Entanglement generation and bound states in one-dimensional QED

Saverio Pascazio

Dipartimento di Fisica, Universita' di Bari, Italy CNR-INO Firenze, Italy INFN, Bari, Italy
E. Ercolessi, G. Magnifico (BO)
P. Facchi, F.V. Pepe, D. Pomarico (Bari)
M.S. Kim, T. Tufarelli (Imperial, London)
S. Notarnicola (SISSA), G. Marmo (NA)
K. Yuasa (Waseda, Tokyo)

San Rufo, 27 June 2018

quantum physics in 1D

- quantum emitters in 1D waveguides
- simulations of quantum field theories
- 1D effects: slow light, ultra-strong coupling
T. Giamarchi, Quantum Physics in One Dímension, 2004
Y. Kuramoto and Y. Kato, Dynamics of One-Dímensional Quantum Systems: Inverse-Square Interaction Models, 2009

preliminaries: (Q)ED in 1D

Schwinger, Coleman, Kogut, Susskind, Casher, 't Hooft, Parisi thinking about confinement mechanisms

Gauss' law in 1D

Theories with local symmetries (to be satisfied at every point)
CLASSICAL (electrodynamics)
$\underset{\vec{E}}{\vec{E}} e^{-} \stackrel{\rightharpoonup}{\stackrel{E}{e}}$ $\stackrel{\rightharpoonup}{E}$

$$
\rho=\vec{\nabla} \cdot \vec{E}
$$

QUANTUM (QED)

Gauss' law

$$
\begin{aligned}
& \psi_{x}^{\dagger} \psi_{x}|\Psi\rangle=\Delta E_{x, x+a}|\Psi\rangle \\
& \text { (site) } \quad \text { (links) }
\end{aligned}
$$

QED in ID: string breaking larger L

$\xrightarrow{\text { (}} \mathrm{C}$ waveguide (along x)

$$
\left.E_{x}\right|_{S}=0 \quad \text { and }\left.\quad \frac{\partial B_{x}}{\partial n}\right|_{S}=0 \quad \text { surface } S
$$

$$
B_{x}=B_{0} \cos \left(\frac{\pi y}{L_{y}}\right) e^{i\left(k x-\omega_{1,0}(k) t\right)}
$$

$\mathrm{TE}_{1,0}$ mode $B_{y}=-i \frac{k L_{y} B_{0}}{\pi} \sin \left(\frac{\pi y}{L_{y}}\right) e^{i\left(k x-\omega_{1,0}(k) t\right)}$,

$$
E_{z}=i \frac{\omega_{1,0}(k) L_{y} B_{0}}{\pi} \sin \left(\frac{\pi y}{L_{y}}\right) e^{i\left(k x-\omega_{1,0}(k) t\right)}
$$

$$
A_{z}=\frac{L_{y} B_{0}}{\pi} \sin \left(\frac{\pi y}{L_{y}}\right) e^{i\left(k x-\omega_{1,0}(k) t\right)} \quad \text { vector potential }
$$

$$
\begin{aligned}
& \omega_{m, n}(k)=\sqrt{(v k)^{2}+\omega_{m, n}(0)^{2}} \\
& \omega_{m, n}(0)=v\left[\left(\frac{m \pi y}{L_{y}}\right)^{2}+\left(\frac{n \pi z}{L_{z}}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

$$
H^{(1,0)}=\mathcal{E}_{e l}^{(1,0)}+\mathcal{E}_{m a g}^{(1,0)}
$$

$$
=\int d k \hbar \omega_{1,0}(k) a^{\dagger}(k) a(k) \quad \text { free Hamiltonian }
$$

$$
=\hbar v \int d k \sqrt{k^{2}+\left(\frac{\pi}{L_{y}}\right)^{2}} a^{\dagger}(k) a(k)
$$

