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Motivation

In a general covariant theory, as GR, there is no preferred time flow, and the
dynamics of the theory cannot be formulated in terms of an evolution in a
single external time parameter. What is left of statistical mechanics?

the problem of a generalized covariant framework for statistical mechanics
comes with a rich set of theoretical open problems directly related to our
understanding of gravity and quantum gravity:

I consistently describe gravitational field fluctuations; account for the
evidence of puzzling thermodynamic aspects of gravity: horizon
thermodynamics, emergent gravity, Einstein’s equations as equation of
state...

I preferred time in stat mech: conceptual incompatibility lying at the root of
the quantum gravity puzzle

I general interest: such a framework of open questions brings together
theoretical aspects of (quantum) information theory, statistical mechanics,
gravity and quantum mechanics

=> room for new principles in (quantum) gravity from information theory?
(for instance in gravity, holography, duality are still conjectured)



Outline: take a geometric point of view

I STAT MECH on SYMPLECTIC MANYFOLD

- geometric description of standard Gibbs state
- Hamiltonian momentum map

I GENERALIZATION TO LIE GROUP ACTIONS (Souriau)

- Generalized Gibbs state w.r.t. action of a Lie group

I GENERALIZATION TO GAUGE GROUP ACTIONS

- multisymplectic formalism for covariant field theory

- generalized Gibbs state from covariant momentum map

- reduction to instantaneous framework



non-rel. Hamiltonian mechanics

I Let N be the configuration manifold of a Lagrangian system whose
Lagrangian L : TN → R is hyper-regular and does not explicitly depend on
the time t. Let H : T ∗N → R be the corresponding Hamiltonian and
(M, ω) be the symplectic (maybe non-Hausdorff) manifold of motions,
namely the reduced phase space of the system.

I the Hamiltonian H : T ∗N → R remains constant along each motion of the
system. Therefore it is possible to define on the symplectic manifold of
motions (M, ω) a smooth function E : M → R, called the energy function
(derived from the lagrangian...)

E(ϕ) = H(ϕ(t)) for all t ∈ R, ϕ ∈ M.

I the Hamiltonian vector field XE on M is the infinitesimal generator of the
1-dimensional group of time translations. A time translation ∆t : R→ R
is a map ∆t : R→ R, ∆t(t) = t + ∆t. The group of time translations
can be identified with R. It acts on the manifold of motions M by the
action ΦE , such that for each time translation ∆t and each motion ϕ,
ΦE

∆t(ϕ) is the motion

t → ΦE
∆t(ϕ(t)) = ϕ(t + ∆t).



Statistical mechanics on a symplectic manifold

I A statistical state on (M, ω) is a probability measure ρ on the symplectic
manifold M defined by

ρ(A) =

∫
A

ρ(ϕ)ωn(ϕ)

for each Borel subset A of M, with ρ : M → R ([0,+∞[) being a
continuous density function wrt the natural volume form ωn (Liouville
measure) on M, with n = dim(M), such that

∫
M
ρ(ϕ)ωn(ϕ) = 1.

I To such state, one can associate an entropy:

s(ρ) = −
∫
M

ρ(ϕ) log (ρ(ϕ))ωn(ϕ)

with the convention that if x ∈ M is such that ϕ(x) = 0,
log(ϕ(x))ϕ(x) = 0.

I For each f on M, taking its values in R or in some finite-dimensional
vector space, such that the integral on the right hand side of the equality

Eρ(f ) =

∫
M

f ρωn

converges, the value Eρ(f ) of that integral is called the mean value of f
with respect to ρ.



Statistical mechanics on a symplectic manifold

I a thermodynamic equilibrium state can be defined via entropy
maximization (Jaynes), as a statistical state with a smooth probability
density ρ ≥ 0, satisfying the two constraints∫

M

ρ(ϕ)ωn(ϕ) = 1∫
M

ρ(ϕ)E(ϕ)ωn(ϕ) = Q

and such that the entropy function s(ρ) is stationary with respect to all
inf. smooth variations of the probability density,for a given value mean
value Q of the energy function E .

I in particular, the entropy function s is stationary iff there exists a real
B ∈ R such that, ∀ϕ ∈ M,

ρB(ϕ) =
1

P(B)
e−BE(ϕ)

called the Gibbs statistical state associated to B, with P(B) the partition
function

P(B) =

∫
M

e−B E(ϕ) ωn(ϕ).



