Derivation based differential calculi for noncommutative algebras deforming a class of three dimensional spaces

Alessandro Zampini
I.N.F.N. - Napoli

Information geometry, quantum mechanics and applications - Policeta San Rufo 2018

- The aim of this talk is to present the setting and the main results of a paper written with G.Marmo and P.Vitale (2018).
- It concerns the problem of introducing a differential calculus on a family of algebras A with a 3 d Lie type non commutativity.
- The algebras A will be realised as subalgebras of \mathcal{M}^{θ}, the Moyal 4d algebra. The differential calculi will be constructed starting from a suitable Lie algebra of (undeformed) derivations for \mathcal{M}^{θ} which can be reduced to A.

What is a derivation based differential calculus?

- On an orientable N-dim. differentiable manifold M, the differential calculus is the differential graded algebra

$$
\left(\Omega(M)=\oplus_{k=0}^{N} \Omega_{k}(M), \wedge, \mathrm{d}, \mathrm{~d}^{2}=0\right)
$$

with $\mathcal{F}(M)=\Omega_{0}(M)$.

- The $\mathcal{F}(M)$-bimodule $\Omega_{1}(M)$ is dual to the module $\mathfrak{X}(M)$ of vector fields, which coincides with the space of all derivations for $\mathcal{F}(M)$.

$$
i_{X}: \Omega_{k}(M) \rightarrow \Omega_{k-1}(M), \quad L_{X}=\mathrm{d} i_{X}+i_{X} \mathrm{~d}
$$

- The set $\mathcal{X}(M)$ is an infinite dimensional Lie algebra w.r.t.the commutator

$$
\left[X_{1}, X_{2}\right] f=X_{1}\left(X_{2} f\right)-X_{2}\left(X_{1} f\right)
$$

- When, following the Gelfand duality approach, $\mathcal{F}(M)$ is replaced by a (non commutative) algebra \mathcal{A}, the problem of defining a differential calculus for it has been widely studied (see the spectral triple formalism for C^{*}-algebras, the covariant calculus approach for quantum spaces and groups, the twisteddeformed approach)
- We start from a (finite dimensional) Lie algebra of derivations, i.e. $\rho: \mathfrak{l} \rightarrow \operatorname{End}(\mathcal{A})$ with

$$
\begin{aligned}
& {\left[\rho\left(X_{a}\right), \rho\left(X_{b}\right)\right]=\rho\left(\left[X_{a}, X_{b}\right]\right)} \\
& \rho(X)\left(a_{1} a_{2}\right)=\left(\rho(X) a_{1}\right) a_{2}+a_{1}\left(\rho(X) a_{2}\right)
\end{aligned}
$$

- We denote by $C_{\wedge}^{n}(\mathfrak{l}, \mathcal{A})$ the set of $Z(\mathcal{A})$-multilinear alternating mappings

$$
\omega: X_{1} \wedge \cdots \wedge X_{n} \mapsto \omega\left(X_{1}, \ldots, X_{n}\right)
$$

from $\mathfrak{l}^{\otimes n}$ to \mathcal{A}

- On the graded vector space $C_{\wedge}(\mathfrak{l}, \mathcal{A})=\oplus_{j=0}^{j=\operatorname{dim} \mathrm{I}} C_{\wedge}^{n}(\mathfrak{l}, \mathcal{A})$, with $C_{\wedge}^{0}(\mathfrak{l}, \mathcal{A})=\mathcal{A}$, one can define
- a wedge product

$$
\begin{aligned}
& \left(\omega \wedge \omega^{\prime}\right)\left(X_{1}, \ldots, X_{k+s}\right) \\
& \quad=\frac{1}{k!s!} \sum_{\sigma \in \mathcal{S}_{k+s}}(\operatorname{sign}(\sigma)) \omega\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right) \omega^{\prime}\left(X_{\sigma(k+1)}, \ldots, X_{\sigma(k+s)}\right)
\end{aligned}
$$

- an operator $\mathrm{d}: C_{\wedge}^{n}(\mathfrak{l}, \mathcal{A}) \rightarrow C_{\wedge}^{n+1}(\mathfrak{l}, \mathcal{A})$ by

$$
\begin{aligned}
&(\mathrm{d} \omega)\left(X_{0}, X_{1}, \ldots, X_{n}\right)=\sum_{k=0}^{n}(-1)^{k} \rho\left(X_{k}\right)\left(\omega\left(X_{0}, \ldots, \hat{X}_{k}, \ldots, X_{n}\right)\right) \\
&+\frac{1}{2} \sum_{r, s}(-1)^{k+s} \omega\left(\left[X_{r}, X_{s}\right], X_{0}, \ldots, \hat{X}_{r}, \ldots, \hat{X}_{s}, \ldots, X_{n}\right)
\end{aligned}
$$

(with \hat{X}_{r} denoting that the r-th term is omitted), such that dagraded antiderivation with $\mathrm{d}^{2}=0$, so $\left(C_{\wedge}(\mathfrak{l}, \mathcal{A}), \wedge, \mathrm{d}\right)$ is a graded differential algebra.