atom + interaction

$$
\begin{aligned}
H_{\mathrm{at}} & =\frac{1}{2 m_{e}}\left(\boldsymbol{p}-e \boldsymbol{A}^{(1,0)}(\boldsymbol{r})\right)^{2}+V(\boldsymbol{r}) \\
& =H_{\mathrm{at}}^{0}-\frac{e}{m_{e}} \boldsymbol{p} \cdot \boldsymbol{A}^{(1,0)}(\boldsymbol{r})+\frac{e^{2}}{2 m_{e}}\left(\boldsymbol{A}^{(1,0)}(\boldsymbol{r})\right)^{2}
\end{aligned}
$$

interaction

$$
\begin{aligned}
H_{\mathrm{int}}^{(d i p, R W)}=\omega_{0} D_{e g} & \left(\frac{\hbar}{2 \pi \epsilon v L_{y} L_{z}}\right)^{\frac{1}{2}} \int \frac{d k}{\left(k^{2}+(v M / \hbar)^{2}\right)^{1 / 4}} \\
& \times\left[b(k)|e\rangle\langle g| e^{i k x_{0}}+b^{\dagger}(k)|g\rangle\langle e| e^{-i k x_{0}}\right]
\end{aligned}
$$

atom A in $x_{0}=0$ and atom B in $x_{0}=d$

First principles

Bound states and entanglement generationin an initially factorized atomic state can spontaneously relax
towards a ang-lived entangled state. By analyzing the poles
of he resolvent operator, we have shown how to quantify he or he eresolvent operation, we have shown how to quanatify the
robustss of the entangled bound state to small varation
in in the model parameters, and how to idenitify the time scales
that are crucial for the preparation of an entangled state by relaxation.
While it
ha may be achievabable in waveguide--QED trough effective phototon
 frecom may asso hold significant potential for application
in quatumum information $[50]$ Further investigation will thu
he be devoted to the analysis of many-atom systems $511-541$, is
which hhoton-mediates interacioss could Which photon-mediated interactions could possibly pro
stable configurations such as W states or cluster states.

acknowledgaents

We thank F. Ciccarello for useful discussions. M.S.K.
thanks the UK EPSRC, the Royal Society, and the FP7 Marie hanks the UK EPSRC, the Royal Society, and he FP7 Marii
Curie programe (GGant No. 3 ITh32) P. P. was partiall supported by the Italian National Group of Mathematical
Physics (GNFM-INdAM) P.F., S.P. and F.V.P. are partially Physics (GN.N-INdAM). P.F. S.P., and F.V.P. are partiall
supported by Istiuto Nazional di Fisa Nucleare (INFN)
through the proiect "UUANTUM."

APPENDIX A: Derivation of the e
FIELD HAMILONIAN
We derive here the Hamiltonian in Eq. (1) of the mair lext from first principles. Let us consider a waveguide of
infinite length, paralles to the x axis, characterized by fectangular cross section with $y \in\left[0, L_{l}\right]$ and $z \in\left[0, L_{2}\right]$ We
 with uniform density and coated made oonducting mateierectric the boundary conditions for the electric and magnetic fields on the
surface S read

$$
E_{x} \mid S=0 \quad \text { and }\left.\quad \frac{\partial B_{x}}{\partial n}\right|_{S}=0
$$

with $\partial \not \partial n$ denoting the normal derivative with respect to the
surface. Transverse electric (TE) modes are characterized by urface. Transverse electric (TE) modes are characterized by
$E_{x}=0$ everywhere in the guide and obtained by imposing

$\left.\frac{\partial B_{x}}{\partial y}\right|_{y=0}=\left.\frac{\partial B_{x}}{\partial y}\right|_{y=L y}=\left.\frac{\partial B_{x}}{\partial z}\right|_{z=0}=\left.\frac{\partial B_{x}}{\partial z}\right|_{z=L_{z}}=0$, (A2) Which limits she form of the longitudinal magnetic field to the
real part of
$B_{x}=B_{0} \cos \left(\frac{m \pi y}{L_{y}}\right) \cos \left(\frac{n \pi z}{L_{z}}\right) e^{i\left(t x-\omega_{m}(x) y\right)}, \quad$ (A3)

