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Aim of the talk

How should we modify the equations of quantum mechanics when
dealing with observables that do not preserve the domain of the
Hamiltonian?

Plan

• Motivation.

• Self-adjoint extensions of symmetric operators.

• Anomalous Heisenberg equation.

• Hellmann-Feynman theorem.

• Virial theorem.

• Quantum quench dynamics.
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Motivation

- H infinite dimensional Hilbert space.

- H unbounded self-adjoint Hamiltonian with dense domain DH .

- B bounded observable.

The equation for the evolution of B in the Heisenberg picture is

d

dt
B = i[H,B]

This expression makes sense in DH if B(DH) ⊂ DH ,

but what, if this does not happen?
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Motivation. Example.

H = L2([0, 1]), Hα = −1

2
∂2x with

Dα = {ψ ∈ AC2([0, 1]) | ψ(1) = eiαψ(0), ψ′(1) = eiαψ′(0)}

Consider the parity operator Pψ(x) = ψ(1− x)

P (Dα) = D−α

For α 6= 0, π the domain is not preserved.

And the Heisenberg equation

d

dt
P = i(HαP − PHα)

does not make sense in Dα
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Self-adjoint extensions of symmetric operators

H̃ closed symmetric operator with dense domain DH̃ ⊂ H

〈χ1|H̃χ2〉 = 〈H̃χ1|χ2〉

The adjoint operator H̃† has domain

DH̃† = {ψ ∈ H| 〈ψ|H · 〉 : DH̃ → C, bounded}

Riesz rep. thm.: there is a H†ψ ∈ H s. t.

〈ψ|H̃ · 〉 = 〈H̃†ψ| · 〉

Obviously:

DH̃ ⊂ DH̃† and

H̃†|DH̃ = H̃ or equiv. H̃ ⊂ H̃†
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Boundary values.

The abstract space of boundary values is the quotient

B = DH̃†/DH̃

Example:

H0 = −1
2∂

2
x with domain D0 = {χ ∈ AC2([0, 1]) | 0, 1 6∈ supp(χ)}

H0 is symmetric but not closed.

Its closure is H̃ = −1
2∂

2
x with domain

DH̃ = {χ ∈ AC2([0, 1]) |χ(0) = χ(1) = χ′(0) = χ′(1) = 0}

DH̃† = AC2([0, 1])
B ∼ C4

DH̃†/DH̃ 3 [ψ] 7→ (ψ(0), ψ(1), ψ′(0), ψ′(1)) ∈ C4
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Boundary conditions.

Extensions of H̃ are obtained through the choice of boundary
conditions i. e. a subspace of the boundary values

C ⊂ B.

The extension H ⊃ H̃ is

H = H̃†|DH

with
DH = π−1(C)

and π is the projection

π : DH̃† → DH̃†/DH̃

Relation between boundary conditions of H and its adjoint?
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Boundary flux.

We introduce the boundary flux

A(ψ1, ψ2) = i 〈H̃†ψ1, ψ2〉 − i 〈ψ1, H̃
†ψ2〉 , ψ1, ψ2 ∈ DH̃†

which is a symmetric sesquilinear form

A(ψ1, ψ2) = A(ψ2, ψ1)

A is degenerate, actually

A(ψ, χ) = 0 for any ψ ∈ DH̃† ⇐⇒ χ ∈ DH̃

therefore kerA = DH̃ and A is a boundary term.

It projects to a non degenerate, sesquilinear, symmetric form in the
space of boundary values

A : B × B → C
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Example

H̃† = −1
2∂

2
x, DH̃† = AC2([0, 1])

A(ψ1, ψ2) =
1

2
(ψ1(0), ψ

′
1(0), ψ1(1), ψ

′
1(1))


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0



ψ2(0)
ψ′2(0)
ψ2(1)
ψ′2(1)



=
1

2
(φ

+
1 (0), φ

−
1 (0), φ

+
1 (1), φ

−
1 (1))


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



φ+2 (0)
φ−2 (0)
φ+2 (1)
φ−2 (1)


with φ±i = 1√

2
(ψi ± iψ′i)
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Boundary flux

A is important for the theory of self-adjoint extensions, because for
any H s.t.

