

The $\mu\text{-}RWELL$ detector

G. Morello on behalf of the LNF-DDG group Frascati Detector School March 23rd, 2018

A brief history of MPGDs towards $\mu\text{-RWELL}$

- **G. Charpak et al.**, The use of multiwire proportional counters to select and localize charged particles, Nucl. Instr. Meth. **62** (1968) 262-268.
- **A. Oed**, *Position-sensitive detector with microstrip anode for electron multiplication with gases*, Nucl. Inst. Meth. **A 263** (1988) 351-359.
- **Y. Giomataris et al.**, *Micromegas: a high-granularity, position sensitive gaseous detector for high particle flux environments*, Nucl. Inst. Meth. **A 376** (1996) 29.
- F. Bartol et al., The C.A.T. Pixel Proportional Gas Counter Detector, J. Phys. III France 6 (1996)
- F. Sauli, GEM: A new concept for electron amplification in gas detectors, Nucl. Inst. Meth. A 386 (1997) 531.
- R. Bellazzini et al., The WELL detector, Nucl. Inst. Meth. A 423 (1999) 125.
- **G. Bencivenni et al.**, *A novel idea for an ultra light cylindrical GEM based vertex detector*, Nucl. Inst. Meth. **A 572** (2007) 168.
- **P. Fonte et al.**, Advances in the Development of Micropattern Gaseous Detectors with *Resistive Electrodes*, Nucl. Inst. Meth. **A 661** (2012) 153.
- **G. Bencivenni et al.**, The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, JINST **10** (2015) P02008.

GEM µ-RWELL MicroMegas

G. Morello, LNF-INFN

The μ -RWELL: motivations

Because of the micrometric distance between electrodes, every MPGD suffers from spark occurrence that can damage the detector or the FEE. A resistive readout quenches the discharge:

- The Raether limit is overcome
- The charge is deposited on the resistive layer
- The charge density spreads with $\tau = RC$

(M.Dixit, NIM A 518 (2004) 721)

- The resistive layer is locally charged-up with a potential V=Ri, reducing the ΔV applied to the amplification stage

- The amplification field is reduced
- The discharge is locally suppressed

Obviously this has a drawback correlated to high particle fluence, that's why we studied the performance of the detector as a function of the resistivity

The detector architecture

The μ-RWELL is composed of only two elements: the μ-RWELL_PCB and the cathode

The **µ-RWELL_PCB, the core of the detector,** is realized by **coupling:**

- a "WELL patterned kapton foil" as "amplification stage"
- 2. a **"resistive sheet"** for the discharge suppression & current evacuation
 - i. "Single resistive layer" (SL) < 100 kHz/cm²: single resistive layer → surface resistivity ~100 MΩ/□ (CMS-phase2 upgrade; SHIP)
 - ii. "Double resistive layer" (DL) > 1 MHz/cm²: more sophisticated resistive scheme must be implemented (MPDG_NEXT- LNF) suitable for LHCb-Muon upgrade
- 3. a standard readout PCB

Drift cathode PCB

The μ -RWELL

The μ -RWELL is a single-amplification stage, intrinsically spark protected MPGD characterized by:

- simple assembly procedure:
 - only two components $\rightarrow \mu$ -RWELL_PCB + cathode
 - no critical & time consuming **assembly** steps:
 - no gluing
 - *no stretching* (→ no stiff & large frames needed)
 - easy handling
 - suitable for large area with PCB splicing technique w/small dead zone
- cost effective:
 - 1 PCB r/o, 1 μ-RWELL foil, 1 DLC, 1 cathode and very low man-power

easy to operate:

very simple HV supply → only 2 independent HV channels or a trivial passive divider (while 3GEM detector → 7 HV floating/channels)

The single layer scheme (CMS/SHiP)

G. Morello, LNF-INFN

The μ -RWELL performance

The first prototype (5x5 cm² active area) has been tested with Ar:CO₂ 70:30 and Ar:iC₄H₁₀ 90:10 gas mixtures, irradiated with 5.9 keV X-rays generated by a PW2217/20 Philips Tube.

Gain parametrized as

 $G=exp(\alpha\Delta V+\beta)$

The μ -RWELL performance

A suitable segmentation of the resistive layer can tune the rate capability of the detector. **IMPORTANT**: for a m.i.p. the primary ionization is 7 times smaller than 5.9 keV X-rays, so with the proper segmentation a flux of ~1 MHz/cm² for m.i.p should be achievable The presence of the resistive layer has a drawback represented by the reduced capability of the detector to stand high particle fluxes

The gain drop

It's easy to understand that the larger is the resistance of the layer, the longer will take the charge to reach the ground. This creates temporary charging-up of the resistive layer with consequent drop of gain.