PHYSICAL REVIEW A 94, 048339 (2016)

043839-7

PAOLO FACCH etal
hysical review a 94, 003839
Thus, the free Hamil
the diagonal form.
$H^{(0.0)}=\mathcal{E}_{d i}^{(1.0)}+\mathcal{E}_{\min }^{(1.0)}$
$=\int d k \hbar \omega_{1.0}(k) a^{\dagger}(k) a(k)$
$=\hbar v \int d k \sqrt{k^{2}+\left(\frac{\pi}{L_{y}}\right)^{2}} a^{\frac{1}{4}(k) a(k) . \quad \text { (A13) }}$ It is worth noticing that the analogy with a massiviv boson is nol
limited to the dispersion relation. Indeed, the quantum theor of the mode can bers mapped onto a r real scalar theory in one
dimenion by induder

$\Pi(x)=-i \int d x \sqrt{\frac{\hbar \omega_{1}, 0(k)}{2(2 \pi)}}\left[a(k) e^{i k x}-a^{\dagger}(k) e^{-i k]_{1}}\right.$,
satisfying
$\left\lceil\alpha(x), \Pi\left(x^{\prime}\right)\right]=i \hbar \delta(x-x$ and related to the vector potential and the electric field b multipiticaion. .he Hamiltonian can be expressed in terms
of the field operator $\alpha(x)$ and its canonically coniugated
$H^{(1.0)}=\frac{1}{2} \int d x:\left[[\Pi(x)]^{2}+v^{2}\left[\partial_{\pi} \alpha(x)\right]^{2}\right.$

$$
\left.+v^{4}\left(\frac{M}{\hbar}\right)^{2}\left[\partial_{x} \alpha(x)\right]^{2}\right]:
$$

with $M:=\frac{\pi h}{L T}$, which also allows one to identify a lines
appendix b: interaction hamiltonian
The interaction between the field and an artificial atom,
made up of a particle traped in a potential $V(r)$, can be
obte
made ip of a particle trapped in a potential
obtained by the minimal coupling prescription:

$$
H_{a t}=\frac{1}{2 m_{e}}\left(\boldsymbol{p}-e A^{(1.0)}(r)\right)^{2}+V(r)
$$

$=H_{\mathrm{a}}^{\mathrm{o}}-\frac{e}{m_{e}} \boldsymbol{p} \cdot \boldsymbol{A}^{(1.0)}(\boldsymbol{r})+\frac{e^{2}}{2 m_{e}}\left(\boldsymbol{A}^{(1,0)}(\boldsymbol{r})\right)^{2}$,
with r and p the canonically conjugated position and m (B)
mentum of the artificial "electron." The
mentum of the artificial "electron.". The transerse chocice
$\nabla \cdot \boldsymbol{A}=0$ for the vector potential makes the ordering with

$\left.H_{a \mid l}^{0} \mid g\right)=0, \quad H_{a \mid l}^{0}|e\rangle=\hbar \omega_{0}|e\rangle . \quad(B 2)$

Furtherrore, we apply long-wavelength approximations
the interaction termss, which e enable one to neglect the $\left(e^{2}\right)$
 apply a dipolar approximation to the $O(e)$ term. The position
operator r is replaced by a nondynamical center-of-mass operator r is replaced by a nondynnamical center-of-
position r ro. The interacion Hamiltonian thus reads
$H_{i=1}^{(d i d)}=-\frac{e}{m_{e}} A_{z}^{(1.0)}\left(r_{0}\right)\left[\left(g\left|p_{z}\right| g\right\rangle\right)|g\rangle\left(g \mid+\langle e| p_{z}|e\rangle\right)|e\rangle\langle e|$
 The assumption that the expectation value of momentum
vanishes in the e igenstates of the free Hamiltonian simplifies the interaction. Monerever, the canonical commutation relation
can be used to tobaui
$\langle e| p_{\mathrm{z}}|g\rangle=\frac{i m}{\hbar}\left\langle e\left[H_{\mathrm{a}_{\mathrm{a}}^{0} z}^{0}\right] \mid g\right\rangle=i m \omega_{0}\langle e| z|g\rangle=: i m \omega z_{z_{g}}$ by which the mass m_{c} disappears from the theory, and
the hamailonian takes the form of a coupling beween the
tipole moment $D_{e s}=e l$ ereol and the electric field. Finally