- On 1-forms we have an \mathcal{A}-bimodule structure with

$$
\left(f_{1} \mathrm{~d} f_{2}\right)(X)=f_{1}\left(\rho(X) f_{2}\right) \quad \text { and } \quad\left(\left(\mathrm{d} f_{2}\right) f_{1}\right)(X)=\left(\rho(X) f_{2}\right) f_{1}
$$

- The operator

$$
\left(i_{X} \omega\right)\left(X_{1}, \ldots, X_{n}\right)=\omega\left(X, X_{1}, \ldots, X_{n}\right)
$$

gives a degree (-1) antiderivation from $C_{\wedge}^{n+1}(\mathfrak{l}, \mathcal{A}) \rightarrow C_{\wedge}^{n}(\mathfrak{l}, \mathcal{A})$.

- The operator defined by $L_{X}=i_{X} \mathrm{~d}+\mathrm{d} i_{X}$ is the degree zero Lie derivative along X, so we have an exterior Cartan calculus on \mathcal{A} depending on a Lie algebra of derivations.
- This exterior algebra is an example of a derivation based calculus. We denote it by $\underline{\Omega}_{r}(\mathcal{A})$.
- The subset $\Omega_{\mathfrak{r}}(\mathcal{A}) \subset \underline{\Omega}_{r}(\mathcal{A})$ is defined as the smallest differential graded subalgebra of $\underline{\Omega}_{r}(\mathcal{A})$ generated in degree 0 by \mathcal{A}.
By construction, every element in $\Omega_{\mathfrak{\imath}}^{n}(\mathcal{A})$ can be written as $a_{0} \mathrm{~d} a_{1} \wedge \cdots \wedge \mathrm{~d} a_{n}$ terms with $a_{j} \in \mathcal{A}$, while this is not necessary for elements in $\underline{\Omega}_{r}(\mathcal{A})$.
- In terms of dual modules, it is

$$
\left(\Omega_{\mathfrak{l}}^{1}(\mathcal{A})\right)^{*}=\operatorname{Der}(A) \quad \text { and } \quad\left(\operatorname{Der}_{\mathfrak{r}}(A)\right)^{*}=\underline{\Omega}_{\mathfrak{r}}(\mathcal{A})
$$

- This difference will be seen in some of the examples we shall describe. If $\mathcal{A}=\mathcal{F}(M)$ for a paracompact manifold, then $\underline{\Omega}_{\mathrm{r}}(\mathcal{A})=\Omega_{\mathfrak{l}}(\mathcal{A})$.

The Moyal algebra

- Given $\left(\mathbb{R}^{2 N}, \omega=\mathrm{d} q_{a} \wedge \mathrm{~d} p_{a}\right)$, for $f, g \in \mathcal{S}\left(\mathbb{R}^{2 N}\right)$ one defines the Moyal product via (with $\theta>0$)

$$
(f * g)(x)=\frac{1}{(\pi \theta)^{2 N}} \iint \mathrm{~d} u \mathrm{~d} v f(x+u) g(x+v) e^{-2 i \omega^{-1}(u, v) / \theta},
$$

The set $\mathcal{A}_{\theta}=\left(\mathcal{S}\left(\mathbb{R}^{2 N}\right), *\right)$ is a non unital pre C^{*}-algebra.

- The set $\mathcal{M}^{\theta}=\mathcal{M}_{L}^{\theta} \cap \mathcal{M}_{R}^{\theta}$ of multipliers is a unital $*$-algebra, and provides the maximal compactification of \mathcal{A}_{θ} defined by duality. It contains polynomial, plane waves, Dirac's δ and its derivatives.
The set $\left(\mathcal{M}^{\theta}, *\right)$ is what we call the Moyal algebra.
- The Moyal product is a non commutative deformation of the pointwise one

$$
f * g \sim f g+\frac{i \theta}{2}\{f, g\}+\sum_{k=2}^{\infty}\left(\frac{i \theta}{2}\right)^{k} \frac{1}{k!} D_{k}(f, g) \quad \text { as } \theta \rightarrow 0
$$