The gain of a μ -RWELL can be written as follows

$$G_0 = e^{\beta + \alpha V_0}$$

that allows to write a gain drop as

$$G = e^{\beta + \alpha(V_0 - \delta V)} = G_0 e^{-\alpha \delta V}$$

Assuming that the gain drop is only due to the resistive layer, by Ohm's first law we have

$$\delta V = i\Omega$$

being *i* the current measured on the resistive layer, depending obviously by the primary ionization N_0 , by the gain of the detector and by the radiation rate *R*

$$i = eN_0GR$$

so that we can write

$$G = G_0 e^{-\alpha i \Omega} = G_0 e^{-\alpha e N_0 G \Phi \pi r^2 \Omega}$$

The gain drop

That is

$$\frac{G}{G_0}e^{\alpha e N_0 G \Phi \pi r^2 \Omega} = 1$$

Expanding with the Maclaurin series and reordering the terms we have

$$\alpha e N_0 G_0 \Phi \pi r^2 \Omega \left(\frac{G}{G_0}\right)^2 + \frac{G}{G_0} - 1 = 0$$

and eventually

$$\frac{G}{G_0} = \frac{-1 + \sqrt{1 + 4p_0 \Phi}}{2p_0 \Phi}$$

where

$$p_0 = \alpha e N_0 G_0 \Omega \pi r^2$$

This function includes the dependence on the expected gain and on the rate, here exploited as the product of the tube activity times the collimator surface

The gain drop

G. Morello, LNF-INFN

The resistance Ω : a simple model

We pointed the X-ray gun in the center of the active area. The charges drift on the resistive layer towards the ground, facing a resistance Ω along their path towards the ground. Let *d* be **the half of the active area side** and *r* **the collimator radius**.

The resistance Ω : a simple model

We consider the case $r \le d$ so that we can approximate the active area with a circle. The charge produced at a distance ξ in the interval]0,r] covers an averge path

$$\langle d-\xi \rangle = \frac{\int_0^r \int_0^{2\pi} (d-\xi) \,\mathrm{d}\xi \mathrm{d}\theta}{\int_0^r \int_0^{2\pi} \mathrm{d}\xi \mathrm{d}\theta} = d - \frac{r}{2}$$

This looks like the charge is all concentrated in a circle with radius r/2. From here the charges drift towards the ground crossing a surface

$$S = \delta \int_0^{2\pi} \frac{r}{2} \mathrm{d}\theta = \delta \pi \mathrm{r}$$

And by second Ohm's law

$$\Omega = \rho_v \frac{d - \frac{r}{2}}{\delta \pi r} = \rho_S \frac{d - \frac{r}{2}}{\pi r}$$

We computed Ω from the fit and we plot it vs r

The resistance Ω : a simple model

deliverer

The two different schemes

(*) Morello's model: appendix A-B (G. Bencivenni et al., 2015_JINST_10_P02008)

The two different schemes

Status of the single resistive layer

H4 Beam Area (RD51) Muon beam momentum: 150 GeV/c Goliath: B up to 1.4 T

GEMs Trackers

BES III-GEM chambers

µ-RWELL prototype 12-80-880 MΩ /□ 400 µm pitch strips APV25 (**CC analysis**) Ar/iC₄H₁₀ = 90/10

GOLIATH

µ-RWELL: tracking efficiency CC analisys

Ar/ISO=90/10 Ar/ISO=90/10 Efficiency 8.0 8.0 **25**r Size - μ-RWELL 12 ΜΩ/ם Cluster ⊢u-RWELL 80 ΜΩ/⊡ 20 - μ-RWELL 880 MΩ/ם 0. 15 0.6 0.5 10 0.4F **0.3**₽ - μ-RWELL 880 MΩ/ם 5 0.2₽ 0.1 10⁵ Gain 10³ 10³ 10⁴ **10**⁴ 10⁵ Gain

At **low resistivity the spread of the charge** (cluster size) on the readout strips **increases**, thus requiring a **higher gain** to reach the **full detector efficiency**.

Space resolution: orthogonal tracks **CC** analisys Ar/ISO=90/10 Ar/ISO=90/10 ·0.8 E^{0.2} Lesidual 0.14 0.15 🗕 μ-RWELL 880 ΜΩ/ם ,0.08)

Residual

Cluster Size

10

10⁵ Gain The space resolution exhibits a minimum around 100M Ω / \Box . At low resistivity the charge spread increases and then σ is worsening. At high resistivity the charge spread is too small (Cl_size \rightarrow 1) then the Charge Centroid method becomes no more effective ($\sigma \rightarrow pitch/\sqrt{12}$).

