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quantum Phgsics n 1D
© quantum emitters in 1D waveguicles

« simulations of quantum field theories

« 1D effects: slow Iight, ultra—-strong coup‘iﬂg

T. Giamarchi, Quantum Phgsics in One Dimension, 2004
Y. Kuramoto and Y. Kato, Dynamics of One-Dimensional Quantum Systems:
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N T R S O e T e et e T G G == o | s —— —_—



T S s

Preliminaries: (QED In1D

(electric field E confined here)

|

M

< >

+ ~~
1
energy = §L x E*  volume

Schwinger) Coieman, Kogut, Susskincl, Casher, 't Hoott, Parisi

thinking about confinement mechanisms

s e i ~- Ty T A -




Gauss’ law in 1D

Theories with local symmetries (to be satisfied at every point)

CLASSICAL (electrodynamics)

: p=VE
QUANTUM (QED) Gauss’ law
f
4 1| T) = AB, 110lT)

X X+a (site) (links)

R———— e - - e — . P Tt A



it > S

————

-

i . | o el i g g

- I " it ' i, D gl bty St - o ity i Lt

G n i string brcaking

Iarger B

[T
[T

Pair creation

1
energy — 52[/ x F? « volume

T . Ry ey W "~




R :
5
\

S

R

Sadah gt

g B 6l S i i) S n b :

« waveguide (along X)

o —0 and

TE; o mode

v S T R A = T g 5 I S Ay TN AL T W S M £ Wy g W

=D
0B surface S
98 AL O
on |g normal n |
MY\ gitka—w1o(k)t)
Ba: = BO COS e e 1,0 ; :
Ly |
T — ikLyBO sin o pt(kr—wi,0(k)t)
Yy T Ly Y ’ |
¢
ol — iwl,O(k)LyBO 3 Yy 6i(k$—w1,o(k)t) i |
T Ly -

:
i — - :



'AZ:

| H(l,O)

LyBO o (W_y) ei(kw—wl,o(k)t) Vector Potential
78 L,

g

mag

/dk hwr o(k)at (k)a(k) free Hamiltonian

b / dk \/k:2 Tt




atom + interaction
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BOUND STATES AND ENTANGLEMENT GENERATIONIN ...

an initially factorized atomic state can spontaneously relax
towards a long-lived entangled state. By analyzing the poles
of the resolvent operator, we have shown how to quantify the
robustness of the entangled bound state to small variations
in the model parameters, and how to identify the time scales
that are crucial for the preparation of an entangled state by
relaxation.

While it has been pointed out that quantum computation
may be achievable in waveguide-QED trough effective photon-
photon interactions [49], focusing on the atomic degrees of
freedom may also hold significant potential for applications
in quantum information [50]. Further investigation will thus
be devoted to the analysis of many-atom systems [51-54], in
which photon-mediated interactions could possibly produce
stable configurations such as W states or cluster states.
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APPENDIX A: DERIVATION OF THE QUASI-1D FREE
FIELD HAMILTONIAN

We derive here the Hamiltonian in Eq. (1) of the main
text from first principles. Let us consider a waveguide of
infinite length, parallel to the x axis, characterized by a
rectangular cross section with y € [0,L,] and z € [0,L]. We
conventionally assume that L, > L,. A common choice is
Ly/L.=2. In a generic guide made of a linear dielectric
with uniform density and coated by a conducting material, the
boundary conditions for the electric and magnetic fields on the
surface S read

B,
Eils=0 and =108 (Al)
on |

with 9/dn denoting the normal derivative with respect to the
surface. Transverse electric (TE) modes are characterized by
E, = 0 everywhere in the guide and obtained by imposing
dB,/dn = 0 on the surface. On the other hand, transverse
magnetic (TM) modes have B, = 0 identically. If the waveg-
uide is rectangular, the boundary conditions for TE modes
reduce to

9B,
dy

_ 9B,

_ 9B,
y=0 dy

y=L, TbE

SyiE!
Ay e 5

=0, (A2

which limits the form of the longitudinal magnetic field to the
real part of

mmy nnz\
B, = Bjcos (T) cos (L—)e’(k“"”” @0 (A3)
v z

with m,n € N2\{(0,0)} and By a constant.
The integers m and n label the mode TE,, ,. The dispersion
relation with respect to the longitudinal momentum has the
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same form as a massive relativistic particle,
Ok = [ (VK)? + @0 (002, (A4)

1
with @,,,,(0) = v[(Z2)” + (4Z£)*]7, where the mass term is

called the cutoff frequency of the mode, and v = (ue)~ '/ is
the phase velocity in the waveguide, assumed isotropic and
nondispersive with magnetic permeability x and dielectric
constant €. Since Ly < L., the TE; o mode has the lowest
cutoff frequency. It can be proved [46] that w;o(0) is also
lower than the cutoffs of all TM modes. Thus, at sufficiently
low energy the contribution of the higher energy modes
can be neglected, and propagation occurs effectively in one
dimension.

