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preliminaries: (Q)ED in 1D

Schwinger, Coleman, Kogut, Susskind, Casher, ’t Hooft, Parisi 
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QED in 1D: string breaking
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electric and magnetic fields on the surface S read

Ex|S = 0 and
@Bx

@n

����
S

= 0, (A1)

with @/@n denoting the normal derivative with respect to
the surface. Transverse electric (TE) modes are charac-
terized by Ex = 0 everywhere in the guide and obtained
by imposing @Bx/@n = 0 on the surface. On the other
hand, transverse magnetic (TM) modes have Bx = 0
identically. If the waveguide is rectangular, the bound-
ary conditions for TE modes reduce to
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@y
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=
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@y
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=
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@z

����
z=0

=
@Bx

@z

����
z=Lz

= 0,

(A2)
which limits the form of the longitudinal magnetic field
to the real part of

Bx = B
0

cos

✓
m⇡y

Ly

◆
cos

✓
n⇡z

Lz

◆
ei(kx�!m,n(k)t), (A3)

with m,n 2 N2\{(0, 0)} and B
0

a constant.
The integers m and n label the mode TEm,n. The disper-
sion relation with respect to the longitudinal momentum
has the same form as a massive relativistic particle,

!m,n(k) =
q

(vk)2 + !m,n(0)2, (A4)

with !m,n(0) = v

⇣
m⇡y
Ly

⌘
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+
⇣

n⇡z
Lz

⌘
2

� 1
2

, where the mass

term is called the cuto↵ frequency of the mode, and v =
(µ✏)�1/2 is the phase velocity in the waveguide, assumed
isotropic and nondispersive with magnetic permeability µ
and dielectric constant ✏. Since Ly < Lz, the TE1,0 mode
has the lowest cuto↵ frequency. It can be proved [48] that
!
1,0(0) is also lower than the cuto↵s of all TM modes.

Thus, at su�ciently low energy the contribution of the
higher energy modes can be neglected, and propagation
occurs e↵ectively in one dimension.

The TE
1,0 mode is characterized by the following be-

havior of the fields

Bx = B
0

cos

✓
⇡y

Ly

◆
ei(kx�!1,0(k)t), (A5)

By = �i
kLyB0

⇡
sin

✓
⇡y

Ly

◆
ei(kx�!1,0(k)t), (A6)

Ez = i
!
1,0(k)LyB0

⇡
sin

✓
⇡y

Ly

◆
ei(kx�!1,0(k)t), (A7)

with the other three components vanishing. These fields
can be derived from the (transverse) vector potential

Az =
LyB0

⇡
sin

✓
⇡y

Ly

◆
ei(kx�!1,0(k)t). (A8)

The mode can be quantized by introducing the time-0

field operators

A(1,0)(r) =

Z
dk

✓
~

2⇡✏!
1,0(k)LyLz

◆ 1
2

sin

✓
⇡y

Ly

◆

⇥ ⇥
a(k)eikx + a†(k)e�ikx

⇤
ûz, (A9)

E(1,0)(r) = i

Z
dk

✓
~!

1,0(k)

2⇡✏LyLz

◆ 1
2

sin

✓
⇡y

Ly

◆

⇥ ⇥
a(k)eikx � a†(k)e�ikx

⇤
ûz, (A10)

with [a(k), a†(k0)] = �(k � k0) and ûz = (0, 0, 1). The
electric field energy operator associated to the mode thus
reads

E(1,0)
el =

✏

2

Z
dr :

⇣
E(1,0)

z (r)
⌘
2

:

=
1

2

Z
dk ~!

1,0(k)
h
a†(k)a(k)

�a(k)a(�k) + a†(k)a†(�k)

2

i
(A11)

with : (...) : denoting normal ordering, while the magnetic
field energy can be evaluated using the relation B(1,0) =
r⇥A(1,0):

E(1,0)
mag =

✏

2

Z
dr :

⇣
@yA

(1,0)
z (r)

⌘
2

+
⇣
�@xA

(1,0)
z (r)

⌘
2

:

=
1

2

Z
dk ~!

1,0(k)
h
a†(k)a(k)

+
a(k)a(�k) + a†(k)a†(�k)

2

i
. (A12)

Thus, the free Hamiltonian for the electromagnetic field
takes the diagonal form

H(1,0) = E(1,0)
el + E(1,0)

mag

=

Z
dk ~!

1,0(k)a
†(k)a(k)

= ~v
Z

dk

s

k2 +

✓
⇡

Ly

◆
2

a†(k)a(k). (A13)

It is worth noticing that the analogy with a massive bo-
son is not limited to the dispersion relation. Indeed, the
quantum theory of the mode can be mapped onto a real
scalar theory in one dimension, by introducing the oper-
ators

↵(x) =

Z
dx

s
~

2(2⇡)!
1,0(k)

⇥
a(k)eikx + a†(k)e�ikx

⇤
,

⇧(x) = �i

Z
dx

s
~!

1,0(k)

2(2⇡)

⇥
a(k)eikx � a†(k)e�ikx

⇤
,

(A14)

satisfying

[↵(x),⇧(x0)] = i~�(x� x0) (A15)

surface S 
normal n
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identically. If the waveguide is rectangular, the bound-
ary conditions for TE modes reduce to
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which limits the form of the longitudinal magnetic field
to the real part of
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with m,n 2 N2\{(0, 0)} and B
0

a constant.
The integers m and n label the mode TEm,n. The disper-
sion relation with respect to the longitudinal momentum
has the same form as a massive relativistic particle,

!m,n(k) =
q

(vk)2 + !m,n(0)2, (A4)

with !m,n(0) = v
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, where the mass

term is called the cuto↵ frequency of the mode, and v =
(µ✏)�1/2 is the phase velocity in the waveguide, assumed
isotropic and nondispersive with magnetic permeability µ
and dielectric constant ✏. Since Ly < Lz, the TE1,0 mode
has the lowest cuto↵ frequency. It can be proved [48] that
!
1,0(0) is also lower than the cuto↵s of all TM modes.

Thus, at su�ciently low energy the contribution of the
higher energy modes can be neglected, and propagation
occurs e↵ectively in one dimension.

The TE
1,0 mode is characterized by the following be-

havior of the fields
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with [a(k), a†(k0)] = �(k � k0) and ûz = (0, 0, 1). The
electric field energy operator associated to the mode thus
reads
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✏
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⇣
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⌘
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with : (...) : denoting normal ordering, while the magnetic
field energy can be evaluated using the relation B(1,0) =
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⌘
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Thus, the free Hamiltonian for the electromagnetic field
takes the diagonal form
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⇡
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It is worth noticing that the analogy with a massive bo-
son is not limited to the dispersion relation. Indeed, the
quantum theory of the mode can be mapped onto a real
scalar theory in one dimension, by introducing the oper-
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⇥
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satisfying

[↵(x),⇧(x0)] = i~�(x� x0) (A15)
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and related to the vector potential and the electric field
by multiplication. The Hamiltonian can be expressed
in terms of the field operator ↵(x) and its canonically
conjugated momentum ⇧(x0) as

H(1,0) =
1

2

Z
dx :

h
(⇧(x))2 + v2 (@x↵(x))

2

+v4
✓
M

~

⌘
2

(@x↵(x))
2

�
: (A16)

with M := ⇡~
vLy

, which also allows to identify a linear

Hamiltonian density H(x) such that H(1,0) =
R
dxH.

Appendix B: Interaction Hamiltonian

The interaction between the field and an artificial
atom, made up of a particle trapped in a potential V (r),
can be obtained by the minimal coupling prescription:

H
at

=
1

2me

⇣
p� eA(1,0)(r)

⌘
2

+ V (r)

= H0

at

� e

me
p ·A(1,0)(r) +

e2

2me

⇣
A(1,0)(r)

⌘
2

,

(B1)

with r and p the canonically conjugated position and
momentum of the artificial “electron”. The transverse
choice r·A = 0 for the vector potential makes the order-
ing with respect to p immaterial. We adopt a two-level
approximation for the atom, retaining only the ground
state |gi and the first excited state |ei, satisfying

H0

at

|gi = 0, H0

at

|ei = ~!
0

|ei. (B2)

Furthermore, we apply long-wavelength approximations
to the interaction terms, which enable one to neglect the
O(e2) contribution, whose relevance is suppressed like the
ratio of the photon momentum to the particle momen-
tum [44], and to apply a dipolar approximation to the
O(e) term. The position operator r is replaced by a non
dynamical center-of-mass position r

0

. The interaction
Hamiltonian thus reads

H(dip)
int

= � e

me
A(1,0)

z (r
0

)
h
hg|pz|gi|gihg|+ he|pz|ei|eihe|

+hg|pz|ei|gihe|+ he|pz|gi|eihg|
i
. (B3)

The assumption that the expectation value of momen-
tum vanishes in the eigenstates of the free Hamiltonian
simplifies the interaction. Moreover, the canonical com-
mutation relation can be used to obtain

he|pz|gi = im

~ he|[H0

at

, z]|gi = im!
0

he|z|gi =: im!zeg

= im!
0

|zeg|ei✓eg , (B4)

by which the mass me disappears from the theory, and
the Hamiltonian takes the form of a coupling between
the dipole moment Deg = e|zeg| and the electric field.

Finally, we can define new canonically conjugated field
operators b(k) := e�i(✓eg+⇡/2)a(k) and retain only the
rotating-wave terms b(k)|eihg| and b†(k)|gihe|, to obtain
the interaction operator

H(dip,RW )

int

= !
0

Deg

✓
~

2⇡✏vLyLz

◆ 1
2
Z

dk

(k2 + (vM/~)2)1/4

⇥ ⇥
b(k)|eihg|eikx0 + b†(k)|gihe|e�ikx0

⇤
.