 operator,
$H_{\mathrm{in}}^{(\mathrm{dip}, R \mathrm{RW})}=\omega_{0} D_{e s}\left(\frac{\hbar}{2 \pi \epsilon \nu L_{v} L_{z}}\right)^{\frac{1}{2}} \int \frac{d k}{\left(k^{2}+(v M / \hbar)^{2}\right)^{1 / 4}}$
Notice (B)
Notice that $y_{y}=L_{y} / 2$ has been used. The dynamics for the
atom pair is thus determined by
$H=H_{\mathrm{ta}, A}^{0}+H_{\mathrm{a}, \mathrm{B}}^{0}+H^{(0,0)}+H_{\mathrm{in}, 1 \mathrm{~A}}^{(\mathrm{di}, R)}+H_{\mathrm{in}, \mathrm{B}}^{(\mathrm{din}, \mathrm{B})}, \quad$ (B6)
with atom A in $x_{0}=0$ and atom B in $x_{0}=d$.
appendix C: energy denstit
The study in the main text has been focused on the $\mathcal{N}=$
sector, spanned by the wave functions.
$\left|\psi_{1}\right\rangle=c_{A} \mid e_{A}, g_{B} ;$ vac $\rangle+c_{B} \mid g_{A}, e_{B} ;$ vac $)$ $\left.+\int d k F(k) \mid g_{A}, g_{s} ; k\right)$.
Using the scalar Hamiltonian density defined in Sec . A , one
can compute the energy density, $\left\langle\psi_{1}\right| \mathcal{H}(x)\left|\psi_{1}\right\rangle=\frac{1}{2}\left[\left\langle\psi_{1}\right|:(\Pi(x))^{2}:\left|\psi_{1}\right\rangle\right.$
$+v^{2}\left(\psi_{1}\left|:\left(\partial_{x} \alpha(x)\right)^{2}:\left|\psi_{1}\right|\right.\right.$
$\left.+v^{*}\left(\frac{M}{h}\right)^{2}\left\langle\psi_{1}\right|:\left(\partial_{x} \alpha(x)\right)^{2}:\left|\psi_{1}\right\rangle\right]$

043839.8

one atom in a (1D) waveguide

Coupling with the lowest-energy mode in a linear waveguide

Dispersion relation (massive)
$\omega(k)=\sqrt{k^{2}+M^{2}}$

The excited state can decay...

add a míror

Fermi golden rule:

$$
\left.\gamma \propto\left|\langle g ; \bar{k}| H_{\mathrm{int}}\right| e\right\rangle\left.\right|^{2} \propto \sin ^{2} \bar{k} L
$$

main ingredient:
$\mathrm{E}=0$ at mirror
hindered
emission
enhanced emission

- Dorner \& Zoller 2002
- Shen \& Fan 2005
- Gonzales-Tudela, Martín-Cano, Moreno, MartínMoreno, Tejedor \& Garcia-Rípoll, Vidal 2011
- Tufarello, Cíccarello \& Kím 2013

$$
|g\rangle=\binom{0}{1} \quad|e\rangle=\binom{1}{0}
$$

by a Rotating Wave Hamiltonian:

$$
\begin{aligned}
\hat{\mathcal{H}} & =\hat{\mathcal{H}}_{0}+d\left(\hat{E}^{\dagger}(L) \hat{\sigma}_{-}+\hat{\sigma}_{+} \hat{E}(L)\right) \\
& =\hat{\mathcal{H}}_{0}+\int d k g(k)\left(\hat{a}_{k}^{\dagger} \hat{\sigma}_{-}+\hat{\sigma}_{+} \hat{a}_{k}\right)
\end{aligned}
$$