Statistical mechanics on a symplectic manifold

I For H smooth Hamiltonian bounded by below, the Gibbs state associated
to B is invariant under the flow of of the Hamiltonian vector field XH .

I At equilibrium, one can define Ψ and Q smooth functions of B,

Q(B) =
1
P

∫
M

E(ϕ) e−B E(ϕ) ωn(ϕ),

Ψ(B) = − logP(B).

In particular, by means of convexity arguments, it follows that when Q is
given, there is at most one corresponding value of B, so that Ψ(B) and
the probability density ρ are uniquely determined. The value of s(ρ) at
equilibrium, given by

s(B) = Ψ(B) + B Q(B).

I this allows us to interpret Q as the internal energy of the system, while Ψ
as the free energy, with B playing the role of the inverse temperature.



Generalization for a Hamiltonian Lie group action

The energy function E on (M, ω) can be seen as the momentum map of the
Hamiltonian action ΦE on that manifold of the one-dimensional Lie group of
time translations.

More generally:

I Hamiltonian momentum map: Let ψ be a Hamiltonian action of a
finite-dimensional Lie algebra g on a symplectic manifold (M, ω). There
exists a smooth map J : M → g∗, taking its values in the dual space g∗ of
the Lie algebra g, such that for each Y ∈ g the Hamiltonian vector field
ψ(Y ) on M admits as Hamiltonian the function JY : M → R, defined by

JY (x) = 〈J(x),Y 〉, x ∈ M.

=> follows a natural generalization of the definition of a thermodynamic
equilibrium state in which a Lie group G acts, by a Hamiltonian action Φ,
on that symplectic manifold. (Souriau)



Generalized Gibbs state (Marle)

Consider then a connected symplectic manifold (M, ω) and with a connected
Lie group G acting on M by a Hamiltonian action Φ. Let g be the Lie algebra
of G , g∗ be its dual space and J : M → g∗ a momentum map of the action Φ.
A generalized temperature is an element B ∈ g such that the integral∫

M

e−〈J(ϕ),B〉ωn,

normally converges. A generalized Gibbs state associated to B ∈ Ω ⊂ g, is the
statistical state defined by probability density

ρB =
1

P(B)
e−〈J(ϕ),B〉,

with respect to the natural volume form on the simplectic manifold M. The
quantity

P(B) =

∫
M

e−〈J(ϕ),B〉 ωn,

defines the generalized partition function. The Hamiltonian function
〈J(ϕ),B〉 : M → R is the comomentum map defined by the natural pointwise
pairing.



Important remarks

I Differently from the case of time translations (G = R), a generalized
Gibbs state of a Lie group G does not necessarily define thermodynamic
equilibrium state with respect to the generic Hamiltonian action ΦG , as it
may not be invariant with respect to the action of the Lie group G on the
symplectic manifold of motions (M, ω).

I indeed the probability density ρB involves the value of the momentum map
J, which is equivariant with respect to the action Φ of G on M and an
affine action of G on the dual of its Lie algebra g∗

J ◦ Φg = Ad∗g−1 ◦ J + θ(g)

where θ : G → g∗ is the symplectic cocycle of G for the coadjoin action of
G on g∗, for any g ∈ G

I In particular, the generalized Gibbs state associated to B is only invariant
under the restriction of the Hamiltonian action Φ to the one-parameter
subgroup of G generated by B, {exp(τB)|τ ∈ R}.



Lie group thermodynamics

if a generalized Gibbs states can be defined, due to the infinite differentiability
of the generalized partition function, generalized thermodynamic relations will
follow from the definition of generalized macroscopic quantities in terms of
differentials of Z .

I the internal energy is given by the average momentum map within the
canonical ensemble, from the first differential of Ψ : g→ R,

Q(B) = −DΨ(B) = −D(logZ(B))

I as for an equilibrium state, when Q is given, there is at most one
corresponding value of B, so that Ψ(B) and the probability density ρ are
uniquely determined. Accordingly, one can prove that the entropy function
s(ρ) has a strict maximum S(B), with respect to smooth variations of ρ
satisfying the constraints, so that

S(B) = Ψ(B) + B Q(B)

= logZ(B)− 〈D(logZ(B)),B〉



Lie group thermodynamics

I the first differential of the entropy, for all B ∈ Ω can be considered as an
element of the g∗, defined for Y ∈ g by

〈DS(B),Y 〉 = 〈DQJ(B)(Y ),B〉
= −〈D(DΨ(B))(Y ),B〉 < 0.