(B5)

Notice that y
0

= Ly/2 has been used. The dynamics for
the atom pair is thus determined by

H = H0

at,A +H0

at,B +H(1,0) +H(dip,RW )

int,A +H(dip,RW )

int,B

(B6)
with atom A in x

0

= 0 and atom B in x
0

= d.

Appendix C: Energy density

The study in the main text has been focused on the
N = 1 sector, spanned by the wavefunctions

| 
1

i = cA|eA, gB ; vaci+ cB |gA, eB ; vaci
+

Z
dkF (k)|gA, gB ; ki. (C1)

Using the scalar Hamiltonian density defined in Section
A, one can compute the energy density

h 
1

|H(x)| 
1

i = 1

2

h
h 

1

| : (⇧(x))2 : | 
1

i
+v2h 

1

| : (@x↵(x))2 : | 
1

i

+v4
✓
M

~

◆
2

h 
1

| : (@x↵(x))2 : | 
1

i
i

=

�����

Z
dk

s
~!

1,0(k)

2(2⇡)
F (k)eikx

�����

2

+

�����

Z
dk

~vkp
2(2⇡)~!

1,0(k)
F (k)eikx

�����

2

+

�����

Z
dk

v2Mp
2(2⇡)~!

1,0(k)
F (k)eikx

�����

2

.

(C2)

This stucture can be simplified if one assumes that the
dominant contribution to the integrals comes from the
poles of F (k) ⇠ A

+

(k � k
0

)�1 +A�(k + k
0

)�1. Neglect-
ing the corrections yielded by square-root branch-cut in-
tegration, one obtains

h 
1

|H(x)| 
1

i ' ~!
1,0(k0)

����
Z

dk

2⇡
F (k)eikx

����
2

=: ~!
1,0(k0)

���F̃ (x)
���
2

, (C3)

which is used to compute the energy density for the res-
onant states.

atom + interaction
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Notice that y
0

= Ly/2 has been used. The dynamics for
the atom pair is thus determined by

H = H0

at,A +H0

at,B +H(1,0) +H(dip,RW )

int,A +H(dip,RW )

int,B

(B6)
with atom A in x

0

= 0 and atom B in x
0

= d.

Appendix C: Energy density

The study in the main text has been focused on the
N = 1 sector, spanned by the wavefunctions
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Using the scalar Hamiltonian density defined in Section
A, one can compute the energy density
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This stucture can be simplified if one assumes that the
dominant contribution to the integrals comes from the
poles of F (k) ⇠ A

+

(k � k
0

)�1 +A�(k + k
0

)�1. Neglect-
ing the corrections yielded by square-root branch-cut in-
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2⇡
F (k)eikx

����
2

=: ~!
1,0(k0)

���F̃ (x)
���
2

, (C3)

which is used to compute the energy density for the res-
onant states.
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and related to the vector potential and the electric field
by multiplication. The Hamiltonian can be expressed
in terms of the field operator ↵(x) and its canonically
conjugated momentum ⇧(x0) as

H(1,0) =
1

2

Z
dx :

h
(⇧(x))2 + v2 (@x↵(x))

2

+v4
✓
M

~

⌘
2

(@x↵(x))
2

�
: (A16)

with M := ⇡~
vLy

, which also allows to identify a linear

Hamiltonian density H(x) such that H(1,0) =
R
dxH.

Appendix B: Interaction Hamiltonian

The interaction between the field and an artificial
atom, made up of a particle trapped in a potential V (r),
can be obtained by the minimal coupling prescription:

H
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⇣
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+ V (r)

= H0
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⇣
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(B1)

with r and p the canonically conjugated position and
momentum of the artificial “electron”. The transverse
choice r·A = 0 for the vector potential makes the order-
ing with respect to p immaterial. We adopt a two-level
approximation for the atom, retaining only the ground
state |gi and the first excited state |ei, satisfying

H0

at

|gi = 0, H0

at

|ei = ~!
0

|ei. (B2)

Furthermore, we apply long-wavelength approximations
to the interaction terms, which enable one to neglect the
O(e2) contribution, whose relevance is suppressed like the
ratio of the photon momentum to the particle momen-
tum [44], and to apply a dipolar approximation to the
O(e) term. The position operator r is replaced by a non
dynamical center-of-mass position r

0

. The interaction
Hamiltonian thus reads
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i
. (B3)

The assumption that the expectation value of momen-
tum vanishes in the eigenstates of the free Hamiltonian
simplifies the interaction. Moreover, the canonical com-
mutation relation can be used to obtain
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~ he|[H0
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, z]|gi = im!
0
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= im!
0

|zeg|ei✓eg , (B4)

by which the mass me disappears from the theory, and
the Hamiltonian takes the form of a coupling between
the dipole moment Deg = e|zeg| and the electric field.
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which is used to compute the energy density for the res-
onant states.
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an initially factorized atomic state can spontaneously relax
towards a long-lived entangled state. By analyzing the poles
of the resolvent operator, we have shown how to quantify the
robustness of the entangled bound state to small variations
in the model parameters, and how to identify the time scales
that are crucial for the preparation of an entangled state by
relaxation.

While it has been pointed out that quantum computation
may be achievable in waveguide-QED trough effective photon-
photon interactions [49], focusing on the atomic degrees of
freedom may also hold significant potential for applications
in quantum information [50]. Further investigation will thus
be devoted to the analysis of many-atom systems [51–54], in
which photon-mediated interactions could possibly produce
stable configurations such as W states or cluster states.
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APPENDIX A: DERIVATION OF THE QUASI-1D FREE
FIELD HAMILTONIAN

We derive here the Hamiltonian in Eq. (1) of the main
text from first principles. Let us consider a waveguide of
infinite length, parallel to the x axis, characterized by a
rectangular cross section with y ∈ [0,Ly] and z ∈ [0,Lz]. We
conventionally assume that Ly > Lz. A common choice is
Ly/Lz = 2. In a generic guide made of a linear dielectric
with uniform density and coated by a conducting material, the
boundary conditions for the electric and magnetic fields on the
surface S read

Ex |S = 0 and
∂Bx

∂n

∣∣∣∣
S

= 0, (A1)

with ∂/∂n denoting the normal derivative with respect to the
surface. Transverse electric (TE) modes are characterized by
Ex = 0 everywhere in the guide and obtained by imposing
∂Bx/∂n = 0 on the surface. On the other hand, transverse
magnetic (TM) modes have Bx = 0 identically. If the waveg-
uide is rectangular, the boundary conditions for TE modes
reduce to

∂Bx

∂y

∣∣∣∣
y=0

= ∂Bx

∂y

∣∣∣∣
y=Ly

= ∂Bx

∂z

∣∣∣∣
z=0

= ∂Bx

∂z

∣∣∣∣
z=Lz

= 0, (A2)

which limits the form of the longitudinal magnetic field to the
real part of

Bx = B0 cos
(

mπy

Ly

)
cos

(
nπz

Lz

)
ei(kx−ωm,n(k)t), (A3)

with m,n ∈ N2\{(0,0)} and B0 a constant.
The integers m and n label the mode TEm,n. The dispersion

relation with respect to the longitudinal momentum has the

same form as a massive relativistic particle,

ωm,n(k) =
√

(vk)2 + ωm,n(0)2, (A4)

with ωm,n(0) = v[(mπy
Ly

)2 + ( nπz
Lz

)2]
1
2 , where the mass term is

called the cutoff frequency of the mode, and v = (µϵ)−1/2 is
the phase velocity in the waveguide, assumed isotropic and
nondispersive with magnetic permeability µ and dielectric
constant ϵ. Since Ly < Lz, the TE1,0 mode has the lowest
cutoff frequency. It can be proved [46] that ω1,0(0) is also
lower than the cutoffs of all TM modes. Thus, at sufficiently
low energy the contribution of the higher energy modes
can be neglected, and propagation occurs effectively in one
dimension.

The TE1,0 mode is characterized by the following behavior
of the fields:

Bx = B0 cos
(

πy

Ly

)
ei(kx−ω1,0(k)t), (A5)

By = −i
kLyB0

π
sin

(
πy

Ly

)
ei(kx−ω1,0(k)t), (A6)

Ez = i
ω1,0(k)LyB0

π
sin

(
πy

Ly

)
ei(kx−ω1,0(k)t), (A7)

with the other three components vanishing. These fields can
be derived from the (transverse) vector potential,

Az = LyB0

π
sin

(
πy

Ly

)
ei(kx−ω1,0(k)t). (A8)

The mode can be quantized by introducing the time-0 field
operators,

A(1,0)(r) =
∫

dk

(
!

2πϵω1,0(k)LyLz

) 1
2

sin
(

πy

Ly

)

× [a(k)eikx + a†(k)e−ikx]ûz, (A9)

E(1,0)(r) = i

∫
dk

(
!ω1,0(k)

2πϵLyLz

) 1
2

sin
(

πy

Ly

)

× [a(k)eikx − a†(k)e−ikx]ûz, (A10)

with [a(k),a†(k′)] = δ(k − k′) and ûz = (0,0,1). The electric
field energy operator associated with the mode thus reads

E (1,0)
el = ϵ

2

∫
d r :

(
E(1,0)

z (r)
)2 :

= 1
2

∫
dk !ω1,0(k)

[
a†(k)a(k)

− a(k)a(−k) + a†(k)a†(−k)
2

]
, (A11)

with : (...) : denoting normal ordering, while the magnetic field
energy can be evaluated using the relation B(1,0) = ∇ × A(1,0):

E (1,0)
mag = ϵ

2

∫
d r :

(
∂yA

(1,0)
z (r)

)2+
(
− ∂xA

(1,0)
z (r)

)2 :

= 1
2

∫
dk !ω1,0(k)

[
a†(k)a(k)

+ a(k)a(−k) + a†(k)a†(−k)
2

]
. (A12)
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Thus, the free Hamiltonian for the electromagnetic field takes
the diagonal form,

H (1,0) = E (1,0)
el + E (1,0)

mag

=
∫

dk !ω1,0(k)a†(k)a(k)

= !v

∫
dk

√

k2 +
(

π

Ly

)2

a†(k)a(k). (A13)

It is worth noticing that the analogy with a massive boson is not
limited to the dispersion relation. Indeed, the quantum theory
of the mode can be mapped onto a real scalar theory in one
dimension, by introducing the operators,

α(x) =
∫

dx

√
!