H̃ ⊂ H ⊂ H̃†

the domain of its adjoint is the A-orthogonal of DH ,

DH† = D
⊥
A

H

Proof:

ψ ∈ DH† ⇐⇒ 〈ψ|H·〉 bounded in DH

⇐⇒ 〈ψ|H·〉 − 〈H†ψ|·〉 = 0 in DH

⇐⇒ A(ψ, ·) = 0 in DH

⇐⇒ ψ ∈ D ⊥AH

Then H is self-adjoint (DH = DH†) if and only if D
⊥
A

H = DH

or, in other words, iff DH is an A-Lagrangian subspace.
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Lagrangian subspaces

A way to produce A-Lagrangian subspaces L ⊂ B is as follows.

- Introduce a Hermitian product (·, ·) in B s. t.

B = B+ ⊥ B− and A([ψ1], [ψ2]) = ([ψ+
1 ], [ψ

+
2 ])− ([ψ−1 ], [ψ

−
2 ])

- The previous is not canonical but n+ = dimB+, n− = dimB−
are invariant (default indices).

- If n+ 6= n− there are not A-Lagrangian subspaces.

- If n+ = n−, the A-lagrangian subspaces L are of the form:

L = (I + U)B+ with U : B+ → B− unitary w.r.t. (·, ·)

. There are several ways of accomplishing this program
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Lagrangian subspaces. Examples

i) von Neumann

(ψ1, ψ2) = 〈ψ1|ψ2〉+ 〈H̃†ψ1|H̃†ψ2〉

Define H± = ker(H̃† ± i), then DH̃† = DH̃ ⊥ H+ ⊥ H−

DH̃†/DH̃ ∼ H+ ⊥ H− and

A(ψ+
1 + ψ−1 , ψ

+
1 + ψ−1 ) = (ψ+

1 , ψ
+
2 )− (ψ−1 , ψ

−
2 )

ii) Asorey-Ibort-Marmo

H̃† = −1
2∂

2
x, B ∼ C4 with standard scalar product (·, ·)

B+ = span{(1, i, 0, 0), (0, 0, 1,−i)}
B− = span{(1,−i, 0, 0), (0, 0, 1, i)}.

A(w1, w2) =
1

2
(w+

1 , w
+
2 )−

1

2
(w−1 , w

−
2 )
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Anomalous Heisenberg equation

Let H : DH → H be a self-adjoint extension of H̃.

B bounded observable s. t. B(DH) 6⊂ DH ,

but B(DH̃) ⊂ DH̃ and B(DH̃†) ⊂ DH̃† .

d

dt
〈ψ1|Bψ2〉 = −i 〈ψ1|BHψ2〉+ i 〈Hψ1|Bψ2〉

= −i 〈ψ1|BH̃†ψ2〉+ i 〈ψ1|H̃†Bψ2〉

+i 〈H̃†ψ1|Bψ2〉 − i 〈ψ1|H̃†Bψ2〉

= i 〈ψ1|[H̃†, B]ψ2〉+A(ψ1, Bψ2)

For time dependent B:

d

dt
〈ψ1|Bψ2〉 = 〈ψ1|

(
∂

∂t
B + i[H̃†, B]

)
ψ2〉+A(ψ1, Bψ2)
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Anomalous Heisenberg equation. Example.

Hα = −1
2∂

2
x,

Dα = {ψ ∈ AC2([0, 1]) | ψ(1) = eiαψ(0), ψ′(1) = eiαψ′(0)}

H̃† = −1
2∂

2
x, DH̃† = AC2([0, 1])

Pψ(x) = ψ(1− x), P (Dα) = D−α

[H̃†, P ] = 0 then

d

dt
〈ψ1|Pψ2〉 = A(ψ1, Pψ2)

= 2(ψ1(0)ψ
′
2(0)− ψ

′
1(0)ψ2(0)) sinα

Anomaly cancels for α = 0 and α = π, when Dα is P -invariant.
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Hellmann-Feynman theorem

The previous also applies to the Hellmann-Feynman theorem:

Consider an α-dependent Hamiltonian Hα with domain Dα,

Hαψα = Eαψα, 〈ψα|ψα〉 = 1

Then the Hellmann-Feynman theorem says

dEα
dα

= 〈ψα|
∂Hα

∂α
ψα〉

But: Hα = −1

2
∂2x

Dα = {ψ ∈ AC2([0, 1]) | ψ(1) = eiαψ(0), ψ′(1) = eiαψ′(0)}.

Then Eα = (2πn+ α)2 and

∂Hα

∂α
= 0 while

∂Eα
∂α

= 4π(2πn+ α)

The problem is that ψα is not in the domain of Hα′
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Hellmann-Feynman theorem. A closer look.