I for any Y ∈ g \ {0}, the second differential D2Ψ(B) defines a positive
symmetric bilinear form, which provides a generalized notion of heat
capacity.

I considering equations of state to pass from thermostatics to actual
thermodynamics!

Souriau’s key point: defining a statistical state on the space of solutions allows
to describe thermodynamics in a covariant way, without fixing preferred frames
which reduce the full symmetry of the system

=> can we use a similar setting for general covariant (relativistic) field theory
and ultimately for gravity?



Generalization

In general, we would need

I covariant finite dimensional space for formulating hamiltonian mechanics
for fields

I multisymplectic phase space construction
I covariant multi-momentum map



Ways to proceed

Two ways to proceed:

1 reduce to physical space of covariant field theory and play with reduced
momentum maps associated to actual conserved charges

2 work at the level of multisymplectic space and use the generalized Gibbs
as an unphysical equilibrium state which defines the very partition function
of the theory. Hence try to extract dynamics from the resultant
thermodynamics



Generalization to multisymplectic formalism (Gotay Marsden)

I Let X be an oriented n+1-dimensional manifold, which in many examples
is spacetime, and let Y

πXY−−−→ X be a finite-dimensional fiber bundle over
X whose fibers Yx over x ∈ X have dimension N. This is called the
covariant configuration bundle and is the covariant analogue of the
configuration space in classical mechanics.

I Physical fields correspond to sections of this bundle. A set of local
coordinates (xµ, yA) on Y is provided by the n+1 local coordinates xµ,
µ = 0, . . . , n, on X and the N fiber coordinates yA, A = 1, . . . ,N, which
represent the field components at a given point x ∈ X .

I Such notion of extended configuration space for field theories has a nice
operational motivation based on the observation that coordinates of Y
(i.e., field values and spacetime positions) are the partial observables of
the theory (Rovelli). Indeed, one needs N measuring devices to measure
the components of the field at a given point x ∈ X , and n + 1 devices to
determine x thus resulting in a (n+N+1)-dimensional configuration space.



Tangent bundle

I A point in Y represents a correlation between these observables, that is, a
possible outcome of a simultaneous measurements of the partial
observables.

I the equivalence class of all (local) sections s at x which have the same
first order Taylor expansion is called the 1-jet prolongation of s at x and is
denoted by j1(s)x . The resulting set of equivalence classes

J1(Y) =
{
j1(s)x | x ∈ U ⊂ X , s ∈ Γ(U,Y)

}
is called the first jet bundle of Y. If s : X → Y is a section of πXY , its
tangent map Txs at x ∈ X is an element of J1

s(x)(Y). Thus, the map
j1(s) : x → Txs is a section of J1(Y) regarded as a bundle over X

J1(Y)
π1
Y //

π1
X
��

Y

πXY

��
X

idX // X

where π1
X (j1(s)x) = x , and π1

Y(j1(s)x) = j0(s)x ≡ s(x) = (xµ, yA).
I In the context of field theories, the first jet bundle J1(Y) of Y plays the

role of the tangent bundle of classical mechanics



Multi Phase Space or Covariant Phase Space

I the field-theoretic analogue of the cotangent bundle is given by the dual
jet bundle J1(Y)∗ defined as the vector bundle over Y whose fiber at
y ∈ Yx is the set of affine maps from J1

y (Y) to Λn+1
x (X ), where Λn+1(X )

denotes the bundle of (n + 1)-forms on X .
I an equivalent and more convenient description of J1(Y)∗ can be given as

follows: Let Λ := Λn+1(Y) be the bundle of (n + 1)-forms on Y with fiber
Λy over y ∈ Y and projection πYΛ : Λ→ Y. Let Z ⊂ Λ be the subbundle
of 2-horizontal (n + 1)-forms on Y, that is the bundle whose fiber over
y ∈ Y is given by (De Donder Weyl)

Zy = {z ∈ Λy | iV iW z = 0 ∀V ,W ∈ TyY s.t. TπXY ·V = 0, TπXY ·W = 0} ,

where iV denotes left interior multiplication by V . The elements of Z can
be be written uniquely as z = p dn+1x + pµAdyA ∧ dnxµ

I therefore, in complete analogy to classical mechanics, we define the
canonical Poincaré-Cartan (n + 1)-form Θ on Z

Θ = p dn+1x + pµAdyA ∧ dnxµ .

