {f, g} +

∞∑
s=1

2

(2s + 1)!

(
iθ

2

)2s+1

D2s+1(f, g).

• For degree 1 polynomials we have the CCR

[qa, qb]θ = 0, [pa, pb]θ = 0, [qa, pb]θ = iθδab

while, if f, g ∈ S = P0 ⊕ P1 ⊕ P2,

[f, g]θ = iθ{f, g}.

• So (S, { , }) is a Poisson subalgebra of F(R4), while (S, [ , ]θ) is a Lie
subalgebra inMθ w.r.t. the ∗-product commutator.
It is isomorphic to a one dimensional central extension of the Lie algebra
isp(4,R) corresponding to the inhomogeneous symplectic linear group.
(S, [ , ]θ) ∼ (S, { , }) is the maximal Lie algebra acting upon both F(R4)
andMθ in terms of derivations.
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3d Lie algebra type non commutative spaces

• Any 3d Lie algebra g with [xa, xb] = f c
ab xc is isomorphic to

[x1, x2] = cx3 + hx2, [x2, x3] = ax1, [x3, x1] = bx2 − hx3
with real parameters a, b, c, h such that ah = 0.

• The (classical) Jordan - Schwinger map πg : R4 → g∗ ∼ R3 can be defined
such that

{π∗g(xa), π
∗
g(xb)} = f c

ab π
∗
g(xc).

The Jordan - Schwinger map π∗g ranges within P1 ⊕ P2 ⊂ S.

• A (quantum, i.e. noncommutative) version of the J.S. map is the vector
space inclusion sg : g∗ ↪→ P1 ⊕ P2 such that

[sg(xa), sg(xb)]θ = iθf c
ab sg(xc).
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• For a given 3d Lie algebra g, the Moyal product in R4 between sg(xa) depend
only on the sg(xa) variables, so there exists a unital complex ∗-algebra Ag ⊂
Mθ which is given as the quotient

Ag = [u1, u2, u3]/Ig :

we are realizing the universal envelopping algebra Ag as a subalgebra ofMθ.

•We list (some of the) maps sg, starting by those corresponding to a 6= 0.
They have a quadratic Casimir function Cg.

• For g = su(2) it is [xa, xb] = ε c
abxc, so Asu(2) ⊂Mθ is generated by

u1 =
1

2
(q1q2+p1p2), u2 =

1

2
(q1p2−q2p1), u3 =

1

4
(q21+p21−q22−p22).

The Casimir function is Csu(2) = u21 + u22 + u23 with

u24 = u21 + u22 + u23, with u4 =
1

4
(q21 + p21 + q22 + p22),
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• For g = e(2) it is

[x1, x2] = x3, [x2, x3] = 0, [x3, x1] = x2

and we have Ae(2) ⊂Mθ generated by

u1 = q1p2 − q2p1, u2 = q1, u3 = q2.

The quadratic Casimir function is Ce(2) = (u22 + u23)/2.

• For g = h(1) (the Heseinberg-Weyl Lie algebra), with

[x1, x2] = x3, [x2, x3] = 0, [x3, x1] = 0,

and we have Ah(1) ⊂Mθ generated by

u1 = q1, u2 = q2p1, u3 = q2.

The quadratic Casimir function is Ch(1) = u23.
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Derivation based calculi on Ag

• A derivation D for an algebra A is inner if Da = [fD, a], otherwise it is
outer. All derivations for the Moyal algebraMθ are inner.

• For any algebra Ag ⊂Mθ, the union of its inner and outer derivations close
a Lie algebra g̃ with g ⊆ g̃ ⊂ isp(4,R). The Lie algebra g̃ is seen to act via
inner derivations uponMθ, and such action can be projected onto Ag.

• The setC∧(g̃, Ag) can be then described as a graded subalgebra ofC∧(isp(4,R),Mθ),
the corresponding calculus (C∧(g̃, Ag), d) as a reduction of (C∧(isp(4,R),Mθ), d).

•Moreover, the differential calculus that we define on Ag turns out to have
a frame, i.e. the exterior algebra is a free Ag-bimodule: this gives a way to
study its cohomology.

• Since the structure of the space of derivations for Ag strongly depends on
the Lie algebra g being semisimple or not, this talk will consider the two
cases separately.
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Differential calculus on Ag for semisimple g = su(2)

• For a semisimple g, all derivations for Ag are inner.

• The functions u1, u2, u3 in R4 close {ua, ub} = εabcuc, with Casimir

u24 = u21 + u22 + u23, with u4 =
1

4
(q21 + p21 + q22 + p22),

the corresponding Hamiltonian vector fields (X1, X2, X3) give the right in-
variant vector fields tangent to S3, while

X4 = u−14

3∑
j=1

ujXj

•We define the algebra Ã as

Ã = {f ∈ Mθ : [u4, f ]θ = 0}.
which slightly extends Asu(2) since it contains the odd powers of u4.