- The commutator deforms the Poisson structure

$$
[f, g]_{\theta}=f * g-g * f=i \theta\{f, g\}+\sum_{s=1}^{\infty} \frac{2}{(2 s+1)!}\left(\frac{i \theta}{2}\right)^{2 s+1} D_{2 s+1}(f, g)
$$

- For degree 1 polynomials we have the CCR

$$
\left[q_{a}, q_{b}\right]_{\theta}=0, \quad\left[p_{a}, p_{b}\right]_{\theta}=0, \quad\left[q_{a}, p_{b}\right]_{\theta}=i \theta \delta_{a b}
$$

while, if $f, g \in S=\mathcal{P}_{0} \oplus \mathcal{P}_{1} \oplus \mathcal{P}_{2}$,

$$
[f, g]_{\theta}=i \theta\{f, g\}
$$

- So $(S,\{\}$,$) is a Poisson subalgebra of \mathcal{F}\left(\mathbb{R}^{4}\right)$, while $\left(S,[,]_{\theta}\right)$ is a Lie subalgebra in \mathcal{M}^{θ} w.r.t. the $*$-product commutator.
It is isomorphic to a one dimensional central extension of the Lie algebra $\mathfrak{i s p}(4, \mathbb{R})$ corresponding to the inhomogeneous symplectic linear group. $\left(S,[,]_{\theta}\right) \sim(S,\{\}$,$) is the maximal Lie algebra acting upon both \mathcal{F}\left(\mathbb{R}^{4}\right)$ and \mathcal{M}^{θ} in terms of derivations.
- Any 3d Lie algebra \mathfrak{g} with $\left[x_{a}, x_{b}\right]=f_{a b}{ }^{c} x_{c}$ is isomorphic to

$$
\left[x_{1}, x_{2}\right]=c x_{3}+h x_{2}, \quad\left[x_{2}, x_{3}\right]=a x_{1}, \quad\left[x_{3}, x_{1}\right]=b x_{2}-h x_{3}
$$

with real parameters a, b, c, h such that $a h=0$.

- The (classical) Jordan - Schwinger map $\pi_{\mathfrak{g}}: \mathbb{R}^{4} \rightarrow \mathfrak{g}^{*} \sim \mathbb{R}^{3}$ can be defined such that

$$
\left\{\pi_{\mathfrak{g}}^{*}\left(x_{a}\right), \pi_{\mathfrak{g}}^{*}\left(x_{b}\right)\right\}=f_{a b}{ }^{c} \pi_{\mathfrak{g}}^{*}\left(x_{c}\right)
$$

The Jordan - Schwinger map $\pi_{\mathfrak{g}}^{*}$ ranges within $\mathcal{P}_{1} \oplus \mathcal{P}_{2} \subset \mathcal{S}$.

- A (quantum, i.e. noncommutative) version of the J.S. map is the vector space inclusion $s_{\mathfrak{g}}: \mathfrak{g}^{*} \hookrightarrow \mathcal{P}_{1} \oplus \mathcal{P}_{2}$ such that

$$
\left[s_{\mathfrak{g}}\left(x_{a}\right), s_{\mathfrak{g}}\left(x_{b}\right)\right]_{\theta}=i \theta f_{a b}^{c} s_{\mathfrak{g}}\left(x_{c}\right)
$$

- For a given 3d Lie algebra \mathfrak{g}, the Moyal product in \mathbb{R}^{4} between $s_{\mathfrak{g}}\left(x_{a}\right)$ depend only on the $s_{\mathfrak{g}}\left(x_{a}\right)$ variables, so there exists a unital complex *-algebra $A_{\mathfrak{g}} \subset$ \mathcal{M}^{θ} which is given as the quotient

$$
A_{\mathfrak{g}}=\left[u_{1}, u_{2}, u_{3}\right] / I_{\mathfrak{g}}:
$$

we are realizing the universal envelopping algebra $A_{\mathfrak{g}}$ as a subalgebra of \mathcal{M}^{θ}.