Hoí, Kockum, Tornberg, Pourkabirian, Johansson, Delsing, Wilson 2015

(Probing the quantum vacuum with an artificial atom in front of a mirror)

Hoí, Kockum, Tornberg, Pourkabirian, Johansson, Delsíng, Wilson 2015

atom becomes "invisible" at 5.4 GHz

Objective: threefold

- extend to TWO emitters
- remove mírror
- (use resolvent formalism)
- Shen, Fan (2005)

Gonzales-Tudela et al (2011)

a pair of two-level (artificial) atoms

 in a waveguide
lowest energy mode, one-excitation sector

System and Hamiltonian

No need to have mirror! Atoms behave like "mirrors"

$\square \sim \square A M \rightarrow \square$

$$
\begin{array}{rlr}
H= & H_{0}+\lambda V \\
= & \omega_{0}\left(\left|e_{A}\right\rangle\left\langle e_{A}\right|+\left|e_{B}\right\rangle\left\langle e_{B}\right|\right)+\int \mathrm{d} k \omega(k) b^{\dagger}(k) b(k) & \omega(k)=\sqrt{k^{2}+M^{2}} \\
& +\lambda \int \frac{\mathrm{d} k}{\omega(k)^{1 / 2}}\left[\left|e_{A}\right\rangle\left\langle g_{A}\right| b(k)+\left|g_{A}\right\rangle\left\langle e_{A}\right| b^{\dagger}(k)\right. & M \propto L_{y}^{-1} \\
& \left.+\left|e_{B}\right\rangle\left\langle g_{B}\right| b(k) \mathrm{e}^{\mathrm{i} k d}+\left|g_{B}\right\rangle\left\langle e_{B}\right| b^{\dagger}(k) \mathrm{e}^{-\mathrm{i} k d}\right], &
\end{array}
$$

Rotating Wave Approximation

The total number of excitations is a constant of motion

$$
N=N_{\mathrm{at}}+N_{\text {field }}=\left|e_{A}\right\rangle\left\langle e_{A}\right|+\left|e_{B}\right\rangle\left\langle e_{B}\right|+\int \mathrm{d} k b^{\dagger}(k) b(k)
$$

let $N=1$ (one-excitation sector)

General wavefunction in the sector

$$
\left.\left.|\psi\rangle=\left(c_{A}\left|e_{A}, g_{B}\right\rangle+c_{B}\left|g_{A}, e_{B}\right\rangle\right) \mid \text { vac }\right\rangle+\left|g_{A}, g_{b}\right\rangle \mid 1 \text { photon }\right\rangle
$$

Bound states

$$
H|\psi\rangle=E|\psi\rangle \quad \text { with }\langle\psi \mid \psi\rangle=1
$$

$$
\omega_{n m}(k)=\sqrt{\frac{k^{2}}{\mu \epsilon}+M_{n m}^{2}}
$$

$\mathrm{TE}_{1,0}$ mode; role of boundary conditions

$$
|\psi\rangle=\left(c_{A}\left|e_{A}, g_{B}\right\rangle+c_{B}\left|g_{A}, e_{B}\right\rangle\right) \otimes|\mathrm{vac}\rangle+\left|g_{A}, g_{B}\right\rangle \otimes|\varphi\rangle
$$

$$
d_{n}=\frac{n \pi}{\bar{k}}, \quad \text { with } \quad \bar{k}:=\sqrt{\left(\omega_{0}+\frac{2 \lambda^{2}}{M}\right)^{2}-M^{2}}
$$

observation: dark state of an atomic pair

 (identical but distinguishable atoms)