The TE; o mode is characterized by the following behavior
of the fields:

7
B, = Bycos (Lf"))g'(k%uu o0 (A3)
7

= _l-kLvBU ot (ﬂ)eilkv—wm(kv)’ (A6)
T 1Ly
Ei— i‘”IVO(k)LvBO o (ﬂ)ei(kvﬂum(kh‘)’ (A7)
b4 L,
with the other three components vanishing. These fields can
be derived from the (transverse) vector potential,

An= LyBo sin i) ol kx—10(00 (A8)
< b4 fix,
The mode can be quantized by introducing the time-0 field
operators,

AT () = /dk(ih ) sin (”—y)
2mewn o(OLy L L,

x [a(k)e™ + a'(kye=*1a,, (A9)
EMO() = ifdk(wa(k) )j sin (ﬂ)
2melL,L, i
x [a(k)e™ — af(k)e *a., (A10)

with [a(k),a'(k")] = 8(k — k') and &. = (0,0,1). The electric
field energy operator associated with the mode thus reads

A
= %fdk fW|,o(k)|:“T(k)“(k)

he i e
Y a(k)a(—k) + a'(k)a'( k)], (ALl

2

with : (...) : denoting normal ordering, while the magnetic field
energy can be evaluated using the relation B1-0 = V x A1-0):

£LO = g[dr (B, ALO@)) 4 (= 3, 400(r):

% / dk mul_(,(k)[a“(k)a(k)

o a(k)a(—k) + a*(k)aT(Ak)i|A

: (A12)
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Thus, the free Hamiltonian for the electromagnetic field takes
the diagonal form,

(1,0) _ ¢(1,0) (1,0)
HED =& + &gy

= /dk hooy o(k)al (k)a(k)

2
= ﬁvfdk [i2 + (%) al(kyatk). (A13)

Itis worth noticing that the analogy with a massive boson is not
limited to the dispersion relation. Indeed, the quantum theory
of the mode can be mapped onto a real scalar theory in one
dimension, by introducing the operators,

-~ h ikx oy, —ikx
oz(x)f/.dx /72(270,,,1,“1()[“(")9 +al (e,
X | hwy o(k) ikx _ gy ,—iks
M(x) = r/dx 2020 [a(k)e! a'(kye™"™],

(A14)

satisfying
[a(x), TT(x")] = ihd(x — x'), (A15)

and related to the vector potential and the electric field by
multiplication. The Hamiltonian can be expressed in terms
of the field operator a(x) and its canonically conjugated
momentum TT(x’) as

HO = %/dx :[[nu)]z + V[

2
M
+u4(—) [EiKa(x)J2:|: (A16)
h
with M := % which also allows one to identify a linear
Hamiltonian density H(x) such that H19 = f dxH.

APPENDIX B: INTERACTION HAMILTONIAN

The interaction between the field and an artificial atom,
made up of a particle trapped in a potential V(r), can be
obtained by the minimal coupling prescription:

1
Hy = 5—(p — A" (1)) + V(1)
2m,

PG (1,0) € 10y
=Hy——p- AN+ (A"(r)7,
e 2m,

(BI)

with r and p the canonically conjugated position and mo-
mentum of the artificial “electron.” The transverse choice
V . A =0 for the vector potential makes the ordering with
respect to p immaterial. We adopt a two-level approximation
for the atom, retaining only the ground state |g) and the first
excited state |e), satisfying

Hilg) =0,  Hyle) = hwyle). (B2)

les
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Furthermore, we apply long-wavelength approximations to
the interaction terms, which enable one to neglect the O(e?)
contribution, whose relevance is suppressed like the ratio of
the photon momentum to the particle momentum [44], and to
apply a dipolar approximation to the O(e) term. The position
operator r is replaced by a nondynamical center-of-mass
position ro. The interaction Hamiltonian thus reads

Hig® = = Ao (g1p:lg) ) (8] + (el pelelle) el
+ (glp:le)lg) el + (elp:le)le) el ®3)

The assumption that the expectation value of momentum
vanishes in the eigenstates of the free Hamiltonian simplifies
the interaction. Moreover, the canonical commutation relation
can be used to obtain