- We list (some of the) maps $s_{\mathfrak{g}}$, starting by those corresponding to $a \neq 0$. They have a quadratic Casimir function $C_{\mathfrak{g}}$.
- For $\mathfrak{g}=\mathfrak{s u}(2)$ it is $\left[x_{a}, x_{b}\right]=\varepsilon_{a b}{ }^{c} x_{c}$, so $A_{\mathfrak{s u}(2)} \subset \mathcal{M}^{\theta}$ is generated by
$u_{1}=\frac{1}{2}\left(q_{1} q_{2}+p_{1} p_{2}\right), \quad u_{2}=\frac{1}{2}\left(q_{1} p_{2}-q_{2} p_{1}\right), \quad u_{3}=\frac{1}{4}\left(q_{1}^{2}+p_{1}^{2}-q_{2}^{2}-p_{2}^{2}\right)$.
The Casimir function is $C_{\mathfrak{s u}(2)}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}$ with

$$
u_{4}^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}, \quad \quad \text { with } \quad u_{4}=\frac{1}{4}\left(q_{1}^{2}+p_{1}^{2}+q_{2}^{2}+p_{2}^{2}\right)
$$

- For $\mathfrak{g}=\mathfrak{e}(2)$ it is

$$
\left[x_{1}, x_{2}\right]=x_{3}, \quad\left[x_{2}, x_{3}\right]=0, \quad\left[x_{3}, x_{1}\right]=x_{2}
$$

and we have $A_{\mathfrak{e}(2)} \subset \mathcal{M}^{\theta}$ generated by

$$
u_{1}=q_{1} p_{2}-q_{2} p_{1}, \quad u_{2}=q_{1}, \quad u_{3}=q_{2}
$$

The quadratic Casimir function is $C_{\mathfrak{e}(2)}=\left(u_{2}^{2}+u_{3}^{2}\right) / 2$.

- For $\mathfrak{g}=\mathfrak{h}(1)$ (the Heseinberg-Weyl Lie algebra), with

$$
\left[x_{1}, x_{2}\right]=x_{3}, \quad\left[x_{2}, x_{3}\right]=0, \quad\left[x_{3}, x_{1}\right]=0
$$

and we have $A_{\mathfrak{h}(\mathbf{1})} \subset \mathcal{M}^{\theta}$ generated by

$$
u_{1}=q_{1}, \quad u_{2}=q_{2} p_{1}, \quad u_{3}=q_{2} .
$$

The quadratic Casimir function is $C_{\mathfrak{h}(1)}=u_{3}^{2}$.

Derivation based calculi on $A_{\mathfrak{g}}$

- A derivation D for an algebra A is inner if $D a=\left[f_{D}, a\right]$, otherwise it is outer. All derivations for the Moyal algebra \mathcal{M}^{θ} are inner.
- For any algebra $A_{\mathfrak{g}} \subset \mathcal{M}^{\theta}$, the union of its inner and outer derivations close a Lie algebra $\tilde{\mathfrak{g}}$ with $\mathfrak{g} \subseteq \tilde{\mathfrak{g}} \subset \mathfrak{i s p}(4, \mathbb{R})$. The Lie algebra $\tilde{\mathfrak{g}}$ is seen to act via inner derivations upon \mathcal{M}^{θ}, and such action can be projected onto $A_{\mathfrak{g}}$.
- The set $C_{\wedge}\left(\tilde{\mathfrak{g}}, A_{\mathfrak{g}}\right)$ can be then described as a graded subalgebra of $C_{\wedge}\left(\mathfrak{i s p}(4, \mathbb{R}), \mathcal{M}^{\theta}\right)$, the corresponding calculus $\left(C_{\wedge}\left(\tilde{\mathfrak{g}}, A_{\mathfrak{g}}\right), \mathrm{d}\right)$ as a reduction of $\left(C_{\wedge}\left(\mathfrak{i s p}(4, \mathbb{R}), \mathcal{M}^{\theta}\right), \mathrm{d}\right)$.
- Moreover, the differential calculus that we define on $A_{\mathfrak{g}}$ turns out to have a frame, i.e. the exterior algebra is a free $A_{\mathfrak{g}}$-bimodule: this gives a way to study its cohomology.
- Since the structure of the space of derivations for $A_{\mathfrak{g}}$ strongly depends on the Lie algebra \mathfrak{g} being semisimple or not, this talk will consider the two cases separately.

Differential calculus on $A_{\mathfrak{g}}$ for semisimple $\mathfrak{g}=\mathfrak{s u}(2)$

- For a semisimple \mathfrak{g}, all derivations for $A_{\mathfrak{g}}$ are inner.
- The functions u_{1}, u_{2}, u_{3} in \mathbb{R}^{4} close $\left\{u_{a}, u_{b}\right\}=\epsilon_{a b c} u_{c}$, with Casimir

$$
u_{4}^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}, \quad \quad \text { with } \quad u_{4}=\frac{1}{4}\left(q_{1}^{2}+p_{1}^{2}+q_{2}^{2}+p_{2}^{2}\right)
$$

the corresponding Hamiltonian vector fields $\left(X_{1}, X_{2}, X_{3}\right)$ give the right invariant vector fields tangent to S^{3}, while

$$
X_{4}=u_{4}^{-1} \sum_{j=1}^{3} u_{j} X_{j}
$$

- We define the algebra \tilde{A} as

$$
\tilde{A}=\left\{f \in \mathcal{M}^{\theta}:\left[u_{4}, f\right]_{\theta}=0\right\}
$$

which slightly extends $A_{\mathfrak{s u}(2)}$ since it contains the odd powers of u_{4}.