2(2π )ω1,0(k)
[a(k)eikx + a†(k)e−ikx],

$(x) = −i

∫
dx

√
!ω1,0(k)
2(2π )

[a(k)eikx − a†(k)e−ikx],

(A14)

satisfying

[α(x),$(x ′)] = i!δ(x − x ′), (A15)

and related to the vector potential and the electric field by
multiplication. The Hamiltonian can be expressed in terms
of the field operator α(x) and its canonically conjugated
momentum $(x ′) as

H (1,0) = 1
2

∫
dx :

[
[$(x)]2 + v2[∂xα(x)]2

+ v4

(
M

!

)2

[∂xα(x)]2

]

: (A16)

with M := π!
vLy

, which also allows one to identify a linear

Hamiltonian density H(x) such that H (1,0) =
∫

dxH.

APPENDIX B: INTERACTION HAMILTONIAN

The interaction between the field and an artificial atom,
made up of a particle trapped in a potential V (r), can be
obtained by the minimal coupling prescription:

Hat = 1
2me

( p − eA(1,0)(r))2 + V (r)

= H 0
at − e

me

p · A(1,0)(r) + e2

2me

(A(1,0)(r))2,

(B1)

with r and p the canonically conjugated position and mo-
mentum of the artificial “electron.” The transverse choice
∇ · A = 0 for the vector potential makes the ordering with
respect to p immaterial. We adopt a two-level approximation
for the atom, retaining only the ground state |g⟩ and the first
excited state |e⟩, satisfying

H 0
at|g⟩ = 0, H 0

at|e⟩ = !ω0|e⟩. (B2)

Furthermore, we apply long-wavelength approximations to
the interaction terms, which enable one to neglect the O(e2)
contribution, whose relevance is suppressed like the ratio of
the photon momentum to the particle momentum [44], and to
apply a dipolar approximation to the O(e) term. The position
operator r is replaced by a nondynamical center-of-mass
position r0. The interaction Hamiltonian thus reads

H
(dip)
int = − e

me

A(1,0)
z (r0)[⟨g|pz|g⟩|g⟩⟨g| + ⟨e|pz|e⟩|e⟩⟨e|

+ ⟨g|pz|e⟩|g⟩⟨e| + ⟨e|pz|g⟩|e⟩⟨g|]. (B3)

The assumption that the expectation value of momentum
vanishes in the eigenstates of the free Hamiltonian simplifies
the interaction. Moreover, the canonical commutation relation
can be used to obtain

⟨e|pz|g⟩ = im

!
⟨e|

[
H 0

at,z
]
|g⟩ = imω0⟨e|z|g⟩ =: imωzeg

= imω0|zeg|eiθeg , (B4)

by which the mass me disappears from the theory, and
the Hamiltonian takes the form of a coupling between the
dipole moment Deg = e|zeg| and the electric field. Finally,
we can define new canonically conjugated field operators
b(k) := e−i(θeg+π/2)a(k) and retain only the rotating-wave
terms b(k)|e⟩⟨g| and b†(k)|g⟩⟨e|, to obtain the interaction
operator,

H
(dip,RW)
int = ω0Deg

(
!

2πϵvLyLz

) 1
2
∫

dk

(k2 + (vM/!)2)1/4

× [b(k)|e⟩⟨g|eikx0 + b†(k)|g⟩⟨e|e−ikx0 ].

(B5)

Notice that y0 = Ly/2 has been used. The dynamics for the
atom pair is thus determined by

H = H 0
at,A + H 0

at,B + H (1,0) + H
(dip,RW)
int,A + H

(dip,RW)
int,B , (B6)

with atom A in x0 = 0 and atom B in x0 = d.

APPENDIX C: ENERGY DENSITY

The study in the main text has been focused on the N = 1
sector, spanned by the wave functions,

|ψ1⟩ = cA|eA,gB ; vac⟩ + cB |gA,eB ; vac⟩

+
∫

dkF (k)|gA,gB ; k⟩. (C1)

Using the scalar Hamiltonian density defined in Sec. A, one
can compute the energy density,

⟨ψ1|H(x)|ψ1⟩ = 1
2

[
⟨ψ1| : ($(x))2 : |ψ1⟩

+ v2⟨ψ1| : (∂xα(x))2 : |ψ1⟩

+ v4
(

M

!

)2

⟨ψ1| : (∂xα(x))2 : |ψ1⟩
]
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Figure 1 | An artificial atom in front of a mirror. a, A micrograph of the
atom–mirror system, a superconducting transmon embedded at a distance
L from the end of a one-dimensional transmission line. Zoomed-in view: the
transmon. The atom size is small compared with the wavelength of the
microwave field. We characterize the system by sending in a coherent
probe field, Vin, at !p ⇡5 GHz and measuring the reflected field, Vr.
Measurements are performed at T=50 mK, where thermal excitations of
the field are negligible. b, Cartoon of the atom–mirror system. The blue and
red curves show the mode structure of the voltage along the transmission
line at the atom frequency for L=�/2 and L=3�/4, respectively. By tuning
� of the two-level atom through an external magnetic flux, � , the coupling
between the field and the atom can be turned o� when the atom sits at a
node of the resonant electromagnetic field (blue). The atom is maximally
coupled at the antinode (red).

is di�cult to change the physical distance, L, in situ, the relevant
quantity is in fact the normalized distance, L/�, where � is the
transition wavelength of the atom.We can easily change � by tuning

!a with an externalmagnetic flux perpendicular to the transmon. As
illustrated in Fig. 1b, tuning � allows us to e�ectively move the qubit
from a node to an antinode of the resonant vacuum fluctuations.
By measuring the qubit lifetime as a function of frequency, we can
therefore map out the frequency-dependent spatial structure of
the vacuum.

In detail, the transition wavelength of the transmon can be
expressed as38

�(�)=2⇡v/!a (�)'hv/
⇣p

8ECEJ(�)�EC

⌘
(1)

where h is Planck’s constant, v = c/
p

✏ is the velocity of the wave
propagating along the transmission line, ✏ is the e�ective dielectric
constant of the transmission line, and c is the velocity of light in
vacuum. EC and EJ(�) are the charging and Josephson energies of
the transmon, respectively, and EJ(�) = EJ,0 |cos(⇡�/�0)|, where
EJ,0 is the maximum Josephson energy, � is the magnetic flux and
�0 =h/(2e) is the flux quantum.

We characterize the system spectroscopically by sending a
coherent microwave field towards the transmon and measuring the
reflection coe�cient, rp = hVri/ hVini, where hVri (hVini) is the time-
averaged reflected (incident) field. Note that rp is a phase-sensitive
average and, therefore, captures only the coherently scattered signal.
As demonstrated in previous experiments, all of the fields are
reflected either coherently or incoherently and losses are neglected
in the rest of the paper28,33.

Consider the situation depicted in Fig. 1. The coherent input Vin
interacts with the atom and then continues moving to the left. The
scattered field from the atom, proportional to h��i (the expectation
value of the atomic lowering operator), is equally divided between
left- and right-moving states. Vin and the left-moving field from the
atom are then reflected at the mirror and return to interact with the
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timescale of the atomic evolution, we need to take into account only
the phase factor
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Figure 2 | Spectroscopic measurements of the excited-state lifetime. a, The reflection coe�cient |rp| as a function of !p and � for a weak probe (⌦p ⌧� ).
As the atomic linewidth is much less than the tuning range, the qubit response appears as a dotted line, which corresponds to |rp|⇡ 1. As we tune � , �
varies according to (1). When L⇡�/2, which corresponds to 5.4 GHz, the qubit sits at the node of the field and, therefore, is hidden from the probe and no
signal is observed. b, |rp| as a function of !p at two values of � , indicated by the blue and red arrows in a. The solid curves are theoretical fits using (7),
from which we extract �1, � and !a, where � =�1/2+�� . At the low temperatures of our experiment, the inverse lifetime �1 is proportional to the strength
of the vacuum fluctuations. We see �1 changing by a factor of 9.8 between these two flux biases, indicating a large modulation in the amplitude of vacuum
fluctuations, which is due to the frequency dependence of the spatial mode structure. c, For each flux bias in a, as in the procedure in b, we extract �1(�)
and ��(�), denoted by the red and purple markers, respectively. We plot these rates as a function of the normalized distance, L/�(�). The solid red curve
is theory based on (6). The red and blue dashed lines indicate the two cases shown in b. The green arrow in a and the green dashed line in c indicate the
flux bias point for Fig. 3. The shaded blue region indicates where the response from the atom is too weak to measure; this is where the atom is hidden from
the vacuum fluctuations. The shaded region is not symmetric with respect to the minima of the parabola because the pure dephasing is not symmetric.
Note that the maximum coupling, that is, antinode, was not reached. This is because the tuning range of the qubit and the bandwidth of the measurement
system limit the range of frequencies and, therefore, wavelengths over which we can measure.
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(Probing the quantum vacuum with an artificial atom in front of a mirror) 
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Table 1 | Parameters of the device.