I the canonical (n + 2)-form Ω on Z is defined by Ω = −dΘ whose
coordinate expression reads

Ω = dyA ∧ dpµA ∧ dnxµ − dp ∧ dn+1x .



Covariant Formalism for Field Theories

summarizing the various spaces involved in the above constructions and their
bundle relations:

(J1(Y), ΩL)

π1
Y ))RRRRRRRRRRRRRRR

π1
X

��<<<<<<<<<<<<<<<<<<<<<<<<<
FL // J1(Y)∗

π̃1
Y

��

∼= //

π̃1
X

��

(Z, Ω)

πYZ
vvmmmmmmmmmmmmmm

πXZ

��������������������������

iΛZ // (Λn+1(Y), ΩΛ)

πYΛ
mmY

πXY

��
X

The pair (Z,Ω) is called multiphase space or covariant phase space. It is an
example of multisymplectic manifold defined as (GIMMSY,Helein) a manifold
endowed with a closed nondegenerate k-form Ω (k = n + 2 in our case), i.e.,
such that dΩ = 0 and iV Ω 6= 0 for any nonzero tangent vector V .



Covariant Formalism for Field Theories

Classical Mechanics (n = 0,X ≡ R) Field Theory (n > 0, dimX = n + 1)

extended configuration space configuration bundle over spacetime
Y = R× Q Y

πXY−−−→ X

local coordinates on Y local coordinates on Y
(t, qA) (xµ, yA)

extended phase space multiphase space
P = T ∗Y = T ∗R× T ∗Q J1(Y)∗ ∼= Z ⊂ Λn+1(Y)

local coordinates on P local coordinates on Z
(t, qA,E , pA) (xµ, yA, p, pµA )

Poincaré-Cartan 1-form on P Poincaré-Cartan (n+1)-form on Z
Θ = pAdqA + Edt Θ = pdn+1x + pµAdyA ∧ dnxµ

symplectic 2-form on P multisymplectic (n+2)-form on Z
Ω = dqA ∧ dpA − dE ∧ dt Ω = dyA ∧ dpµA ∧ dnxµ − dp ∧ dn+1x



Generalized Gibbs state on multiphase space

The goal is now to extend Souriau’s definition of generalized Gibbs state to the
multisymplectic framework, with respect to the action of diffeos.

Premises

I Let G be a Lie group (perhaps infinite-dimensional) with Lie algebra g that
acts on X by diffeomorphisms and acts on Z (or Y ) as πXZ - (or πXY -)
bundle automorphisms.

I Given an element ξ ∈ g, we denote by ξX , ξY , and ξZ the infinitesimal
generators of the corresponding transformations on X ,Y, and Z, i.e., the
infinitesimal generators on X ,Y, and Z of the one-parameter group
generated by ξ. The group G is said to act on Z by covariant canonical
transformation if this action corresponds to an infinitesimal
multisymplectomorphism, i.e.

LξZΩ = 0 ,

where LξZ denotes the Lie derivative along ξZ , while it is said to act by
special covariant canonical transformations if

LξZ Θ = 0 .



Covariant Multimomentum map

In analogy to the definition of momentum maps in symplectic geometry, a
covariant momentum map (or a multimomentum map) for the action of G on
Z by covariant canonical transformations is a map

J : Z −→ g∗ ⊗ Λn(Z) ,

covering the identity on Z such that

dJ(ξ) = iξZΩ,

where J(ξ) is the n-form on Z whose value at z ∈ Z is 〈J(z), ξ〉 with 〈·, ·〉
being the pairing between the Lie algebra g and its dual g∗. Let φξ ∈ G be the
transformation associated to ξ ∈ g, then a covariant momentum map is said to
be Ad∗-equivariant if

J(Ad−1ξ) = φ∗ξ [J(ξ)] .



Covariant Multimomentum map

If G acts on Z by special covariant canonical transformations, the special
covariant momentum map admits an explicit expression given by

J(ξ) = iξZΘ ,

so that dJ(ξ) = diξZΘ = (LξZ − iξZd)Θ = iξZΩ. In particular, if the action of
G on Z is the lift of an action of G on Y , then ξY = TπYZ · ξZ and, according
to the definitions of Θ and J(ξ), the special covariant momentum map is given
by

J(ξ)(z) = π∗YZ iξY z .