- The algebra \tilde{A} is a noncommutative deformation of the commutative algebra $\mathcal{F}\left(\mathbb{R}^{3} \backslash\{0\}\right)=f \in \mathcal{F}\left(\mathbb{R}^{4} \backslash\{0\}\right): L_{X_{4}} f=0$.
- Within the classical setting, the rank of the space of derivations for A is 3, while the 4 derivations for $\tilde{A} \subset \mathcal{M}^{\theta}$ which are in $\mathfrak{i s p}(4, \mathbb{R})$.

$$
D_{\mu}(f)=\left[u_{\mu}, f\right]_{\theta}, \quad \mu=1, \ldots, 4
$$

are independent and give a 1 d central extension $\tilde{\mathfrak{g}}$ of $\tilde{\mathfrak{g}}=\mathfrak{s u}(2)$.

- The set $C_{\wedge}^{1}\left(\tilde{\mathfrak{g}}, \mathcal{M}^{\theta}\right) \subset C_{\wedge}^{1}\left(\mathfrak{i s p}(4, \mathbb{R}), \mathcal{M}^{\theta}\right)$ contains the elements

$$
\begin{aligned}
\alpha_{1} & =p_{2} * \mathrm{~d} q_{1}+p_{1} * \mathrm{~d} q_{2}-q_{2} * \mathrm{~d} p_{1}-q_{1} * \mathrm{~d} p_{2} \\
\alpha_{2} & =-q_{2} * \mathrm{~d} q_{1}+q_{1} * \mathrm{~d} q_{2}-p_{2} * \mathrm{~d} p_{1}+p_{1} * \mathrm{~d} p_{2} \\
\alpha_{3} & =p_{1} * \mathrm{~d} q_{1}-p_{2} * \mathrm{~d} q_{2}-q_{1} * \mathrm{~d} p_{1}+q_{2} * \mathrm{~d} p_{2} \\
\beta & =q_{1} * \mathrm{~d} q_{1}+q_{2} * \mathrm{~d} q_{2}+p_{1} * \mathrm{~d} p_{1}+p_{2} * \mathrm{~d} p_{2}
\end{aligned}
$$

which satisfy the identities $(j, k=1, \ldots, 3)$

$$
\begin{aligned}
\alpha_{j}\left(D_{k}\right)=-2 i \theta \delta_{j k} u_{4}, & \alpha_{j}\left(D_{4}\right)=-2 i \theta u_{j} \\
\beta\left(D_{k}\right)=0, & \beta\left(D_{4}\right)=\theta^{2}
\end{aligned}
$$

- Upon defining

$$
\omega_{j}=\frac{i}{2 \theta} \alpha_{j}-\frac{1}{\theta^{2}} u_{k} \beta, \quad \omega_{4}=\frac{1}{\theta^{2}} u_{4} \beta
$$

we have $(\mu, \sigma=1, \ldots, 4)$

$$
\omega_{\mu}\left(D_{\sigma}\right)=u_{4} \delta_{\mu \sigma}
$$

- Since $u_{4} \in Z(\tilde{A})$, we extend \tilde{A} upon a localization, i.e. we define the element u_{4}^{-1} via the relations $u_{4}^{-1} u_{4}=u_{4} u_{4}^{-1}=1$ and $u_{4}^{-1} u_{k}=u_{k} u_{4}^{-1}$ for $k=1, \ldots, 3$.
- The vector space $\mathcal{D} \simeq \tilde{\mathfrak{g}}$ is the tangent space to the noncommutative space described by the algebra \tilde{A}. The elements

$$
\varphi_{\mu}=u_{4}^{-1} \omega_{\mu}
$$

provide a basis for \mathcal{D}^{*}.
The action of the exterior derivative upon \tilde{A} is given by

$$
\mathrm{d} f=\left(D_{\mu} f\right) \varphi_{\mu}
$$

where $D_{\mu} f=\left[u_{\mu}, f\right]_{\theta}$. The exterior algebra is defined as we saw.