EJ,0/h
(GHz)

EC/h
(GHz)

!a(0)/2⇡
(GHz)

�1,b/2⇡
(MHz)

✏ L
(mm)

13.1 0.38 5.93 33 6.25 11

dependence allows us to extract k. In particular, for a resonant field
(�!p =0), equations (2)–(4) give

rp =�1+ � 2
1

�1� +⌦2
p

(8)

For low power (⌦p ⌧� ), we expect rp to approach the asymptotic
(positive) value determined by the ratio ��/�1 (see above). As the
power increases, rp decreases, owing to increased incoherent scat-
tering, until the coherently reflected signal is zero33. At this point,
all of the incoming probe is absorbed by the atom and re-emitted
spontaneously with a random phase. Beyond this point, rp becomes
negative and its magnitude increases again as the atom saturates
and cannot absorb all of the incoming photons. Using the extracted
values for �1 and �� at the green dashed line in Fig. 2c, (8) gives the
solid curves in Fig. 3. Fitting these curves allows us to calibrate the
atom–field coupling constant k. Through this procedure, we extract
ke '7.9⇥1015 HzW�1/2, where the subscript e denotes the experi-
mental value. However, the absolute value of the incident power P
at the sample has a significant systematic uncertainty related to the
very large temperature dependence of the loss in our system.

To estimate the uncertainty, we can alternatively calculate
k from its definition in terms of circuit parameters43,
k=e�

p
Z0(EJ/2EC)

1/4/h̄ (see Supplementary Information). EJ
and EC are directly measured through the spectroscopic data
in Fig. 2 (see Table 1). Z0 = 50 � is well determined by the
geometry of the transmission line. We then use Microwave O�ce,
a commercial electromagnetic simulation software package, to
evaluate the coupling coe�cient � = Cc/C6 ' 0.4, where Cc and
C6 are the coupling and sum capacitances of the transmon,
respectively. Note that we use the simulation to evaluate only
the capacitance ratio, which is more accurate than simulating
absolute capacitances. Together with the parameters in Table 1,
this gives ks '8.8⇥1015 HzW�1/2, where the subscript s denotes
the simulated value. The ratio of ks and ke is 1.1, which is good for

cryogenic microwave experiments. We use the average between
ks and ke, which we call km, as the final value. To determine the
uncertainty, we carry out a similar analysis for a number of devices
with di�erent geometries that have been measured in previously
reported experiments (see Supplementary Information). We then
use the root mean square deviation from the mean, averaged
over all of these devices, as the systematic error bar. This gives
km =(8.35±1.0)⇥1015 HzW�1/2.

Using km and the extracted values of�1 in Fig. 2c, we plot themea-
sured values of S as a function of L/� in Fig. 4.We plot S(!a) in units
of number of quanta by normalizing it to h̄!a. For an atom in an
open line with no mirror, we expect S=1 quantum. The error bars
indicate the uncertainty in S arising from the uncertainty in km. The
theoretical prediction (5) is shown by the solid black curve in Fig. 4.
Fig. 4a is the magnification of the dashed square region of Fig. 4b.
In Fig. 4b, we show a wider range of normalized distance. We see
that the vacuum fluctuations at L/�=0.75 (antinode), L/�=0.625
(free space) and L/�=0.5 (node) are 2h̄!a, h̄!a and 0, respectively,
as indicated by the purple arrows. We see that the black curve
falls inside the error bars, indicating a good agreement between
experiment and theory and demonstrating that the atomic lifetime
is dominated by the spatially engineered vacuum fluctuations.

In conclusion, we have shown that we can shape themodes of the
quantum vacuum using a mirror. Our flexible waveguide quantum
electrodynamics set-up suggests new directions for the engineering
of the vacuum. For instance, it allows for more complicated
geometries including multiple atoms and multiple waveguides that
would be very di�cult to realize in a natural cavity quantum
electrodynamics system. Recent theoretical work also suggests the
ability to study novel behaviour of an extended emitter coupled to
vacuum fluctuations26.
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atom becomes “invisible” at 5.4 GHz
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● Nontrivial bound states
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● Entanglement generation
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2

II. THE MODEL

We describe the dynamics of two two-level atoms A
and B, situated in an infinite waveguide of rectangular
cross section, with sides L

y

< L
z

, see Fig. 1. When lon-
gitudinal propagation occurs with long wavelength com-
pared to the transverse size, interaction between atoms
and field can be reduced to a coupling with the lowest-
cuto↵-energy TE1,0 mode, in which the electric field vi-
brates along the z direction and has a sine modulation
in the y direction [37]. In this situation, the electromag-
netic field is e↵ectively scalar and massive. The inter-
acting atoms and photons are described, in dipolar and
rotating wave approximations, by the Hamiltonian

H = H0 + �V

= !0(|eAiheA|+ |e
B

ihe
B

|) +
Z

dk !(k)b†(k)b(k)

+�

Z
dk

!(k)1/2

h
|e

A

ihg
A

|b(k) + |g
A

ihe
A

|b†(k)

+|e
B

ihg
B

|b(k)eikd + |g
B

ihe
B

|b†(k)e�ikd
i
, (1)

where !0 is the bare energy separation between the
atomic ground |gi and first-excited states |ei, d is the A-
B distance, !(k) =

p
k2 +M2 is the photon dispersion

relation, characterized by the mass M / L�1
y

, and b(k)

(b†(k)) is the annihilation (creation) field operator, satis-
fying the canonical commutation relation [b(k), b†(k0)] =
�(k�k0). Natural units for energy are fixed by ~v, where
v is the phase velocity in the waveguide medium, which
is assumed linear, isotropic and nondispersive. The ef-
fective mass M provides a natural cuto↵ to the coupling.
The Hamiltonian (1) commutes with the excitation num-
ber

N = Nat +

Z
dk b†(k)b(k), (2)

where Nat = |e
A

ihe
A

| + |e
B

ihe
B

| is the atomic excita-
tion number. The N = 0 sector is 1-dimensional and is
spanned by the bare ground state |g

A

, g
B

; vaci. We shall
focus instead on the dynamics in the N = 1 sector, where
the states read

| i = �
c
A

|e
A

, g
B

i+ c
B

|g
A

, e
B

i�⌦ |vaci+ |g
A

, g
B

i ⌦ |'i
(3)

where |'i :=
R
dk '(k)b†(k)|vaci is a one-photon state,

and |c
A

|2 + |c
B

|2 + R
dk|'(k)|2 = 1.

In the small-coupling regime, an isolated excited atom
with !0 & M would decay to the ground state. We
shall demonstrate that, when two atoms are considered,
a resonance e↵ect emerges, yielding a bound state. Using
the expansion (3) the eigenvalue equation, H| i = E| i,

reads

Ec
A

= !0cA + �

Z
dk

'(k)

!(k)1/2
, (4)

Ec
B

= !0cB + �

Z
dk
'(k)eikd

!(k)1/2
, (5)

'(k) =
�

!(k)1/2
c
A

+ c
B

e�ikd

E � !(k)
. (6)

The field amplitude '(k) has two simple poles at k =
±k̄ = ±p

E2 �M2. Thus, when E > M , the integrals
in (4)-(5) are finite only if c

A

+c
B

e±ik̄d = 0, yielding k̄d =
n⇡ for positive integers n. This implies that a bound
state can exist only for discrete values of the interatomic
distance d. Moreover, in the first component of such an
eigenstate (3), the atoms are in a maximally entangled
(singlet or triplet) state, namely c

A

= (�1)n+1c
B

. To
determine the distances at which the bound state exists,
let us first compute the energy eigenvalue, which after
the resonance condition is the solution of

E = !0 + �2
Z

dk
1� (�1)ne�ikd

!(k)(E � !(k))

= !0 +
2�2

M


1 +O

✓
E �M

M

◆
+O

✓
e�Md

p
Md

◆�
. (7)

Corrections in the second line are negligible if !0 ⌧ M .
This will result as a special case of the ensuing analysis
of the complex poles of the resolvent. [See Eq. (30) and
following ones.] Thus for large M , a bound state with
E > M is present only if the distance d takes one of the
discrete and equally spaced values

d
n

=
n⇡

k̄
, with k̄ :=

s✓
!0 +

2�2

M

◆2

�M2, (8)

and if the wavenumber k̄ is real (!0 > M � 2�2/M).
We shall discuss in the following the properties of states
with E < M , to which an imaginary wavenumber can be
associated.
To complete the characterization of the bound state,

we shall analyze the atomic populations and the field
energy density. The former can be immediately obtained
using the normalization condition on the states (3) as

1 = 2|c(n)
A

|2
✓
1 + �2

Z
dk

1� (�1)n cos(kd
n

)

!(k)(E � !(k))2

◆
. (9)

Retaining only the highest order in M and defining p
n

:=

|c(n)
A

|2+ |c(n)
B

|2 as the probability associated to the Nat =
1 sector, one gets

p
n

'
✓
1 + n⇡

2⇡�2M2

k̄3

◆�1

. (10)

Notice that, despite being apparently of order �2, the
correction to unity is given by the ratio between pow-
ers of two small quantities, namely the e↵ective coupling
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with E < M , to which an imaginary wavenumber can be
associated.
To complete the characterization of the bound state,

we shall analyze the atomic populations and the field
energy density. The former can be immediately obtained
using the normalization condition on the states (3) as

1 = 2|c(n)
A

|2
✓
1 + �2

Z
dk

1� (�1)n cos(kd
n

)

!(k)(E � !(k))2

◆
. (9)

Retaining only the highest order in M and defining p
n

:=

|c(n)
A

|2+ |c(n)
B

|2 as the probability associated to the Nat =
1 sector, one gets

p
n

'
✓
1 + n⇡

2⇡�2M2

k̄3

◆�1

. (10)

Notice that, despite being apparently of order �2, the
correction to unity is given by the ratio between pow-
ers of two small quantities, namely the e↵ective coupling

No need to have mirror! 
Atoms behave like “mirrors”



  

Two atoms in an infinite waveguide

A B

The total number of excitations is a constant of motion

H=H at+H field+H int

H at=ω 0(|eA ⟩ ⟨eA|+|eB ⟩ ⟨eB|)

H field=∫d k √k 2+M 2
b

†(k)b(k)