The one-excitation antisymmetric state

$$
\left|\Psi^{(-)}\right\rangle=\frac{\left|e_{A}, g_{B}\right\rangle-\left|g_{A}, e_{B}\right\rangle}{\sqrt{2}}
$$

decouples from the interaction

$$
H_{\mathrm{int}}\left|\Psi^{(-)}\right\rangle=0
$$

The one-excitation symmetric
state

$$
\left|\Psi^{(+)}\right\rangle=\frac{\left|e_{A}, g_{B}\right\rangle+\left|g_{A}, e_{B}\right\rangle}{\sqrt{2}}
$$

decays faster than a free atom

$$
\gamma^{(+)}=2 \gamma_{\text {free }}
$$

another observation

Bound states below the threshold for photon propagation are expected:

- Effective interatomic interaction mediated by evanescent waves
- Symmetric and antisymmetric eigenstates for any interatomic distance d :

$$
|\psi\rangle \simeq\left[\frac{\left|e_{A}, g_{B}\right\rangle \pm\left|g_{A}, e_{B}\right\rangle}{\sqrt{2}}\right]|\mathrm{vac}\rangle
$$

- $E=\omega_{0}+\mathrm{O}\left(\lambda^{2}\right)$, level splitting $\sim \exp \left(-\sqrt{E^{2}-M^{2}} d\right)$

above threshold?

Shahmoon \& Kurizki 2013

General wavefunction in the sector
$|\psi\rangle=\left(c_{A}\left|e_{A}, g_{B}\right\rangle+c_{B}\left|g_{A}, e_{B}\right\rangle\right) \mid$ vac $\rangle+\left|g_{A}, g_{b}\right\rangle \mid 1$ photon \rangle
Bound states $\quad H|\psi\rangle=E|\psi\rangle \quad$ with $\langle\psi \mid \psi\rangle=1$

The eigenvalue equation

$$
H|\psi\rangle=E|\psi\rangle=\sqrt{\bar{k}^{2}+M^{2}}|\psi\rangle
$$

can be satisfied by a normalizable state only if:

$$
\text { i) } \quad C_{A}+\mathrm{e}^{ \pm \mathrm{i} \bar{k} d} C_{B}=0
$$

ii) $E=\omega_{o}+\int \mathrm{d} k \frac{\lambda^{2}}{\sqrt{k^{2}+M^{2}}} \frac{1-\mathrm{e}^{\mathrm{i}(\bar{k}-k) d}}{E-\sqrt{k^{2}+M^{2}}}$
has real solutions

$$
c_{A}=(-1)^{n+1} c_{B}, \quad d=d_{n}=\frac{n \pi}{\bar{k}} \quad\left(n \in \mathbb{Z}_{+}\right)
$$

structure of bound state

$$
\left|\psi_{n}\right\rangle=\sqrt{p_{n}}\left|\Psi^{s}\right\rangle \otimes|\mathrm{vac}\rangle+\left|g_{A}, g_{B}\right\rangle \otimes\left|\varphi_{n}\right\rangle
$$

$$
\left|\Psi^{ \pm}\right\rangle=\left(\left|e_{A}, g_{B}\right\rangle \pm\left|g_{A}, e_{B}\right\rangle\right) / \sqrt{2}
$$

if state factorized at $\mathrm{t}=\mathrm{0}$ atomic density matrix

$$
p_{n}=\left(1+n \frac{2 \pi^{2} \lambda^{2}}{\bar{k}^{2}}\right)^{-1}
$$

$$
\rho_{\mathrm{at}}(\infty)=\frac{p_{n}^{2}}{2}\left|\Psi^{s}\right\rangle\left\langle\Psi^{s}\right|+\left(1-\frac{p_{n}^{2}}{2}\right)\left|g_{A}, g_{B}\right\rangle\left\langle g_{A}, g_{B}\right|
$$