Take H̃α ⊂ Hα ⊂ H̃†α and assume ψα ∈ DH̃†
α′
, for any α, α′

Then Eα = 〈ψα|H̃†α ψα〉 and the following holds

dEα
dα

= 〈∂ψα
∂α
|H̃†α ψα〉+ 〈ψα|

∂H̃†α
∂α

ψα〉+ 〈ψα|H̃†α
∂ψα
∂α
〉

But given that H̃†α ψα = Eαψα and 〈ψα|ψα〉 = 1 we have

〈∂ψα
∂α
|H̃†α ψα〉 = 〈H̃†αψα|

∂ψα
∂α
〉 = 0

Then the generalization of Hellmann-Feynman theorem reads.

dEα
dα

= 〈ψα|
∂H̃†α
∂α

ψα〉+ iA(ψα,
∂ψα
∂α

)
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Virial theorem

A similar anomalous disease infects the virial theorem.

Take H = L2([0, 1]) and H = T + V (x) with T = −1
2∂

2
x, then for

any stationary state, the virial theorem says

2 〈ψn|T |ψn〉 = 〈ψn|x∂xV |ψn〉

But: Take V = 0 and periodic boundary conditions, then
ψn(x) = e2πinx

〈ψn|T |ψn〉 = 2π2n2 while 〈ψn|x∂xV |ψn〉 = 0

In this occasion both expectation values are well defined with the
operators correctly acting in their domains.

Where is the problem?
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Virial theorem. A closer look.

In order to prove the virial theorem we introduce the virial operator
G = x∂x, such that in the appropriate domain

[H,G] = 2T − x∂xV (x).

But Gψn 6∈ DH and 〈ψn|[H,G]|ψn〉 does not make sense.

A way to proceed is to extend H to H̃† so that Gψn ∈ DH̃† and

〈ψn|[H̃†, G]|ψn〉 = 〈ψn|2T − x∂xV (x)|ψn〉 .

Now using 〈ψn|GH̃†|ψn〉 = 〈H̃†ψn|G|ψn〉 = En 〈ψn|G|ψn〉,

〈ψn|2T − x∂xV (x)|ψn〉 = iA(ψn, Gψn)
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Quantum quench dynamics

Take ψ0 ∈ DH0 and suddenly change H0 to H, then the state
evolves with the new Hamiltonian, but ψ0 is not in its domain...

We define the unitary operator UH(t) = eiHt in DH (by functional
calculus for instance) and then it is continuously extended to the
full Hilbert space.

ψ(t) = UH(t)ψ0

ψ(t) is strongly continuous but, in general, it is not differentiable.

Also ψ(t) 6∈ DH0 and even considering the extension H̃† ⊃ H,H0

ψ(t) 6∈ DH̃†

.
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Quantum quench dynamics. Example

Let us consider an example in L2(R).

H̃ = −i∂x, DH̃ = {ψ ∈ AC(R) | ψ(0) = 0}

H̃† = −i∂x, DH̃† = AC(R−)⊕AC(R+)

Self-adjoint extensions Hα are parametrized by a phase eiα such
that Dα = {ψ ∈ DH̃† |ψ(0+) = eiαψ(0−)}

They can be understood as the insertion of a δ-function.

Hαψ(x) = −i∂xψ(x) + aδ(x) (ψ(0+) + ψ(0−)), eiα =
a− i

a+ i

Then, a quench that changes α is like changing the strength of the
δ potential.
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Quantum quench dynamics. Example

In this example it is easy to compute the evolution.

For t > 0 one has

Uα(t)ψ(x) =

{
ψ(x− t) x /∈ (0, t)

eiαψ(x− t) x ∈ (0, t)

• Observe that for ψ ∈ DH̃† we have

Uα(t)ψ(0
+) = eiαψ(−t+) = eiαψ(−t−) = eiαUα(t)ψ(0

−)

That is, the boundary conditions are fulfilled

• If ψ(0+) 6= eiαψ(0−) evolution produces a singularity in x = t.

Uα(t)ψ(t
+) = ψ(0+), Uα(t)ψ(t

−) = eiαψ(0−)
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Conclusions

The introduction of observables that do not preserve the domain of
the Hamiltonian induces the appearance of anomalous boundary
terms.

These terms modify several equation of quantum mechanics like
Heisenberg equation, Hellmann-Feynman theorem or the virial
theorem.

When the initial state is not in the domain of the Hamiltonian (like
it could happen in a quench) the evolution may drive the system
outside the domain of H̃†.

In some cases the boundary conditions are instantaneously restored
while in the bulk there appear singularities.
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