H int=∫d k λ
(k2+M 2)1 /4 {b†(k)[|gA ⟩ ⟨eA|+|gB ⟩ ⟨eB|e

−i k d ]+H.c.}

N=N at+N field=|eA ⟩ ⟨eA|+|eB ⟩ ⟨eB|+∫d k b
†(k )b(k )

Rotating Wave Approximation

  

One-excitation bound states (I)

|ψ ⟩=(c A|e A , gB ⟩+cB|g A , eB ⟩)|vac ⟩+|gA ,gb⟩|1 photon ⟩

General wavefunction in the sector

ω

0

M

E

Bound states below the threshold for photon propagation 
are expected:

● Effective interatomic interaction mediated by evanescent 
waves

● Symmetric and antisymmetric eigenstates for any 
interatomic distance d :

●                         ,  level splitting 

H|ψ ⟩=E|ψ ⟩ with ⟨ψ |ψ ⟩=1Bound states

|ψ ⟩≃[|eA , gB ⟩±|g A , eB ⟩
√2 ] |vac ⟩

E=ω 0+O(λ2) ∼exp (−√E
2−M

2
d )

Shahmoon and Kurizki (2013)

let N=1 (one-excitation sector)



, - . = 00,

Equazioni)di)Maxwell Condizioni) al)contorno

, - 2 = 00,

,×. = −
52
5t

,×2 = 78
59
5t

E;<
=
= 000,

5B;
5n

@
=
= 0

Un%arbitrario%campo%elettromagnetico%all’interno%della%guida%può%essere%espressa%
come%una%combinazione% lineare%di:

• Modi&trasversi&magnetici + ABC,D0! B; = 0
• Modi&trasversi&elettrici&+A.C,D0! E; = 00

!EF(H) =
HJ

78
+LEF

J
Frequenza#di#taglio#

Il%modo%non%si%propaga%
a%frequenze%inferiori%MRelazione%di%dispersione:

Una%guida%d’onda%è%un%tubo%di%materiale%conduttore%riempito%con%un%dielettrico.

Per%una%guida%a%sezione&rettangolare esiste%un%intervallo%di%! in%corrispondenza% del%
quale%l’unico&modo&che%può%propagarsi%è%quello%con%cutToff% inferiore%A.M,'.

N

n,m ∈ ℕ
Indici%che%individuano%i%

differenti%modi

J.%D.%Jackson (1999)

Sistema%di%tre emettitori%quantistici%a%due livelli%(qubit)%posti%
lungo%l’asse%di%una%guida%d’onda%avente%sezione&rettangolare

Approssimazioni:
• Guida%d’onda%perfetta (assenza%di%modi%non%guidati);
• Un%unico%modo%eccitabile:%TES,".

Obiettivi:
• Ricerca%degli%stati&legati;
• Analisi%dei%poli del%prolungamento% analitico%del%propagatore.

|U⟩
|W⟩

!"

XN

XY

Sistema%di%tre emettitori%quantistici%a%due livelli%(qubit)%posti%
lungo%l’asse%di%una%guida%d’onda%avente%sezione&rettangolare

Approssimazioni:
• Guida%d’onda%perfetta (assenza%di%modi%non%guidati);
• Un%unico%modo%eccitabile:%TES,".

Obiettivi:
• Ricerca%degli%stati&legati;
• Analisi%dei%poli del%prolungamento% analitico%del%propagatore.

|U⟩
|W⟩

!"

XN

XY
mode; role of boundary conditions

2

II. THE MODEL

We describe the dynamics of two two-level atoms A
and B, situated in an infinite waveguide of rectangular
cross section, with sides L

y

< L
z

, see Fig. 1. When lon-
gitudinal propagation occurs with long wavelength com-
pared to the transverse size, interaction between atoms
and field can be reduced to a coupling with the lowest-
cuto↵-energy TE1,0 mode, in which the electric field vi-
brates along the z direction and has a sine modulation
in the y direction [37]. In this situation, the electromag-
netic field is e↵ectively scalar and massive. The inter-
acting atoms and photons are described, in dipolar and
rotating wave approximations, by the Hamiltonian

H = H0 + �V

= !0(|eAiheA|+ |e
B

ihe
B

|) +
Z

dk !(k)b†(k)b(k)

+�

Z
dk

!(k)1/2

h
|e

A

ihg
A

|b(k) + |g
A

ihe
A

|b†(k)

+|e
B

ihg
B

|b(k)eikd + |g
B

ihe
B

|b†(k)e�ikd
i
, (1)

where !0 is the bare energy separation between the
atomic ground |gi and first-excited states |ei, d is the A-
B distance, !(k) =

p
k2 +M2 is the photon dispersion

relation, characterized by the mass M / L�1
y

, and b(k)

(b†(k)) is the annihilation (creation) field operator, satis-
fying the canonical commutation relation [b(k), b†(k0)] =
�(k�k0). Natural units for energy are fixed by ~v, where
v is the phase velocity in the waveguide medium, which
is assumed linear, isotropic and nondispersive. The ef-
fective mass M provides a natural cuto↵ to the coupling.
The Hamiltonian (1) commutes with the excitation num-
ber

N = Nat +

Z
dk b†(k)b(k), (2)

where Nat = |e
A

ihe
A

| + |e
B

ihe
B

| is the atomic excita-
tion number. The N = 0 sector is 1-dimensional and is
spanned by the bare ground state |g

A

, g
B

; vaci. We shall
focus instead on the dynamics in the N = 1 sector, where
the states read

| i = �
c
A

|e
A

, g
B

i+ c
B

|g
A

, e
B

i�⌦ |vaci+ |g
A

, g
B

i ⌦ |'i
(3)

where |'i :=
R
dk '(k)b†(k)|vaci is a one-photon state,

and |c
A

|2 + |c
B

|2 + R
dk|'(k)|2 = 1.

In the small-coupling regime, an isolated excited atom
with !0 & M would decay to the ground state. We
shall demonstrate that, when two atoms are considered,
a resonance e↵ect emerges, yielding a bound state. Using
the expansion (3) the eigenvalue equation, H| i = E| i,

reads

Ec
A

= !0cA + �

Z
dk

'(k)

!(k)1/2
, (4)

Ec
B

= !0cB + �

Z
dk
'(k)eikd

!(k)1/2
, (5)

'(k) =
�

!(k)1/2
c
A

+ c
B

e�ikd

E � !(k)
. (6)

The field amplitude '(k) has two simple poles at k =
±k̄ = ±p

E2 �M2. Thus, when E > M , the integrals
in (4)-(5) are finite only if c

A

+c
B

e±ik̄d = 0, yielding k̄d =
n⇡ for positive integers n. This implies that a bound
state can exist only for discrete values of the interatomic
distance d. Moreover, in the first component of such an
eigenstate (3), the atoms are in a maximally entangled
(singlet or triplet) state, namely c

A

= (�1)n+1c
B

. To
determine the distances at which the bound state exists,
let us first compute the energy eigenvalue, which after
the resonance condition is the solution of

E = !0 + �2
Z

dk
1� (�1)ne�ikd

!(k)(E � !(k))

= !0 +
2�2

M


1 +O

✓
E �M

M

◆
+O

✓
e�Md

p
Md

◆�
. (7)

Corrections in the second line are negligible if !0 ⌧ M .
This will result as a special case of the ensuing analysis
of the complex poles of the resolvent. [See Eq. (30) and
following ones.] Thus for large M , a bound state with
E > M is present only if the distance d takes one of the
discrete and equally spaced values

d
n

=
n⇡

k̄
, with k̄ :=

s✓
!0 +

2�2

M

◆2

�M2, (8)

and if the wavenumber k̄ is real (!0 > M � 2�2/M).
We shall discuss in the following the properties of states
with E < M , to which an imaginary wavenumber can be
associated.
To complete the characterization of the bound state,

we shall analyze the atomic populations and the field
energy density. The former can be immediately obtained
using the normalization condition on the states (3) as

1 = 2|c(n)
A

|2
✓
1 + �2

Z
dk

1� (�1)n cos(kd
n

)

!(k)(E � !(k))2

◆
. (9)

Retaining only the highest order in M and defining p
n

:=

|c(n)
A

|2+ |c(n)
B

|2 as the probability associated to the Nat =
1 sector, one gets

p
n

'
✓
1 + n⇡

2⇡�2M2

k̄3

◆�1

. (10)

Notice that, despite being apparently of order �2, the
correction to unity is given by the ratio between pow-
ers of two small quantities, namely the e↵ective coupling
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observation: dark state of an atomic pair  
(identical but distinguishable atoms)

  

In some cases, decay can be hindered even when energetically allowed

2. Dark state of an atomic pair

Identical (but distinguishable) atoms in the same position, coupled with field 

The one-excitation 
antisymmetric state

decouples from the interaction

The one-excitation symmetric 
state

decays faster than a free atom

|Ψ(−)⟩=
|eA , gB ⟩−|gA ,eB ⟩

√2
|Ψ(+ )⟩=

|eA , gB ⟩+|gA ,eB ⟩
√2

A

B

H int
|Ψ(−)⟩=0 γ(+ )=2 γfree

No decay above threshold: two examples



another observation

  

One-excitation bound states (I)

|ψ ⟩=(c A|e A , gB ⟩+cB|g A , eB ⟩)|vac ⟩+|gA ,gb⟩|1 photon ⟩

General wavefunction in the sector

ω

0

M

E

Bound states below the threshold for photon propagation 
are expected:

● Effective interatomic interaction mediated by evanescent 
waves

● Symmetric and antisymmetric eigenstates for any 
interatomic distance d :

●                         ,  level splitting 

H|ψ ⟩=E|ψ ⟩ with ⟨ψ |ψ ⟩=1Bound states

|ψ ⟩≃[|eA , gB ⟩±|g A , eB ⟩
√2 ] |vac ⟩

E=ω 0+O(λ2) ∼exp (−√E
2−M

2
d )