Denoting by (ξµ, ξA) the components of ξY . In coordinates

J(ξ)(z) = (pµAξ
A + p ξµ)dnxµ − pµAξνdy

A ∧ dn−1xµν ,

where dn−1xµν = i∂ν i∂µdn+1x .



Covariant Multimomentum map

our previous setting was trying a straightforward generalisation of the
symplectic derivation by considering

symplectic multisymplectic

J : M → g∗ −→ J :M−→ g∗ ⊗ Λn−1T ∗M (1)

J =

∫
M

vol(M) ρM J J =

∫
M

vol(M) ρM J︸ ︷︷ ︸
not possible

as the integral
is saturated by
the volume form

How do we move forward? Use the notion of observable Hamiltonian
(n-1)-form for the multimomentum map.



Covariant thermodynamic equilibrium state

1) Covariant momentum map J :M−→ g∗ ⊗ Λn−1T ∗M such that

dJ(ξ) = ξz ⌟ ω

where ξ ∈ g and J(ξ) is the n − 1 form onM whose value at z ∈M is
〈J(ξ), ξ〉.
⇒ J(ξ) is an observable n − 1 form (Hélein&Kouneiher).

2) Generally, observable n − 1 forms, say F , can be integrated over co-dim
one hyper-surfaces in an n-curve to produce observable functionals.
Given some Hamiltonian function onM, define a slice Σ to be a co-dim
one submanifold ofM such that for any Hamiltonian n-curve Γ, the
intersection Σ ∩ Γ is transverse (assume Σ oriented → endow Σ ∩ Γ with
orientation). Hence, we have∫

Σ

F : F −→ R

Γ 7−→
∫

Σ∩Γ

F

where F is the set of n-dimensional oriented submanifolds ofM (space of
paths).



Covariant thermodynamic equilibrium state

3) Analogously for the g∗-valued n − 1 form J, we define the observable
momentum map functional as

j [Γ] :=

∫
Σ

J : F −→ g∗

Γ 7−→
∫

Σ∩Γ

J

4) mean value
– as a functional on F = {Γ}, the mean value of j should be defined on F
as

j =

∫
F
vol(F) ρF j

where ρF is a probability density on F such that µ(A) =
∫
A⊂F vol(F) ρF .

if going on the path space is correct, then also the variational derivation of
the Gibbs state should be carried over there!



Covariant thermodynamic equilibrium state

5) variation of the entropy:{
S = −

∫
F vol(F) ρF log ρF

constraint j = const. , β Lagrange multiplier vector in g

DεS = −
∫
F
vol(F) (1 + log ρF )DερF − Dε 〈β, j〉

= −
∫
F
vol(F) (1 + log ρF )DερF −

〈
β,Dε

[∫
F
vol(F) ρF j

]〉
= −

∫
F
vol(F) (1 + log ρF )DερF −

∫
F
vol(F)DερF 〈β, j〉

= −
∫
F
vol(F)DερF

(
1 + log ρF +

〈
β,

∫
Σ∩Γ

J

〉)
= 0 ∀ DερF ,

i.e.
ρ

(eq)
F (Γ, β) ∝ e−〈β,

∫
Σ∩Γ J〉 ≡ e−Gβ [Γ]

our Gibbs state is now a functional of the n-curve Γ.



Laplace transform

We can use generalised ensemble theory to find a relation among generalized
Gibbs state and the usual delta-like meausre on the multi-presymplectic space.
The canonical partition function is the Laplace transform of the microcanonical
partition function Ω(N,V ,E). We can invert this relation by applying the
inverse Laplace transform to Q:

Ω(N,V ,E) =
1
2πi

∮ ∞
−∞

dβ eβEQ(N,V , β) =

∫ ∞
−∞

dΩ

2π

∫ γ+i∞

γ−i∞
dβ eβ(E−H)

where the phase space differential form
dΩ = (h3NN!)−1dx1, . . . , dx3N , dp1, . . .dp3N . Now, β = σ + iτ and because
no singularity is present in the right-half of the complex plane, the contour may
be taken vertically through γ = 0. Since Re(β) = 0 along the integration, the
substitution β = −iτ can be made and we have,

Ω(N,V ,E) =

∫ ∞
−∞

dΩ

2π

∫ ∞
∞

dτ e iτ(E−H) =

∫ ∞
−∞

dΩ δ(H − E).

which can be identified as the microcanonical partition function.