• The algebra Ã is a noncommutative deformation of the commutative algebra
F(R3\{0}) = f ∈ F(R4\{0}) : LX4f = 0.
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•Within the classical setting, the rank of the space of derivations for A is 3,
while the 4 derivations for Ã ⊂Mθ which are in isp(4,R).

Dµ(f ) = [uµ, f ]θ, µ = 1, . . . , 4

are independent and give a 1d central extension g̃ of g̃ = su(2).

• The set C1
∧(g̃,Mθ) ⊂ C1

∧(isp(4,R),Mθ) contains the elements

α1 = p2 ∗ dq1 + p1 ∗ dq2 − q2 ∗ dp1 − q1 ∗ dp2,

α2 = −q2 ∗ dq1 + q1 ∗ dq2 − p2 ∗ dp1 + p1 ∗ dp2,

α3 = p1 ∗ dq1 − p2 ∗ dq2 − q1 ∗ dp1 + q2 ∗ dp2,

β = q1 ∗ dq1 + q2 ∗ dq2 + p1 ∗ dp1 + p2 ∗ dp2

which satisfy the identities (j, k = 1, . . . , 3)

αj(Dk) = −2iθ δjku4, αj(D4) = −2iθ uj

β(Dk) = 0, β(D4) = θ2
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• Upon defining

ωj =
i

2θ
αj −

1

θ2
ukβ, ω4 =

1

θ2
u4β

we have (µ, σ = 1, . . . , 4)

ωµ(Dσ) = u4δµσ.

• Since u4 ∈ Z(Ã), we extend Ã upon a localization, i.e. we define the
element u−14 via the relations u−14 u4 = u4u

−1
4 = 1 and u−14 uk = uku

−1
4 for

k = 1, . . . , 3.

• The vector space D ' g̃ is the tangent space to the noncommutative space
described by the algebra Ã. The elements

ϕµ = u−14 ωµ

provide a basis for D∗.
The action of the exterior derivative upon Ã is given by

df = (Dµf )ϕµ

where Dµf = [uµ, f ]θ. The exterior algebra is defined as we saw.
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• For this calculus we have

f ∗ ϕµ = ϕµ ∗ f,
ϕµ ∧ ϕσ = −ϕσ ∧ ϕµ

dϕj = −1

2
εjklϕk ∧ ϕl (j, k, l ∈ 1, . . . , 3)

dϕ4 = 0.

The Maurer-Cartan equation for the differential calculus depends on g̃, and
its cohomology is related to the Eilenberg-Chevalley cohomology for g̃.

• Notice that the elements ϕa cannot be realised as
∑3

a=1 fadua, so C∧(g̃, Ã)
extends the differential calculus (Ωg̃, d) given as the smallest graded differ-
ential subalgebra of C∧(g̃, Ã) generated in degree 0 by Ã as described in the
introduction.
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Differential calculus on Ag for not semisimple g

• The Lie algebra g = e(2) is

[x1, x2] = x3, [x2, x3] = 0, [x3, x1] = x2.

The Jordan - Schwinger map is given by

u1 = q1p2 − q2p1, u2 = q1, u3 = q2.

The quadratic Casimir function is uC = (u22 + u23)/2 = (q21 + q22)/2. The
algebra is

Ae(2) = {f ∈ Mθ : [uC, f ]θ = 0}.

• Among the elements in isp(4,R) = (S, [ , ]θ), the algebra Ae(2) has in-
ner derivations corresponding to elements ua given above, and one exterior
derivation

uE = −(q1p1 + q2p2), DEf = [uE, f ]θ, f ∈ Ae(2)
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• This means that the action of the outer derivation DE for Ã can be rep-
resented as a commutator on Ã ⊂ Mθ as an inner derivation that can be
projected.
The element uE is defined up to an arbitrary function of the quadratic
Casimir uC, but this does not affect any of the results we shall describe.

• The Lie algebra of derivations for Ae(2) is then given by ẽ(2) spanned by
{u1, u2, u3, uE} w.r.t. the ∗-product inMθ. It is a 1d extension of e(2) as

[uµ, uν]θ = iθf̃ ρ
µν uρ, µ, ν, ρ = 1, . . . , 4.