- For this calculus we have

$$
\begin{aligned}
& f * \varphi_{\mu}=\varphi_{\mu} * f \\
& \varphi_{\mu} \wedge \varphi_{\sigma}=-\varphi_{\sigma} \wedge \varphi_{\mu} \\
& \mathrm{d} \varphi_{j}=-\frac{1}{2} \varepsilon_{j k l} \varphi_{k} \wedge \varphi_{l} \quad(j, k, l \in 1, \ldots, 3) \\
& \mathrm{d} \varphi_{4}=0
\end{aligned}
$$

The Maurer-Cartan equation for the differential calculus depends on $\tilde{\mathfrak{g}}$, and its cohomology is related to the Eilenberg-Chevalley cohomology for $\tilde{\mathfrak{g}}$.

- Notice that the elements φ_{a} cannot be realised as $\sum_{a=1}^{3} f_{a} \mathrm{~d} u_{a}$, so $C_{\wedge}(\tilde{\mathfrak{g}}, \tilde{A})$ extends the differential calculus ($\Omega_{\tilde{\mathfrak{g}}}$, d) given as the smallest graded differential subalgebra of $C_{\wedge}(\tilde{\mathfrak{g}}, \tilde{A})$ generated in degree 0 by \tilde{A} as described in the introduction.
- The Lie algebra $\mathfrak{g}=\mathfrak{e}(2)$ is

$$
\left[x_{1}, x_{2}\right]=x_{3}, \quad\left[x_{2}, x_{3}\right]=0, \quad\left[x_{3}, x_{1}\right]=x_{2}
$$

The Jordan - Schwinger map is given by

$$
u_{1}=q_{1} p_{2}-q_{2} p_{1}, \quad u_{2}=q_{1}, \quad u_{3}=q_{2}
$$

The quadratic Casimir function is $u_{C}=\left(u_{2}^{2}+u_{3}^{2}\right) / 2=\left(q_{1}^{2}+q_{2}^{2}\right) / 2$. The algebra is

$$
A_{\mathfrak{e}(2)}=\left\{f \in \mathcal{M}^{\theta}:\left[u_{C}, f\right]_{\theta}=0\right\} .
$$

- Among the elements in $\mathfrak{i s p}(4, \mathbb{R})=\left(\mathcal{S},[,]_{\theta}\right)$, the algebra $A_{\mathfrak{e}(2)}$ has inner derivations corresponding to elements u_{a} given above, and one exterior derivation

$$
u_{E}=-\left(q_{1} p_{1}+q_{2} p_{2}\right), \quad D_{E} f=\left[u_{E}, f\right]_{\theta}, \quad f \in A_{\mathfrak{e}(2)}
$$

- This means that the action of the outer derivation D_{E} for \tilde{A} can be represented as a commutator on $\tilde{A} \subset \mathcal{M}^{\theta}$ as an inner derivation that can be projected.
The element u_{E} is defined up to an arbitrary function of the quadratic Casimir u_{C}, but this does not affect any of the results we shall describe.
- The Lie algebra of derivations for $A_{\mathfrak{e}(2)}$ is then given by $\tilde{e}(2)$ spanned by $\left\{u_{1}, u_{2}, u_{3}, u_{E}\right\}$ w.r.t. the $*$-product in \mathcal{M}^{θ}. It is a 1 d extension of $\mathfrak{e}(2)$ as

$$
\left[u_{\mu}, u_{\nu}\right]_{\theta}=i \theta \tilde{f}_{\mu \nu}^{\rho} u_{\rho}, \quad \quad \quad, \nu, \rho=1, \ldots, 4
$$

- The set $\mathcal{D} \simeq \tilde{\mathfrak{e}}(2)$ gives the tangent space to the differential calculus. Since $\tilde{\mathfrak{e}}(2) \subset \mathfrak{i s p}(4, \mathbb{R})$, we consider the elements $\alpha_{\mu}=\mathrm{d} u_{\mu}$.
- The elements in $C_{\wedge}^{1}\left(\mathfrak{i s p}(4, \mathbb{R}), \mathcal{M}^{\theta}\right)$ given by

$$
\begin{aligned}
\omega_{1} & =\frac{1}{2}\left(u_{3} \alpha_{2}-u_{2} \alpha_{3}\right), \\
\omega_{2} & =-\frac{1}{2}\left(u_{3} \alpha_{1}+u_{2} \alpha_{E}\right), \\
\omega_{3} & =\frac{1}{2}\left(u_{2} \alpha_{1}-u_{3} \alpha_{E}\right), \\
\omega_{E} & =\frac{1}{2}\left(u_{2} \alpha_{2}+u_{3} \alpha_{3}\right)
\end{aligned}
$$

verify (with $\mu=1, \ldots, 4$)

$$
\omega_{\mu}\left(D_{\sigma}\right)=(i \theta) u_{C} \delta_{\mu \sigma}
$$

so the elements

$$
\varphi_{\mu}=-\frac{i}{\theta} u_{C}^{-1} \omega_{\mu}
$$

give a basis for $C_{\wedge}^{1}\left(\tilde{\mathfrak{e}}(2), A_{\mathfrak{e}(2)}\right)$ (after the natural localisation).