Contact with the instantaneous framework (Gimmsy)

We need to make contact with the base manifold:

I n-dimensional Γ submanifolds ofM can be equivalently thought of as a
sections s : U ⊂ X →M, where s : x 7→ s(x) = (x , φ(x), pφ(x)).

I let Σ be a compact (oriented, connected) boundaryless (n − 1)-manifold.
We denote by Emb(Σ,X ) the space of all smooth embeddings of Σ into
X .

I then we expect we can associate∫
Σ∩Γ

〈β, J〉 ←→
∫

Στ

s∗ 〈β, J〉 ≡ 〈β,Eτ (s)〉

where Eτ : Zτ = Γ(Στ ⊂ X ,Z)→ g∗ (Energy-Momentum map)

I denote T ∗Yτ = Zτ/KerΩτ the instantaneous symplectic space
I denote Pτ ⊂ T ∗Yτ the instantaneous presymplectic space or τ -primary

constraint set
I Eτ projects to Eτ : Pτ → g∗ (Instantaneous Energy-Momentum map)



Contact with the instantaneous framework

Remarks

〈β, Eτ (s)〉 =

∫
Στ

〈β, Eτ (φ, π)〉 , (φ, π) ∈ Pτ

{
ifβX (for β ∈ g) is transverse to Στ , then 〈β, Eτ (s)〉 = −Hτ,β(φ, π)

ifβX is tangent, then 〈β, Eτ (s)〉 = 〈β, jτ (φ, π)〉

I where jτ : T ∗Yτ → g∗ is the momentum map for the induced action of Gτ
on T ∗Yτ . Notice that Gτ s stabilize the image of τ (Cauchy surfaces).

I vanishing of the components of Eτ are the first class secondary constraint
functions of the system.

=> we expect to be able to define the physical partition function of the theory
starting from the instantaneous framework...



Conclusions

I we realized a gauge group thermodynamic framework based on the notion
of covariant momentum map, leading to the definition of a generalized
Gibbs state for the action of lifted automorphisms of the bundle covering
diffeos on the base.

=> explore thermodynamics (role of boundaries and cocycles?)
I A key feature of relativistic field theories is that not all of the

Euler-Lagrange equations necessarily describe the temporal evolution of
fields. Some of the equations may impose constraints on the choice of
initial data. Those constraints which are first class in the sense of Dirac
reflect the gauge symmetry of the theory. These first class constraints are
related to the vanishing of various momentum maps (GIMMSY).

=> may exploit generalized Gibbs state as a generalization of the
presymplectic formalism ( “statistical” symplectic reduction ?), while
having a consistent thermodynamical relation withthe standard
presymplectic formalism (via Laplace).

J ≈ 0→ J̄ = −DΨ(β) ≈ 0



Perspectives

I understand statistical symplectic reduction: viable/meaningful in first
place? What is the meaning of an averaged constraint?

I contact with the quantum mechanics: the fact that a state defines a one
parameter family of automorphisms is a fundamental property of von
Neumann algebras. The relation between a state over an algebra and a
one parameter family of automorphisms of the algebra is the content of
the Tomita-Takesaki theorem (Connes&Rovelli).

I more: the off-shell generalization of algebraic observable function leads to
a partition function description which closely resamble the path integral
approach.

=> apply to general relativity!



Gauge theory viewpoint: 4-d Palatini

the operational/relational content of Einstein’s gravity is most evident in the
passage from the metric to the first order Palatini formulation

S [e, ω] =

∫
εIJKL e

I ∧ eJ ∧ FKL EE

{
dDe I = de I + ωI

J ∧ eJ = 0
εIJKL e

J ∧ FKL = 0

I tetrad field e ∈ Ω1(M,R(1,3)), a (Minkowski) vector-valued 1-form taking
value in the so-called internal space e : TM → R(1,3)

I local spin connection ω ∈ Ω1(M, so(1, 3)), a so(1, 3)-valued Lie algebra
one-form: ω : TM → so(1, 3)

I covariant hamiltonian approach:
extended configuration space

(x , e, ω) ∈ C = M × C̃

seen as a bundle on spacetime M,
with iso(1, 3) = R(1,3) ⊕ so(1, 3).

associated bundle structure

M

for given M
n-dim manifold

M

⇡

C̃ = iso(1, 3) ⌦ T ⇤M



Thank You


