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What is dissipation?

Newtonian Picture
The interaction of the system with an environment is expressed by
means of forces which in general are not “conservative”. What are
called “dissipative forces” are usually an effective way to take into
account the coupling with the environment without the considera-
tion of additional degrees of freedom with respect to those possessed
by the system we are considering.

For example, the introduction of explicit “time dependent forces”
is a manner to take into account the effect of the environment and
posible interactions.

We want to stress that if we want to declare a system to be
dissipative, we should say what is being dissipated.
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When we are simply given a dynamical system whose dynamics is
described by means of a vector field, say a second order vector field.
A major question is whether it is possible to characterize the dyna-
mics as a “conservative” or “dissipative”

Lagrangian Picture
In order to give a meaningful characterization one may procede loo-
king for a possible Lagrangian description of the given second order
vector field. Then, if a Lagrangian description exists, in the time-
independent case we would say that the system preserves the “La-
grangian energy” function

EL = q̇j
∂L

∂q̇j
− L , (1)

associated with the Lagrangian L for the second order vector field
Γ, which need not coincide the “physical energy” E of the system.

H. Cruz1, F. M. Ciaglia2,3, G. Marmo2,3 Contact Lagrangian structures and dissipation



Therefore, we could qualify the system to be dissipative even if it
admits a description by means of a Lagrangian.

Example.
We consider a second order differential equation on TQ = IR ×
IR with a friction force proportional to the velocity by means of a
friction coefficient γ, i.e.:

q̈ + γ q̇ = 0 . (2)
A possible (local) Lagrangian for this system with its corresponding
Lagrangian energy are:

L = q̇(ln q̇)− γ q and EL = q̇ + γ q (3)
respectively. The rate of dissipation of the mechanical energy E =
m
2 q̇

2 is
dE
dt = −γ q̇2. (4)
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When the system does not admit of a Lagrangian description, we
have to develop new strategies in order to characterize dissipation.
In order to explain one such a strategy, let us consider the physically
relevant situation represented by linear dynamical systems

mjk q̈k + γjk q̇k + ωjkqk = 0 . (5)

When ||mjk || is non-degenerate the differential equation defines a
second order vector field. The linear vector field Γ associated with
the equations of motion on the linear manifold T IRn, and the repre-
sentative matrix G j

k of Γ defined by:

Γ = G j
k ξ

k ∂

∂ξj , (6)

where {ξj}j=1,...,2n is a collective Cartesian coordinates system on
T IRn.
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The system may be given a description by means of a constant
Poisson structure Λ on T IRn, represented in the coordinate system
{ξj}j=1,...,2n by an antisymmetric numerical matrix ||Λjk ||, and a
quadratic Hamiltonian function:

H = 1
2Hjkξ

jξk , (7)

if and only if the representative matrix ||G j
k || is traceless with all its

odd powers1, namely:

Tr{G2k+1} = 0 for all k . (8)

1Giordano, M., Marmo, G. and Rubano, C., 1993. The inverse problem in
the Hamiltonian formalism: integrability of linear Hamiltonian fields. Inverse
Problems, 9(4), p.443.
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Two coupled oscillations with different frequencies ωk , different dam-
ping coefficients γk , i.e.

q̈1 + γ1q̇1 + ω2
1q1 + κq2 + δq̇2 = 0

q̈2 + γ2q̇2 + ω2
2q2 + κq1 + δq̇1 = 0 . (9)

Then, the representative matrix is:

G =


0 0 1 0
0 0 0 1
−ω2

1 −κ −γ1 −δ
−κ −ω2

2 −δ −γ2

 . (10)

We may, in full generality, prove that this system does not allow for
any Lagrangian description
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It is easy to see that the representative matrix can be decomposed
as

||G j
k || = ||Aj

k ||+ ||D
j
k || , (11)

where ||Aj
k || is a traceless matrix, clearly the decomposition is arbi-

trary. Once a choice has been made, it is possible to think of the
dynamical vector field as the sum of a “comparison” or “reference
dynamics” with a “perturbation term”.
The linear vector field Γ may be decomposed as:

Γ = Aj
k ξ

k ∂

∂ξj + Dj
k ξ

k ∂

∂ξj , (12)

the “comparison dynamics” admitting a Hamiltonian description,
while the second term may be thought of as the perturbation term
responsible for the dissipation of the Hamiltonian energy function
associated with the comparison dynamics.
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Other very interesting examples arise from the geometrical descrip-
tion of the evolution of density states for finite level quantum sys-
tems, i.e., vector fields associated with Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) master equations2.
Here, if we start with a GKLS equation, we would have a decompo-
sition into Hamiltonian vector field XH, a Gradient vector field YV
and a Jump vector field ZK as follows:

Γ = XH − YV + ZK . (13)

XH preserves the spectrum of the quantum states;
YV does not preserve the spectrum but preserves the rank;
ZK does not preserve the spectrum nor the rank of quantum states.