Facchi, Kim, P, Pepe, Pomarico, Tufarelli 2016

$\rho_{\mathrm{at}}(\infty)=\frac{p_{n}^{2}}{2}\left|\Psi^{s}\right\rangle\left\langle\Psi^{s}\right|+\left(1-\frac{p_{n}^{2}}{2}\right)\left|g_{A}, g_{B}\right\rangle\left\langle g_{A}, g_{B}\right|$. $p_{n}=\left(1+n \frac{2 \pi^{2} \lambda^{2}}{\bar{k}^{2}}\right)^{-1}$
concurrence @longt

fast tutorial $\operatorname{Im} E \uparrow$

$$
e^{(i \Delta E-\gamma / 2) t}
$$

complex energy plane

energy shift ΔE

Schwinger (simple poles);
Arakiet al (proof of Fermi "Golden rule")
resolvent: poles in the complex energy plane; each pole associated to (unstable) state; imaginary part = (inverse) lifetíme
"bound" states

E_{p} / M

poles: trajectories (robust)

Field energy density

$$
\begin{gathered}
U(x) \propto \sin ^{2}(\bar{k} x) \quad \text { if } x \in\left[0, d_{n}\right] \\
U(x) \simeq 0 \quad \text { elsewhere }
\end{gathered}
$$

The atoms behave as dynamical mirrors

extension

dynamics will preserve sector
(number of excitation conserved)

+ robustness + entanglement

harmonic oscillators (e.g. optical cavities) Long-lived entanglement of two in a waveguide Paolo Facchí, SP, Francesco V. Pepe, Kazuya Yuasa 2018

$\because:=$

 $\leftrightarrow d \rightarrow$$$
\begin{aligned}
H= & \omega_{0}\left(b_{A}^{\dagger} b_{A}+b_{B}^{\dagger} b_{B}\right)+\int d k \omega(k) b^{\dagger}(k) b(k) \\
& +\int d k g(k)\left[\left(b_{A}^{\dagger}+b_{B}^{\dagger} e^{i k d}\right) b(k)+\text { H.c. }\right]
\end{aligned}
$$

$A, B=$ harmonic oscillators OR N-level atoms
$\mathrm{N}+1$ levels
$|N\rangle=\frac{\left(b_{\phi}^{\dagger}\right)^{N}}{\sqrt{N!}}|0\rangle=\sum_{m=0}^{N}\binom{N}{m}^{\frac{1}{2}} p_{\mathrm{at}}^{\frac{m}{2}}\left(1-p_{\mathrm{at}}\right)^{\frac{N-m}{2}}\left|\psi^{(m)}\right\rangle_{A B} \otimes\left|\phi^{(N-m)}\right\rangle$
$\left|\psi^{(m)}\right\rangle_{A B}=2^{-\frac{m}{2}} \sum_{\ell=0}^{m}\binom{m}{\ell}^{\frac{1}{2}}(-1)^{\ell(n+1)}\left|\ell_{A},(m-\ell)_{B}\right\rangle$
$\left|\phi^{(m)}\right\rangle=\frac{1}{\sqrt{m!}}\left[\sqrt{\frac{p_{\mathrm{at}}}{2\left(1-p_{\mathrm{at}}\right)}} \int d k g(k) \frac{1+(-1)^{n+1} e^{i k d}}{\omega(n \pi / d)-\omega(k)} b^{\dagger}(k)\right]^{m}|\mathrm{vac}\rangle$
3 levels

$$
\begin{aligned}
|2\rangle= & \frac{p_{\mathrm{at}}}{\sqrt{6}}\left(\left|0_{A}, 2_{B}\right\rangle-2\left|1_{A}, 1_{B}\right\rangle+\left|2_{A}, 0_{B}\right\rangle\right) \otimes|\mathrm{vac}\rangle \\
& +\sqrt{2 p_{\mathrm{at}}\left(1-p_{\mathrm{at}}\right)}\left(\left|0_{A}, 1_{B}\right\rangle-\left|1_{A}, 0_{B}\right\rangle\right) \otimes\left|\phi^{(1)}\right\rangle \\
& +\left(1-p_{\mathrm{at}}\right)\left|0_{A}, 0_{B}\right\rangle \otimes\left|\phi^{(2)}\right\rangle .
\end{aligned}
$$

entanglement!