- Analogously to the previous case one has

$$
\begin{aligned}
f * \varphi_{\mu}=\varphi_{\mu} * f, & \varphi_{\mu} \wedge \varphi_{\sigma}=-\varphi_{\sigma} \wedge \varphi_{\mu} \\
\mathrm{d} f=\left(D_{\mu} f\right) \varphi_{\mu}=\left(\left[u_{\mu}, f\right]_{\theta}\right) \varphi_{\mu}, & \mathrm{d} \varphi_{\rho}=-\frac{1}{2} i \theta \tilde{f}_{\mu \nu}^{\rho} \varphi_{\mu} \wedge \varphi_{\nu}
\end{aligned}
$$

- The presence of a 1-form which dualises the outer derivation for $A_{\mathfrak{e}(2)}$ means that centre $Z\left(A_{\mathfrak{e}(2)}\right)$ is not in the kernel of the d operator.

$$
\mathrm{d} u_{C}=2(i \theta) u_{C} \varphi_{4}
$$

- Also in this case we see that the 1 forms φ_{μ} can not be written as $f_{a} \mathrm{~d} g_{a}$ using only elements in $A_{\mathfrak{e}(2)}$.
- Since we localised the algebra upon adding the generator u_{C}^{-1}, we have defined a differential calculus on the algebra $A_{\mathfrak{e}(2)}$ deforming the classical algebra $\mathcal{F}\left(\mathbb{R}^{3} \backslash\left(x_{1}^{2}+x_{2}^{2}=0\right)\right)$.
- For $\mathfrak{g}=\mathfrak{h}(1)$ (the Heseinberg-Weyl Lie algebra), with

$$
\left[x_{1}, x_{2}\right]=x_{3}, \quad\left[x_{2}, x_{3}\right]=0, \quad\left[x_{3}, x_{1}\right]=0
$$

and we have $A_{\mathfrak{h}(\mathbf{1})} \subset \mathcal{M}^{\theta}$ generated by

$$
u_{1}=q_{1}, \quad u_{2}=q_{2} p_{1}, \quad u_{3}=q_{2}
$$

The quadratic Casimir function is $C_{\mathfrak{h}(1)}=u_{3}^{2}$. The algebra is

$$
A_{\mathfrak{h}(1)}=\left\{f \in \mathcal{M}^{\theta}:\left[u_{3}, f\right]_{\theta}=0\right\}
$$

- Among the elements in $\mathfrak{i s p}(4, \mathbb{R})=(\mathcal{S},[]$,$) , the algebra A_{\mathfrak{h}(1)}$ has inner derivations corresponding to the elements u_{a} above, and exterior derivations given by $D_{E_{a}}(f)=\left[u_{E_{a}}, f\right]_{\theta}$ for $f \in A_{\mathfrak{h}(1)}$ with

$$
u_{E_{1}}=-\left(p_{1} q_{1}+p_{2} q_{2}\right), \quad u_{E_{2}}=-p_{2} q_{2}
$$

- The action of the outer derivation $D_{E_{a}}$ for $A_{\mathfrak{h}(1)}$ can be represented as a commutator on $A_{\mathfrak{h}(1)} \subset \mathcal{M}^{\theta}$ in terms of the quadratic element $u_{E_{a}} \in S \subset \mathcal{M}^{\theta}$.
- We then span a tangent space for of derivations for a differential calculus on $A_{\mathfrak{h}(1)}$

$$
D_{\sigma}(f)=\left[u_{\sigma}, f\right]_{\theta}
$$

with $\left\{u_{\sigma}\right\}_{\sigma=1, \ldots, 4}=\left\{u_{1}, u_{2}, u_{3}, u_{4}=-\mu p_{1} q_{1}-\nu p_{2} q_{2}\right\}$, with $\mu, \nu \in \mathbb{R}$.
They close the Lie algebra $\tilde{\mathfrak{h}}(1)=\left\{\mathfrak{h}(1), \mu E_{1}+(\nu-\mu) E_{2}\right\}$ with

$$
\begin{aligned}
& {\left[u_{1}, u_{2}\right]_{\theta}=(i \theta) u_{3}} \\
& {\left[u_{1}, u_{4}\right]_{\theta}=-(i \theta) \mu u_{1}} \\
& {\left[u_{2}, u_{4}\right]_{\theta}=(i \theta)(\mu-\nu) u_{2}} \\
& {\left[u_{3}, u_{4}\right]_{\theta}=-(i \theta) \nu u_{3}}
\end{aligned}
$$