• The set D ' ẽ(2) gives the tangent space to the differential calculus. Since
ẽ(2) ⊂ isp(4,R), we consider the elements αµ = duµ.
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• The elements in C1
∧(isp(4,R),Mθ) given by

ω1 =
1

2
(u3α2 − u2α3),

ω2 = −1

2
(u3α1 + u2αE),

ω3 =
1

2
(u2α1 − u3αE),

ωE =
1

2
(u2α2 + u3α3)

verify (with µ = 1, . . . , 4)

ωµ(Dσ) = (iθ)uCδµσ,

so the elements

ϕµ = − i
θ
u−1C ωµ

give a basis for C1
∧(ẽ(2), Ae(2)) (after the natural localisation).
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• Analogously to the previous case one has

f ∗ ϕµ = ϕµ ∗ f, ϕµ ∧ ϕσ = −ϕσ ∧ ϕµ,

df = (Dµf )ϕµ = ([uµ, f ]θ)ϕµ, dϕρ = −1

2
iθf̃ ρ

µν ϕµ ∧ ϕν

• The presence of a 1-form which dualises the outer derivation for Ae(2) means
that centre Z(Ae(2)) is not in the kernel of the d operator.

duC = 2(iθ)uC ϕ4.

• Also in this case we see that the 1 forms ϕµ can not be written as fadga
using only elements in Ae(2).

• Since we localised the algebra upon adding the generator u−1C , we have de-
fined a differential calculus on the algebra Ae(2) deforming the classical alge-
bra F(R3\(x21 + x22 = 0)).
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The case g = h(1)

• For g = h(1) (the Heseinberg-Weyl Lie algebra), with

[x1, x2] = x3, [x2, x3] = 0, [x3, x1] = 0,

and we have Ah(1) ⊂Mθ generated by

u1 = q1, u2 = q2p1, u3 = q2.

The quadratic Casimir function is Ch(1) = u23. The algebra is

Ah(1) = {f ∈ Mθ : [u3, f ]θ = 0}.

• Among the elements in isp(4,R) = (S, [ , ]), the algebra Ah(1) has inner
derivations corresponding to the elements ua above, and exterior derivations
given by DEa(f ) = [uEa, f ]θ for f ∈ Ah(1) with

uE1 = −(p1q1 + p2q2), uE2 = −p2q2.
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• The action of the outer derivation DEa for Ah(1) can be represented
as a commutator on Ah(1) ⊂Mθ in terms of the quadratic element
uEa ∈ S ⊂ Mθ.

•We then span a tangent space for of derivations
for a differential calculus on Ah(1)

Dσ(f ) = [uσ, f ]θ

with {uσ}σ=1,...,4 = {u1, u2, u3, u4 = −µp1q1 − νp2q2}, with µ, ν ∈ R.

They close the Lie algebra h̃(1) = {h(1), µE1 + (ν − µ)E2} with

[u1, u2]θ = (iθ)u3,

[u1, u4]θ = −(iθ)µu1,

[u2, u4]θ = (iθ)(µ− ν)u2,

[u3, u4]θ = −(iθ)νu3.
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• Since h̃(1) ⊂ isp(4,R), we consider the elements
{αρ = duρ}ρ=1,...,4 ∈ (C∧(isp(4,R),Mθ), d),
and see that, if ν 6= 0, the elements

ω1 =
1

2
(u3α2 + (

µ

ν
− 1)u2α3),

ω2 =
1

2
(−u3α1 +

µ

ν
u1α3),

ω3 =
1

2
((1 − µ

ν
)u2α1 −

µ

ν
u1α2 + (iθ)(

µ

ν
− µ2

ν2
)α3 −

1

ν
u3α4),

ω4 =
1

2ν
u3α3

verify
ωρ(Dσ) = (iθ)u3δρσ.
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• After the usual localisation, by adding u−13 corresponding to the Casimir
function, the elements

ϕρ = − i
θ
u−13 ωρ

give a basis for C1
∧(h̃(1), Ah(1)). One has

df = (Dρf )ϕρ = ([uρ, f ]θ)ϕρ.

and
du3 = (iθ)νu3ϕ4,

thus proving that the centre Z(Ah(1)) of the algebra is not in the kernel of
the exterior derivative d.

• Since we localised the algebra upon adding the generator u−1C , we have de-
fined a differential calculus on the algebra Ah(1) deforming the classical al-
gebra F(R3\(x3 = 0)).
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Conclusion

• Our analysis brought to a 4 differential calculus on the algebras Ag ⊂Mθ.
Such algebras deform spaces which are classically 3d. Such classical spaces
are the foliations of the codimension one regular orbits for the action of the
Lie algebra g upon g∗ ' R3.

• Our analysis works for 3d Lie algebras having a global Casimir quadratic
functions. It does not apply to the case g = sb(2,C) which gives the so
called κ-Minkowski space: we are working on it.

• Since we have a (global) frame for the calculi on Ag, we can define symmetric
forms on it (say metrics), spinors, Hodge and Laplacians. The problem we
are concerned with at the moment is that only for semisimple g there exists
a natural invariant metric.
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