Shahmoon and Kurizki (2013)

Shahmoon & Kurizki 2013 

  

One-excitation bound states (II)

|ψ ⟩=(c A|e A , gB ⟩+cB|g A , eB ⟩)|vac ⟩+|gA ,gb⟩|1 photon ⟩

General wavefunction in the sector

ω

0

M

E

Bound states above the threshold are less trivial:

● In the same condition, single atoms would unavoidably decay

● The two atoms interact only through exchange of propagating 
photons

● It is evident that bound states cannot occur for general values 
of interatomic distance and transition frequency

H|ψ ⟩=E|ψ ⟩ with ⟨ψ |ψ ⟩=1Bound states

above threshold?  
much less obvious



  

Resonant bound states: conditions

|ψ ⟩=(cA|eA , gB ⟩+cB|gA , eB ⟩)|vac ⟩+|gA ,gb⟩|1 photon ⟩

H|ψ ⟩=E|ψ ⟩=√ k̄2+M 2
|ψ ⟩The eigenvalue equation

can be satisfied by a normalizable state only if:

cA=(−1)n+1
cB , d=dn=

nπ
k̄

(n∈Z+ )

cA+e
±i k̄ d

cB=0

E=ω o+∫d k λ 2

√k2+M 2

1−e
i( k̄−k )d

E−√k2+M 2
has real solutions

i)

ii)

Phys. Rev. A 94, 043839 (2016)
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constant �/
p
M , and the wavenumbers ratio k̄/M . The

resulting number can be of order one, even at small cou-
pling constants. Let us finally analyze the energy den-
sity of the electromagnetic fields. Neglecting the expo-
nentially suppressed contribution of the square-root cuts,
the energy density turns out to be related to the Fourier
transform of the photon amplitude,

e'
n

(x) =

Z
dk

2⇡
'
n

(k)eikx

' �c(n)
A

2Mp
2⇡E

Z
dk

1� (�1)ne�ikdn

k̄2 � k2
eikx, (11)

as

E
n

(x) ' E|e'
n

(x)|2 '
⇣2

p
⇡�M

k̄

⌘2
p
n

sin(k̄x)2, (12)

for x 2 [0, d
n

], and E
n

(x) ' 0 outside. Thus, the field
is confined between the two atoms, and modulated with
periodicity ⇡/k̄, with nodes at the positions of the atoms
which act as mirrors. This explains the occurrence of
such bound states for discrete values (8) of the inter-
atomic distance.

Moreover, the structure of the bound state is

| 
n

i = p
p
n

| si ⌦ |vaci+ |g
A

, g
B

i ⌦ |'
n

i, (13)

where s = (�1)n+1 and | ±i = (|e
A

, g
B

i± |g
A

, e
B

i)/p2
are (maximally entangled) Bell states. This is a key
feature which enables entanglement generation by atom-
photon interaction. Indeed, suppose that d = d

n

: a fac-
torized initial state, say | (0)i = |e

A

, g
B

i ⌦ |vaci, can be
expanded into a “stable” and a “decaying” part as

|e
A

, g
B

; vaci =
r

p
n

2
| 

n

i+
r

1� p
n

2
| ?

n

i, (14)

with h ?
n

| 
n

i = 0. After a transient of the order of | ?
n

i’s
lifetime (see discussion in the following), the atomic den-
sity matrix ⇢at(t) := Trfield| (t)ih (t)| approaches

⇢at(1) =
p2
n

2
| sih s|+

⇣
1� p2

n

2

⌘
|g

A

, g
B

ihg
A

, g
B

|, (15)

in which the atoms have a finite probability, determined
by (10), to be maximally entangled. The concurrence of
the asymptotic state is displayed in Figure 2. However,
one could also measure the photon state and obtain, with
a finite probability, a maximally entangled atomic state.
The strategy is therefore the following: one prepares a
factorized state, and measures whether a photon is emit-
ted. If (after a few lifetimes) no photon has been ob-
served, the atomic state is projected over the maximally
entangled Bell state | si. This can be achieved with
higher probabilities for larger values of !0.

III. TIME EVOLUTION AND BOUND STATE
STABILITY

Let us now study the general evolution of an initial
state in the atomic sector Nat = 1. We will use the re-
solvent formalism [38] to show that the system will relax
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Figure 2. Behavior of the concurrence C = p

2
n/2 of the asymp-

totic states ⇢at(1) as a function of the atomic excitation en-
ergy, for �

2 = 0.1M and a factorized initial state. The solid
(blue) line, dashed (red) line and dotted (black) line are re-
ferred to the resonant states with n = 1, 2, 3, respectively.

towards the bound state, and we will also show that the
bound state is robust to small variations in the parame-
ters (such as the A-B distance). However, the usefulness
of the resolvent formalism goes beyond the analysis of
the stable states. Indeed, the entanglement-by-relaxation
protocol described in the previous section relies on the
fast decay of the unstable Bell state. The analysis of the
resolvent enables to determine the lifetime of this unsta-
ble state, that must be much faster that the timescale of
waveguide losses to ensure the e↵ectiveness of the pro-
tocol. The resolvent G(z) = (z �H)�1 has singularities
only on the real axis (on the first Riemann sheet) and the
study of additional singularities (on the other Riemann
sheets) yields crucial information about the dynamical
stability of the system: in particular, a pole with a non-
vanishing imaginary component signals a decay process.
For � = 0, the free resolvent G0(z) = (z � H0)�1 has a
pole on the real axis, at z = !0, corresponding to the ex-
cited states of atoms A or B. When interaction is turned
on, this singularity splits into two simple poles, which
generally migrate into the second Riemann sheet. We
shall see from a perturbative analysis that, under reso-
nance conditions, one of the poles falls on the real axis
(and is therefore very long-lived), while the other one has
a very short lifetime. Let G(z) and G0(z) be the restric-
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resulting number can be of order one, even at small cou-
pling constants. Let us finally analyze the energy den-
sity of the electromagnetic fields. Neglecting the expo-
nentially suppressed contribution of the square-root cuts,
the energy density turns out to be related to the Fourier
transform of the photon amplitude,
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(x) ' 0 outside. Thus, the field
is confined between the two atoms, and modulated with
periodicity ⇡/k̄, with nodes at the positions of the atoms
which act as mirrors. This explains the occurrence of
such bound states for discrete values (8) of the inter-
atomic distance.
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in which the atoms have a finite probability, determined
by (10), to be maximally entangled. The concurrence of
the asymptotic state is displayed in Figure 2. However,
one could also measure the photon state and obtain, with
a finite probability, a maximally entangled atomic state.
The strategy is therefore the following: one prepares a
factorized state, and measures whether a photon is emit-
ted. If (after a few lifetimes) no photon has been ob-
served, the atomic state is projected over the maximally
entangled Bell state | si. This can be achieved with
higher probabilities for larger values of !0.

III. TIME EVOLUTION AND BOUND STATE
STABILITY

Let us now study the general evolution of an initial
state in the atomic sector Nat = 1. We will use the re-
solvent formalism [38] to show that the system will relax
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Figure 2. Behavior of the concurrence C = p

2
n/2 of the asymp-

totic states ⇢at(1) as a function of the atomic excitation en-
ergy, for �

2 = 0.1M and a factorized initial state. The solid
(blue) line, dashed (red) line and dotted (black) line are re-
ferred to the resonant states with n = 1, 2, 3, respectively.

towards the bound state, and we will also show that the
bound state is robust to small variations in the parame-
ters (such as the A-B distance). However, the usefulness
of the resolvent formalism goes beyond the analysis of
the stable states. Indeed, the entanglement-by-relaxation
protocol described in the previous section relies on the
fast decay of the unstable Bell state. The analysis of the
resolvent enables to determine the lifetime of this unsta-
ble state, that must be much faster that the timescale of
waveguide losses to ensure the e↵ectiveness of the pro-
tocol. The resolvent G(z) = (z �H)�1 has singularities
only on the real axis (on the first Riemann sheet) and the
study of additional singularities (on the other Riemann
sheets) yields crucial information about the dynamical
stability of the system: in particular, a pole with a non-
vanishing imaginary component signals a decay process.
For � = 0, the free resolvent G0(z) = (z � H0)�1 has a
pole on the real axis, at z = !0, corresponding to the ex-
cited states of atoms A or B. When interaction is turned
on, this singularity splits into two simple poles, which
generally migrate into the second Riemann sheet. We
shall see from a perturbative analysis that, under reso-
nance conditions, one of the poles falls on the real axis
(and is therefore very long-lived), while the other one has
a very short lifetime. Let G(z) and G0(z) be the restric-
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in which the atoms have a finite probability, determined
by (10), to be maximally entangled. The concurrence of
the asymptotic state is displayed in Figure 2. However,
one could also measure the photon state and obtain, with
a finite probability, a maximally entangled atomic state.
The strategy is therefore the following: one prepares a
factorized state, and measures whether a photon is emit-
ted. If (after a few lifetimes) no photon has been ob-
served, the atomic state is projected over the maximally
entangled Bell state | si. This can be achieved with
higher probabilities for larger values of !0.