(el[Hﬂ“',z]\g) = imawy(e|z|g) =: imwze,

(elpilg = 2
elp:lg) = &

= imwo|zeg e, (B4)

by which the mass m, disappears from the theory, and
the Hamiltonian takes the form of a coupling between the
dipole moment D,, = e|z.,| and the electric field. Finally,
we can define new canonically conjugated field operators
b(k) := e~ "@s*T/Dq(k) and retain only the rotating-wave
terms b(k)|e)(g| and bl(k)|g)(e|, to obtain the interaction
operator,

‘
7 : dk
HGRRW) _ /
el @0\ 2menL, L, ®2+ M /R

x [bk)le) (gle™™ + bl (K)lg) (ele™**].
(B5)

Notice that yo = L, /2 has been used. The dynamics for the
atom pair is thus determined by

H=HY, +HS, +H + HEERY 1 g{BEW - (B6)
with atom A in xg = 0 and atom B in xg = d.

APPENDIX C: ENERGY DENSITY

The study in the main text has been focused on the N = 1
sector, spanned by the wave functions,

[¥1) = calea.gs; vac) + cplga.ep; vac)
+ [akrwigagain. ©n

Using the scalar Hamiltonian density defined in Sec. A, one
can compute the energy density,

1
(W1 IHE@)I) = E[W (@@« [y)
+oAYn | @)’ : )
M 2
+v“(;) Wil @ea))? : wm]
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Coupling with the lowest-energy mode
in a linear waveguide

Dispersion relation
(massive)

The excited state
can decay...




Fermi golden rule:
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by a Rotating Wave Hamiltonian:
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Objecti\/e: threefold

extend to TWO emitters
remove mirror

(use resolvent formalism)

Shen, Fan (2005)
Gonzales-Tudela et al 2o
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Rotating Wave Approximation

The total number of excitations is a constant of motion

N:Nat+Nfield:‘eA><eA‘+‘eB><eB‘+f dka(k)b(k)

General wavefunction in the sector
|w>:(cA‘eA,gB>+cB‘gA,eB>)\Vac>+|gA,gb>\1 photon>
Bound states H\|\y)=E|y) with (¢ |y)=1
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The one-excitation
antisymmetric state

_ ‘eA’ gB>_‘gA’eB>
V2

decouples from the interaction
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H =0
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The one-excitation symmetric
state

_ ‘eA’ gB>+‘gA’eB>
.
decays faster than a free atom

y(+>:2yfree
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Bound states below the threshold for photon propagation
are expected:

 Effective interatomic interaction mediated by evanescent
waves

e Symmetric and antisymmetric eigenstates for any

interatomic distance d : [‘e g >+‘ Ja,e >}
A >IB/—|HA>»“B
6a-98) =198 |0

)= N5

e« E=w,+0(A°), level splittingNeXp(—\/Ez—M2d)




General wavefunction in the sector
|w>:(CA|eA:gB>+CB|gA’eB>)|VaC>+|gA:gb>|1 photon |
Bound states H|y)=E|y) with (¢ |y )=1

The eigenvalue equation H|1/J>:E|1/J>=\/EZ+M2|1/J>
can be satisfied by a normalizable state only if:
iy c,+e" e, =0
A’z l_ei(E—k)d

has real solutions
i+ M? E—VIC+ M?
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Field energy (x)ocsin®(kx) if x€[0,d]
density U(x)~0 elsewhere

The atoms behave as dynamical mirrors
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set of N two-level atoms in oPtical waveguide: presence of bound
states atfects the interactions among atoms

(Calajo) Ciccarello, Chang Rabl, PRA 2016)

(Notice: interaction is wa\/eguicle—-mecliatecl; slow light)

moving atoms in 1D Photonic waveguiclc—:
(Calajo, Rabl, PRA 2017) (strong coupling, slow light)

circuit QED with single | C resonator: very strong interactions
clecouples Photon mode and Prcﬂects qubits into entanglecl s
(Jaako, Xiang, Garcia~Ri|:>o”) Rabl, PRA 2016) (ultra~strong coupling)

Scattering etfectsina Wavc-‘:guicle

(Calajo, Fang, Baranger, Ciccarello)
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pers Pectives / expts

* Quantum computation trough eftfective Pho’comphoton
interactions in waveguide»—QED
(Zheng, Gauthier, Baranger, PRL 2013)

+ But atomic clegrees of freedom have signiﬁcant Potential for

aPPlications
(Paulisch, Kimble, Gonzalez-Tudela, NUP 2016)

. Probing vacuum with artificial atom in front of mirror
(Hoil, Kockum, Tomberg, Pourkabirian, Johansson, Delsing,
Wilson Nat. Phgs. 2015)
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| Quantum technologies (in general) and one-dimensional QED ;
{ blend different physical disciplines [
- (high-energy physics, QED, gauge theories }
j vs solid state, low energy, circuit QED, optics) i'
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