3 levels

$$
\begin{aligned}
|2\rangle= & \frac{p_{\mathrm{at}}}{\sqrt{6}}\left(\left|0_{A}, 2_{B}\right\rangle-2\left|1_{A}, 1_{B}\right\rangle+\left|2_{A}, 0_{B}\right\rangle\right) \otimes|\mathrm{vac}\rangle \\
& +\sqrt{2 p_{\mathrm{at}}\left(1-p_{\mathrm{at}}\right)}\left(\left|0_{A}, 1_{B}\right\rangle-\left|1_{A}, 0_{B}\right\rangle\right) \otimes\left|\phi^{(1)}\right\rangle \\
& +\left(1-p_{\mathrm{at}}\right)\left|0_{A}, 0_{B}\right\rangle \otimes\left|\phi^{(2)}\right\rangle .
\end{aligned}
$$

bound state in $N=2$ sector, for $d=4$ pi/k
many nice options to create robust entangled states

single-emitter density matrix

$$
\rho_{A}^{(N)}=\operatorname{tr}_{B} \rho_{A B}^{(N)}=\sum_{\ell=0}^{N} C_{\ell}^{(N)}\left(p_{\mathrm{at}}\right)\left|\ell_{A}\right\rangle\left\langle\ell_{A}\right|
$$

$$
C_{\ell}^{(N)}\left(p_{\mathrm{at}}\right):=\sum_{m=0}^{N} \frac{1}{2^{m}}\binom{N}{m}\binom{m}{\ell} p_{\mathrm{at}}^{m}\left(1-p_{\mathrm{at}}\right)^{N-m}
$$

binomial: beam splitter, generalizes NOON (Nakazato, P, Stobinska, Yuasa, 2016) (vector model ín QFT - de Prunelé J. Math. Phys. 1988)
puríty

$$
\pi_{A}^{(N)}=\sum_{t=0}^{N}\left(C_{t}^{(N)}\left(p_{a t}\right)\right)^{2}=\frac{\Gamma\left(N+\frac{1}{2}\right)}{\sqrt{\pi N!}}\left(1+O\left[\left(N \lambda^{2}\right)^{2}\right]\right) \sim\left[\frac{1}{\sqrt{\pi N}}+O\left(N^{-3 / 2}\right)\right]\left(1+O\left[\left(N \lambda^{2}\right)^{2}\right]\right)
$$

ideas

- set of N two-level atoms in optical waveguide: presence of bound states affects the interactions among atoms (Calajo, Cíccarello, Chang, Rabl, PRA 2016) (Notice: interaction is waveguide-mediated; slow light)
- moving atoms in ID photonic waveguide (Calajo, Rabl, PRA 2017) (strong coupling, slow light)
- circuít QED with single LC resonator: very strong interactions decouples photon mode and projects qubits into entangled gs (Jaako, Xiang, Garcia-Rípoll, Rabl, PRA 2016) (ultra-strong coupling)
- Scattering effects in a waveguide (Calajo, Fang, Baranger, Cíccarello)

perspectives/expts

- Quantum computation trough effective photon-photon interactions in waveguide-QED
(Zheng, Gauthier, Baranger, PRL 2O13)
- But atomic degrees of freedom have significant potential for applications
(Paulisch, Kímble, Gonzalez-Tudela, NJP 2016)
- Probing vacuum with artificial atom in front of mirror (Hoil, Kockum, Tornberg, Pourkabirian, Johansson, Delsing, Wilson Nat. Phys. 2015)

comment on interdisciplinarity

Quantum technologies (in general) and one-dimensional QED blend different physical disciplines
(high-energy physics, QED, gauge theories vs solid state, low energy, circuit QED, optics)