III. TIME EVOLUTION AND BOUND STATE
STABILITY

Let us now study the general evolution of an initial
state in the atomic sector Nat = 1. We will use the re-
solvent formalism [38] to show that the system will relax
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Figure 2. Behavior of the concurrence C = p

2
n/2 of the asymp-

totic states ⇢at(1) as a function of the atomic excitation en-
ergy, for �

2 = 0.1M and a factorized initial state. The solid
(blue) line, dashed (red) line and dotted (black) line are re-
ferred to the resonant states with n = 1, 2, 3, respectively.

towards the bound state, and we will also show that the
bound state is robust to small variations in the parame-
ters (such as the A-B distance). However, the usefulness
of the resolvent formalism goes beyond the analysis of
the stable states. Indeed, the entanglement-by-relaxation
protocol described in the previous section relies on the
fast decay of the unstable Bell state. The analysis of the
resolvent enables to determine the lifetime of this unsta-
ble state, that must be much faster that the timescale of
waveguide losses to ensure the e↵ectiveness of the pro-
tocol. The resolvent G(z) = (z �H)�1 has singularities
only on the real axis (on the first Riemann sheet) and the
study of additional singularities (on the other Riemann
sheets) yields crucial information about the dynamical
stability of the system: in particular, a pole with a non-
vanishing imaginary component signals a decay process.
For � = 0, the free resolvent G0(z) = (z � H0)�1 has a
pole on the real axis, at z = !0, corresponding to the ex-
cited states of atoms A or B. When interaction is turned
on, this singularity splits into two simple poles, which
generally migrate into the second Riemann sheet. We
shall see from a perturbative analysis that, under reso-
nance conditions, one of the poles falls on the real axis
(and is therefore very long-lived), while the other one has
a very short lifetime. Let G(z) and G0(z) be the restric-
tions to the Nat = 1 sector of the interacting and free
resolvent, respectively. In the basis {|e
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resulting number can be of order one, even at small cou-
pling constants. Let us finally analyze the energy den-
sity of the electromagnetic fields. Neglecting the expo-
nentially suppressed contribution of the square-root cuts,
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is confined between the two atoms, and modulated with
periodicity ⇡/k̄, with nodes at the positions of the atoms
which act as mirrors. This explains the occurrence of
such bound states for discrete values (8) of the inter-
atomic distance.
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in which the atoms have a finite probability, determined
by (10), to be maximally entangled. The concurrence of
the asymptotic state is displayed in Figure 2. However,
one could also measure the photon state and obtain, with
a finite probability, a maximally entangled atomic state.
The strategy is therefore the following: one prepares a
factorized state, and measures whether a photon is emit-
ted. If (after a few lifetimes) no photon has been ob-
served, the atomic state is projected over the maximally
entangled Bell state | si. This can be achieved with
higher probabilities for larger values of !0.

III. TIME EVOLUTION AND BOUND STATE
STABILITY

Let us now study the general evolution of an initial
state in the atomic sector Nat = 1. We will use the re-
solvent formalism [38] to show that the system will relax
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Figure 2. Behavior of the concurrence C = p
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n/2 of the asymp-

totic states ⇢at(1) as a function of the atomic excitation en-
ergy, for �

2 = 0.1M and a factorized initial state. The solid
(blue) line, dashed (red) line and dotted (black) line are re-
ferred to the resonant states with n = 1, 2, 3, respectively.

towards the bound state, and we will also show that the
bound state is robust to small variations in the parame-
ters (such as the A-B distance). However, the usefulness
of the resolvent formalism goes beyond the analysis of
the stable states. Indeed, the entanglement-by-relaxation
protocol described in the previous section relies on the
fast decay of the unstable Bell state. The analysis of the
resolvent enables to determine the lifetime of this unsta-
ble state, that must be much faster that the timescale of
waveguide losses to ensure the e↵ectiveness of the pro-
tocol. The resolvent G(z) = (z �H)�1 has singularities
only on the real axis (on the first Riemann sheet) and the
study of additional singularities (on the other Riemann
sheets) yields crucial information about the dynamical
stability of the system: in particular, a pole with a non-
vanishing imaginary component signals a decay process.
For � = 0, the free resolvent G0(z) = (z � H0)�1 has a
pole on the real axis, at z = !0, corresponding to the ex-
cited states of atoms A or B. When interaction is turned
on, this singularity splits into two simple poles, which
generally migrate into the second Riemann sheet. We
shall see from a perturbative analysis that, under reso-
nance conditions, one of the poles falls on the real axis
(and is therefore very long-lived), while the other one has
a very short lifetime. Let G(z) and G0(z) be the restric-
tions to the Nat = 1 sector of the interacting and free
resolvent, respectively. In the basis {|e
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harmonic oscillators (e.g. optical cavities) 

(assumption equal spacings to be relaxed)
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of emitter excitations. By contrast, in a waveguide, with d and !1 close to the resonance
conditions, such a state will be left almost invariant by the Hamiltonian evolution, with a
dressing (slight, in the perturbative regime) due to the imperfect superposition of the initial
and the bound state (i.e. pat < 1). Therefore, on timescales smaller than the waveguide losses,
entanglement is preserved without imposing constraints or external control.

Another interesting application is related to the decay of the unstable component of an
arbitrary initial state. An initial state ⇢0 = ⇢in ⌦ |vacihvac|, with ⇢in in the Nat = N sector,
will generally evolve into ⇢(t) = e�iHt⇢0eiHt. After a transient, the N-excitation states will
relax towards the atomic ground state by emission of N photons if no bound state is present
in the sector. If, instead, one of the resonance conditions is fulfilled, the state | (N)

AB i ⌦ |vaci,
which has a nonvanishing projection on |Ni, will relax towards an excited atomic state. The
probability of having maximally entangled atoms is given by

pin = lim
t!1

Tr[⇢(t)(Iat ⌦ |vacihvac|)] = p2N
at h (N)

AB |⇢in| (N)
AB i. (24)

Therefore, the atoms, starting from a general density matrix, which can be e.g. factorized,
eventually reach a highly entangled state with N excitation with finite probability. The
typical relaxation time of the reduced atomic density matrix towards its asymptotic state is
determined by the lifetime of the component b†anti| 

(N�1)
AB i, and coincides with the lifetime of

a single atomic excitation created in the antiresonant state [47]. The described entanglement
generation strategy is similar to the Hamiltonian generation of entanglement, in which an
initial (factorized) state is let to coherently evolve until it reaches an entangled state. Such a
procedure can be applied in the case of the bound states well below the threshold for photon
propagation. However, the Hamiltonian nature of the evolution in the AB Hilbert space yields
oscillations, which implies that the evolution must be stopped at a proper time to obtain the
desired state. This drawback is absent in entanglement generation by relaxation, in which the
final state is approached asymptotically. This technique does not require energy pumping into
the system, since a constant entanglement is reached after an initial transient [47].

Let us go back to the discussion of the entanglement properties of | (N)
AB i. The emitter

state in the sectorNat = 1 (two 2-level atoms) has been extensively studied, and is particularly
interesting since it corresponds to one of the two Bell states, according to the sign of (�1)n

[see Eqs. (13)–(17)]. It is thus maximally entangled in theNat = 1 subspace. The bound state
|N = 2i, relative to the pair of 3-level atoms in Fig. 1, reads

|2i = patp
6

⇣
|0A, 2Bi � 2|1A, 1Bi + |2A, 0Bi

⌘
⌦ |vaci

+
p

2pat(1 � pat)
⇣
|0A, 1Bi � |1A, 0Bi

⌘
⌦ |�(1)i

+ (1 � pat)|0A, 0Bi ⌦ |�(2)i. (25)

By projecting onto a suitable photonic state, one can select the desired (long-lived) atomic
entangled state | (N)

AB i, for N = 1 and 2. To extend the analysis of entanglement to large-N
states, we can use the fact that the reduced one-emitter density matrices obtained from | (m)

AB i

3 levels
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procedure can be applied in the case of the bound states well below the threshold for photon
propagation. However, the Hamiltonian nature of the evolution in the AB Hilbert space yields
oscillations, which implies that the evolution must be stopped at a proper time to obtain the
desired state. This drawback is absent in entanglement generation by relaxation, in which the
final state is approached asymptotically. This technique does not require energy pumping into
the system, since a constant entanglement is reached after an initial transient [47].

Let us go back to the discussion of the entanglement properties of | (N)
AB i. The emitter

state in the sectorNat = 1 (two 2-level atoms) has been extensively studied, and is particularly
interesting since it corresponds to one of the two Bell states, according to the sign of (�1)n

[see Eqs. (13)–(17)]. It is thus maximally entangled in theNat = 1 subspace. The bound state
|N = 2i, relative to the pair of 3-level atoms in Fig. 1, reads
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3 levels
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have a particularly simple binomial form, that leads to

⇢(N)
A = trB ⇢

(N)
AB =

NX

`=0

C(N)
` (pat)|`Aih`A|, (26)

where the coe�cients

C(N)
` (pat) :=

NX

m=0

1
2m

 
N
m

!  
m
`

!
pm

at(1 � pat)N�m (27)

are dominated by the terms m = N at small coupling. These states appear in the analysis
of coherently illuminated beam splitters, when the input states are very imbalanced [49],
and their interesting entanglement features generalize those of NOON states. Bipartite
entanglement can be quantified through any measure based on the eigenvalues of the reduced
state ⇢(N)

A . Let us adopt purity of A:

⇡(N)
A =

NX

`=0

⇣
C(N)
` (pat)

⌘2
=
�
⇣
N + 1

2

⌘

p
⇡N!

⇣
1 + O[(N�2)2]

⌘
⇠

"
1p
⇡N
+ O(N�3/2)

# ⇣
1 + O[(N�2)2]

⌘
,

(28)

as N ! 1, where � is the Euler gamma function. Strictly speaking, this quantity measures
entanglement between A and its environment (B + field). However, since the state of the
field is quasi factorized at small coupling, it is also an approximate measure of entanglement
between the two emitters A and B. On one hand, purity (28) scales more slowly than the
minimal value (N + 1)�1 in the sector, corresponding to maximally mixed reduced density
matrices. On the other hand, this result is consistent with the minimal purity for states whose
reduced density matrices are e↵ectively approximated by the superposition of O(N1/2) states.