- Since $\tilde{\mathfrak{h}}(1) \subset \mathfrak{i s p}(4, \mathbb{R})$, we consider the elements $\left\{\alpha_{\rho}=\mathrm{d} u_{\rho}\right\}_{\rho=1, \ldots, 4} \in\left(C_{\wedge}\left(\mathfrak{i s p}(4, \mathbb{R}), \mathcal{M}^{\theta}\right), \mathrm{d}\right)$, and see that, if $\nu \neq 0$, the elements

$$
\begin{aligned}
& \omega_{1}=\frac{1}{2}\left(u_{3} \alpha_{2}+\left(\frac{\mu}{\nu}-1\right) u_{2} \alpha_{3}\right), \\
& \omega_{2}=\frac{1}{2}\left(-u_{3} \alpha_{1}+\frac{\mu}{\nu} u_{1} \alpha_{3}\right), \\
& \omega_{3}=\frac{1}{2}\left(\left(1-\frac{\mu}{\nu}\right) u_{2} \alpha_{1}-\frac{\mu}{\nu} u_{1} \alpha_{2}+(i \theta)\left(\frac{\mu}{\nu}-\frac{\mu^{2}}{\nu^{2}}\right) \alpha_{3}-\frac{1}{\nu} u_{3} \alpha_{4}\right), \\
& \omega_{4}=\frac{1}{2 \nu} u_{3} \alpha_{3}
\end{aligned}
$$

verify

$$
\omega_{\rho}\left(D_{\sigma}\right)=(i \theta) u_{3} \delta_{\rho \sigma} .
$$

- After the usual localisation, by adding u_{3}^{-1} corresponding to the Casimir function, the elements

$$
\varphi_{\rho}=-\frac{i}{\theta} u_{3}^{-1} \omega_{\rho}
$$

give a basis for $C_{\wedge}^{1}\left(\tilde{\mathfrak{h}}(1), A_{\mathfrak{h}(1)}\right)$. One has

$$
\mathrm{d} f=\left(D_{\rho} f\right) \varphi_{\rho}=\left(\left[u_{\rho}, f\right]_{\theta}\right) \varphi_{\rho} .
$$

and

$$
\mathrm{d} u_{3}=(i \theta) \nu u_{3} \varphi_{4},
$$

thus proving that the centre $Z\left(A_{\mathfrak{h}(1)}\right)$ of the algebra is not in the kernel of the exterior derivative d.

- Since we localised the algebra upon adding the generator u_{C}^{-1}, we have defined a differential calculus on the algebra $A_{\mathfrak{h}(1)}$ deforming the classical algebra $\mathcal{F}\left(\mathbb{R}^{3} \backslash\left(x_{3}=0\right)\right)$.
- Our analysis brought to a 4 differential calculus on the algebras $A_{\mathfrak{g}} \subset \mathcal{M}^{\theta}$. Such algebras deform spaces which are classically 3d. Such classical spaces are the foliations of the codimension one regular orbits for the action of the Lie algebra \mathfrak{g} upon $\mathfrak{g}^{*} \simeq \mathbb{R}^{3}$.
- Our analysis works for 3d Lie algebras having a global Casimir quadratic functions. It does not apply to the case $\mathfrak{g}=\mathfrak{s b}(2, \mathbb{C})$ which gives the so called κ-Minkowski space: we are working on it.
- Since we have a (global) frame for the calculi on $A_{\mathfrak{g}}$, we can define symmetric forms on it (say metrics), spinors, Hodge and Laplacians. The problem we are concerned with at the moment is that only for semisimple \mathfrak{g} there exists a natural invariant metric.

Bibliography

- J. M. Gracia-Bondía, F. Lizzi, G. Marmo, P. Vitale, Infinitely many star products to play with, JHEP 04 (2002) 026
- V. I. Man'ko, G. Marmo, P. Vitale, F. Zaccaria, A generalization of the Jordan - Schwinger map: classical version and its q-deformation, Int. J. Mod. Phys. A9 (1994) 5541
- G. Marmo, P. Vitale, A. Z., Noncommutative differential calculus for Moyal subalgebras, J. of Geom. Phys. 56 (2006) 611
- G. Marmo, P. Vitale, A. Z., Derivation based differential calculi for noncommutative algebras deforming a class of three dimensional spaces, arXiv:1805.06300[math.QA]