2Ciaglia, F.M., Di Cosmo, F., Ibort, A., Laudato, M. and Marmo, G., 2017.
Dynamical vector fields on the manifold of Quantum states. Open Systems and
Information Dynamics, 24(03), p.1740003.
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Contact Lagrangian structures
Once a “decomposition principle” for the system has been defined,
it is possible to go to a contact formalism to show that a “dissipa-
tive” system may be described in terms of a “contact Hamiltonian
formalism”3.
An exact contact manifold is defined as a differential odd-dimensional
manifold admitting a global differential contact 1-form η such that
the following condition

η ∧ (dη)n 6= 0 , (14)
holds everywhere.
Associated with the definition of the contact 1-form on a contact

manifold, there is another fundamental object, called the Reeb vector
field ξ, which is defined by the conditions

iξη = 1, iξdη = 0 . (15)
3Bravetti, A., Cruz, H. and Tapias, D., 2017. Contact hamiltonian

mechanics. Annals of Physics, 376, pp.17-39.
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Now, assuming that the carrier space for the dynamics is TQ ×
IR with an exact contact structure (η, ξ), in order to define the
dynamics on TQ× IR one can associate with every smooth function
E a vector field ΓC on TQ × IR by means of:

iΓCdη = dE − (£ξE )η and iΓCη = −E , (16)

where E is called the “contact Lagrangian energy".
In particular, we assume that, locally, the 1-form η can be written
as:

η = dS − θL with θL = dqj
∂L

∂q̇j
, (17)

where (qj , q̇j , S) are local coordinates on TQ× IR, L is the Lagran-
gian function of the “comparison system", and the contact Lagran-
gian energy E ≡ EL may be written as:

EL = EL + h(S) . (18)
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Introducing these definitions into the conditions in (16) we obtain
the Euler–Lagrange equations and the equation for the component
of the vector field in the direction of the Reeb vector, namely

£ΓCθL − dL = −dh
dS θL , (19)

Ṡ = iΓCθL − EL . (20)

Equivalently, using the definition for the 1-form θL and spelling the
Lie derivative on θL it is easy to obtain the coordinate expression of
the Euler-Lagrange equations:

d
dt
∂L

∂q̇j
− ∂L

∂qj
= −dh

dS
∂L

∂q̇j
, (21)

which in general, these are implicit differential equations. In addition,
we have in coordinates that

Ṡ = L− h(S) . (22)
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We may look at these systems as a sort of generalization of the
so-called Caldirola-Kanai dissipative systems, where the Lagrangian
energy is not preserved along the dynamical trajectories, indeed:

dEL
dt = −dh

dS
∂L

∂q̇j
, (23)

which may be positive or negative according to the sign of dh
dS .

Defined the contact dynamics ΓC ∈ X(TQ× IR) a natural question
is whether it is possible to project such dynamics onto a second order
vector field Γ ∈ X(TQ). It is clear from contact Euler–Lagrange

d
dt
∂L

∂q̇j
− ∂L

∂qj
= −dh

dS
∂L

∂q̇j
, (24)

that it reproduces a second order dynamics if h(S) is linear in S. 4
4Grmela, M. and Öttinger, H.C., 1997. Dynamics and thermodynamics of

complex fluids. I. Development of a general formalism. Physical Review E,
56(6), p.6620.
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For RLC circuits we can consider

L = 1
2L İ

2− 1
2C I2 and h(S) = R S

using the notation indicated in
the figure, the contact
Euler–Lagrange equation

L Ï + Rİ + 1
C I = 0 .
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In the more general sense, a contact manifold is defined as an odd-
dimensional differential manifold admitting a global 1-form η and a
global 2-form ω such that

η ∧ ωn 6= 0 (25)

everywhere. The (2n +1)-form Ω = η ∧ωn provides a volume form.

Let us take our contact manifold to be again TQ × IR. Then, we
define a dynamical evolution in terms of a vector field associated
with a smooth function F by means of

iΓC Ω = n (dF ∧ η) ∧ ωn−1 + F ωn . (26)
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Similarly to what we have done in the case of exact contact struc-
tures on TQ × IR, here we assume that η and ω are given by

η = dS − α and ω = −dθL , (27)

where α is a semi-basic 1-form with the following local expression:

α =
n∑

i=1
aj(qj , q̇j ,S) dqj . (28)

Becuase we are interested in characterizing dissipative systems in
terms of a “decomposition principle”, we shall assume that F =
−EL, where EL = EL + h(S).
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Using these definitions we get the conditions

£ΓCθL − dL = −dh
dS α and Ṡ = iΓCα− EL . (29)

We may identify some special classes of dissipative systems by ma-
king qualifications for α. For instance, if we take:

α = dqj
∂F
∂q̇j

, (30)

where F is an arbitrary velocity-dependent function. The contact
Euler-Lagrange equation is

d
dt
∂L

∂q̇j
− ∂L

∂qj
= −dh

dS
∂F
∂q̇j

,
dEL
dt = −dh

dS
∂F
∂q̇j

. (31)
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Example.

V0

R
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I1

L1

C1

I2
R2

L2

C2
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Then, the dynamics of the system is determined by:

L = 1
2L

jk İk İj −
1
2C

jk Ik Ij , h(S) = S and F = −1
2R

jk İk İj ,
(32)

where here I1 and I2 denotes the currents in the branches, and ac-
cording with the notation in the Figure the matrices are

L =
(

L1 0
0 L2

)
, C =

(
1/C1 0
0 1/C2

)
and R =

(
R1 R
R R2

)
.

(33)
Therefore, the contact Euler-Lagrange equations associated with this
system corresponds to

Ljk Ïk + R jk İk + C jk Ik = 0 , (34)
which are in agreement with the equations obtained from the Kirch-
hoff’s circuit laws. In addition, it is clear that if the coupling pa-
rameter R → 0 the system is reduced to two non-interacting RLC
circuits.
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Conclusions and perspectives

In conclusion, when we are simply given a dynamical system
whose dynamics is described by means of a vector field, it does
not make sense to say that the system is “conservative” or
“dissipative” per se because dissipation is a relational concept.
The contact formalism for the description of dissipative
systems gives rise to a “decomposition principle”, where the
“conservative” part accepts a Lagrangian description and the
“perturbation” is a contact corrections.
A major question is whether it is possible define dissipation at
the quantum level by means of the contact formalism.
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Thanks!
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