It is also possible to determine the entanglement properties of coherent and incoherent
superpositions of the bound states |Ni. For example, one can consider the “pseudothermal”
state

⇢th
AB = (1 � e��E)e��Eb†�b� , (29)

whose reduced density matrix is the thermal average of (26), yielding the purity

⇡th
A =

1X

`=0

0
BBBBB@
1X

N=`

(1 � e��E)e��ENC(N)
` (pat)

1
CCCCCA

2

= (1 � e��E) + O(Nth�
2), (30)

with Nth the average excitation number. Another interesting case is the coher-
ent state |↵i = e↵b†��↵⇤b� |0i. Since it is a product of coherent states, |↵i =
e↵�⇤Ab†A�↵⇤�AbAe↵�⇤Bb†B�↵⇤�BbBe

R
dk [↵�⇤(k)b†(k)�↵⇤�(k)b(k)|0i, there is no entanglement between the two

atoms. In particular, in the small-coupling limit, the atom density matrix ⇢↵AB is dominated by
the projection on

|↵̃i = e�|↵|
2
1X

`=0

(�↵)`p
2``!

1X

m=0

(�↵)m

p
2mm!

|`A,mBi, (31)

which yields a factorized reduced density matrix.
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dk [↵�⇤(k)b†(k)�↵⇤�(k)b(k)|0i, there is no entanglement between the two

atoms. In particular, in the small-coupling limit, the atom density matrix ⇢↵AB is dominated by
the projection on

|↵̃i = e�|↵|
2
1X

`=0

(�↵)`p
2``!

1X

m=0

(�↵)m

p
2mm!

|`A,mBi, (31)

which yields a factorized reduced density matrix.

binomial: beam splitter, generalizes NOON 
(Nakazato, P, Stobinska, Yuasa, 2016)  
(vector model in QFT - de Prunelé J. Math. Phys. 1988)
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have a particularly simple binomial form, that leads to

⇢(N)
A = trB ⇢

(N)
AB =

NX

`=0

C(N)
` (pat)|`Aih`A|, (26)

where the coe�cients

C(N)
` (pat) :=

NX

m=0

1
2m

 
N
m

!  
m
`

!
pm

at(1 � pat)N�m (27)

are dominated by the terms m = N at small coupling. These states appear in the analysis
of coherently illuminated beam splitters, when the input states are very imbalanced [49],
and their interesting entanglement features generalize those of NOON states. Bipartite
entanglement can be quantified through any measure based on the eigenvalues of the reduced
state ⇢(N)

A . Let us adopt purity of A:

⇡(N)
A =

NX

`=0

⇣
C(N)
` (pat)

⌘2
=
�
⇣
N + 1

2

⌘

p
⇡N!

⇣
1 + O[(N�2)2]

⌘
⇠

"
1p
⇡N
+ O(N�3/2)

# ⇣
1 + O[(N�2)2]

⌘
,

(28)

as N ! 1, where � is the Euler gamma function. Strictly speaking, this quantity measures
entanglement between A and its environment (B + field). However, since the state of the
field is quasi factorized at small coupling, it is also an approximate measure of entanglement
between the two emitters A and B. On one hand, purity (28) scales more slowly than the
minimal value (N + 1)�1 in the sector, corresponding to maximally mixed reduced density
matrices. On the other hand, this result is consistent with the minimal purity for states whose
reduced density matrices are e↵ectively approximated by the superposition of O(N1/2) states.

It is also possible to determine the entanglement properties of coherent and incoherent
superpositions of the bound states |Ni. For example, one can consider the “pseudothermal”
state

⇢th
AB = (1 � e��E)e��Eb†�b� , (29)

whose reduced density matrix is the thermal average of (26), yielding the purity

⇡th
A =

1X

`=0

0
BBBBB@
1X

N=`

(1 � e��E)e��ENC(N)
` (pat)

1
CCCCCA

2

= (1 � e��E) + O(Nth�
2), (30)

with Nth the average excitation number. Another interesting case is the coher-
ent state |↵i = e↵b†��↵⇤b� |0i. Since it is a product of coherent states, |↵i =
e↵�⇤Ab†A�↵⇤�AbAe↵�⇤Bb†B�↵⇤�BbBe

R
dk [↵�⇤(k)b†(k)�↵⇤�(k)b(k)|0i, there is no entanglement between the two

atoms. In particular, in the small-coupling limit, the atom density matrix ⇢↵AB is dominated by
the projection on

|↵̃i = e�|↵|
2
1X

`=0

(�↵)`p
2``!

1X

m=0

(�↵)m

p
2mm!

|`A,mBi, (31)

which yields a factorized reduced density matrix.

purity
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FIG. 1. A beam splitter: na and nb photons illuminate ports a and
b, respectively, and the total number of photons is fixed na + nb = N ;
ma and mb photons exit through ports a and b, respectively. The
input and output imbalances read Ny = na − nb and Nx = ma − mb,
respectively.

(ma,mb) = (1,1) is suppressed. This is the HOM interference
[1,2], due to photon bunching. If the input photon number

N is greater than 2, the two-peak structure in the probability
distribution is blurred, but a similar structure remains in the
large-N limit. Moreover, such a structure will be shown to
be very robust against the fluctuations in the imbalance in the
input photon numbers.

The action of the beam splitter is described by the unitary
operator

Û = e−ξ (â†b̂−b̂†â) = eĴ− tan ξeĴ3 ln cos ξe−Ĵ+ tan ξ , (1)

where ξ = π/4 for a 50:50 beam splitter, Ĵ3 = â†â − b̂†b̂,
Ĵ+ = â†b̂, and Ĵ− = b̂†â = Ĵ

†
+ [22], with â and b̂ being the

canonical annihilation operators of photons in the two modes.
The input state |na,N − na⟩ is obtained from the (normalized)
state |0,N⟩ by [22,23]

|na,N − na⟩ =

√
(N − na)!

na! N !
(Ĵ+)na |0,N⟩. (2)

The amplitude to get output |ma,N − ma⟩ reads

⟨ma,N − ma|Û |na,N − na⟩ = 1
N !

√
(N − ma)! (N − na)!

ma! na!
(cos ξ )2ma−N ⟨0,N |(Ĵ−)maeĴ− sin ξ cos ξe−Ĵ+ tan ξ (Ĵ+)na |0,N⟩

=

√
(N − ma)!

ma!
(cos ξ )2ma−N

√
na! (N − na)!

(
∂

∂α

)ma

[αna (1 + αβ)N−na ]
∣∣∣∣
α=sin ξ cos ξ,β=− tan ξ

≡ AN (x,y) (Nx = ma − mb = 2ma − N,Ny = na − nb = 2na − N ), (3)

where we have introduced the normalized imbalances y and x in the input and output photon numbers, respectively, both ranging
in −1 ! x,y ! 1. This is our starting formula.

III. BALANCED PHOTON INPUT y = 0

We first consider the balanced-input case y = 0. This implies that the total photon number N is even, and only even output
imbalances Nx are allowed. The evaluation of the last factor yields [ma = (N/2)(1 + x)]

(
∂

∂α

) N
2 (1+x)[

α
N
2 (1 + αβ)

N
2
]∣∣∣∣

α=1/2,β=−1
=

[
N
2 (1 + x)

]
!

2π i

∮
dz

z
N
2 (1 − z)

N
2

(
z − 1

2

) N
2 (1+x)+1

=
[

N
2 (1 + x)

]
!

2π

(
1
2

) N
2 (1−x) ∮

dθ e−i N
2 (1+x)θ (1 − e2iθ )

N
2

= (−1)
N
4 (1+x)[N

2 (1 + x)
]
!
(

1
2

) N
2 (1−x)

(
N
2

N
4 (1 + x)

)

, (4)

where the quantity N
4 (1 + x) is assumed to be integer;

otherwise we get a null result. Therefore, the amplitude is
found to be expressed analytically as

AN (x,0) = (−1)
N
4 (1+x)

√[
N
2 (1 + x)

]
!
[

N
2 (1 − x)

]
!

2
N
2
[

N
4 (1 + x)

]
!
[

N
4 (1 − x)

]
!

(5)

for integer ma

2 = N
4 (1 + x); otherwise AN (x,0) = 0. This

formula is exact and coincides with the result obtained in
Ref. [3], where an analogy is drawn with the vector model [24].

Since the amplitude identically vanishes every two (“even”)
points, the probability distribution appears as a rapidly oscil-
lating function of x. Observe that the odd and even branches
of Eq. (5) compete at the edges |x| = 1 of the distribution,
yielding wild oscillations. See the upper panel in Fig. 2, where
the distribution

PN (x) = N

2
|AN (x,y)|2 (6)

is plotted for N = 600 and y = 0. [Recall that the amplitude
AN (x,y) vanishes every two points and this is why we need
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ideas
set of N two-level atoms in optical waveguide: presence of bound 
states affects the interactions among atoms  
(Calajo, Ciccarello, Chang, Rabl, PRA 2016)  
(Notice: interaction is waveguide-mediated; slow light) 

moving atoms in 1D photonic waveguide  
(Calajo, Rabl, PRA 2017) (strong coupling, slow light) 

circuit QED with single LC resonator: very strong interactions 
decouples photon mode and projects qubits into entangled gs  
(Jaako, Xiang, Garcia-Ripoll, Rabl, PRA 2016) (ultra-strong coupling) 

Scattering effects in a waveguide  
(Calajo, Fang, Baranger, Ciccarello)



perspectives/expts
Quantum computation trough effective photon-photon 
interactions in waveguide-QED  
(Zheng, Gauthier, Baranger, PRL 2013) 

But atomic degrees of freedom have significant potential for 
applications  
(Paulisch, Kimble, Gonzalez-Tudela, NJP 2016)  

Probing vacuum with artificial atom in front of mirror  
(Hoi1, Kockum, Tornberg, Pourkabirian, Johansson, Delsing, 
Wilson Nat. Phys. 2015) 



comment on interdisciplinarity
Quantum technologies (in general) and one-dimensional QED 
blend different physical disciplines 
(high-energy physics, QED, gauge theories  
vs solid state, low energy, circuit QED, optics)  