10³

10⁴

0.06 Signa 0.04 Signa

10² 10³ Resistivity (MΩ/□)

Status of the single resistive layer

The R&D on the single resistive layer has been completed with the realization of two large area detectors of about <u>1.2 x 0.5 m²</u> in the framework of the CMS-phase2 muon upgrade

These detectors have been realized in collaboration with Italian companies (ELTOS & MDT) within the TT project. Thanks to: L. Benussi, L. Borgonovi, P. Giacomelli, A. Ranieri, M. Ressegotti, I. Vai

Beam Test Setup

G. Morello, LNF-INFN

A. Ranieri, M. Ressegotti, I. Vai

Efficiency & time resolution measurement

The efficiency (as extracted by TDC measurement) has been evaluated asking for TDC coincidence selected in a proper range.

Then the ratio of the triplets on the doublets gives the value.

Thanks to: L. Benussi, L. Borgonovi, P. Giacomelli,

A. Ranieri, M. Ressegotti, I. Vai

The TDC distribution is then fitted with a simple gaussian and the sigma is then **deconvoluted** by the contribution of the VFAT.

$$\sigma_t^2 = \sigma_{TDC}^2 - \left(\frac{25}{\sqrt{12}}\right)^2$$

J. A. Merlin, Etude de fonctionnement à long terme de détecteur gazeux l'environment à haut flux de CMS, PhD thesis, 2016

Performance vs Gain with Ed=3.5 kV/cm

Measurements done with GEM by LHCb group gave $\sigma_t = 4.5$ ns with VTX chip, constant fraction discriminator [1]. We wish to perform the same measurement with μ -RWELL at BTF (LNF).

[1] G. Bencivenni et al, "Performance of a triple-GEM detector for high rate charged particle triggering", NIM A 494 (2002) 156

Thanks to: L. Benussi, L. Borgonovi, P. Giacomelli, A. Ranieri, M. Ressegotti, I. Vai

G. Morello, LNF-INFN

Performance vs Rate

The detector rate capability (with Ed=3.5 kV/cm) has been measured in current mode with a pion beam and irradiating an area of \sim 3 x 3 cm² (FWHM) ("local" irradiation, \sim 10 cm² spot)

G. Morello, LNF-INFN

G. Morello, LNF-INFN

High rate version: the double resistive layer

- The charges collected on the resistive layer move towards the ground with a characteristic time τ(R,C) [Dixit et al, NIMA 518 (2004) 721, NIMA 566 (2006) 281].
- The idea is to reduce the path covered by the electrons on the DLC

G. Morello, LNF-INFN

The double layer scheme (LHCb)

G. Morello, LNF-INFN

The test beam setup, conf. 1

³³

The test beam setup, conf. 2

G. Morello, LNF-INFN

Improving space resolution: the $\mu\text{-}TCP$ mode

The use of an analog front-end allows to associate a hit to a track using the charge centroid (CC) method. The uncertainty associated to the hit with this algorithm is dependent on the track angle: minimum for orthogonal tracks and larger as the angle increases

To improve the space resolution we implemented the u-TPC algorithm to be combined with the CC method G. Morello, LNF-INFN

Improving space resolution: the $\mu\text{-}TCP$ mode

Introduced for MicroMegas by T. Alexopoulos et al., NIM A 617 (2010) 161, it suggests a way to overcome big errors associated to sloped tracks.

Each hit is projected inside the conversion gap, where the x position is given by each strip and the $z = v_d t$

The drift velocity is provided by the Magboltz libraries.

The drift time is obtained with a fit of the charge sampled every 25 ns (APV25) from each FEE channel associated to the strip.

For each event we then obtain a set 50 of projected hits that once fitted provide a track segment

Example of μ -TPC reconstruction

Here we have some examples where the tracks have an angle w.r.t. the readout plane of: 75° tracks 45° tracks

37

Improving space resolution: the $\mu\text{-}TCP$ mode

The combination of the CC and the μ -TPC mode with E_d= 3.5 kV/cm

The resolution is flattened for a wide range of angles.

$$x_{merge} = \frac{x_{cc} \cdot w_{cc} + x_{tpc} \cdot w_{tpc}}{w_{cc} + w_{tpc}}$$
$$w_{cc} \propto (clsize)^{-2} \quad w_{\mu-TPC} \propto (clsize)^{2}$$

A study on the optimization of the drift field: low fields correspond to low drift velocities, allowing a better resolution of the primary ionization clusters.

Thanks to: R. Farinelli, M. Giovannetti, L. Lavezzi

The double resistive layer: H8C test beam (2016)

Two double resistive layer prototypes have been tested with muon beam and equipped with VFAT2

Different chambers with **different dimensions and resistive schemes** exhibit a very similar behavior although realized in **different sites** (large detector partially realized outside CERN).

G. Morello, LNF-INFN

The double resistive layer:

G. Morello, LNF-INFN

Status of the technological transfer

 As already mentioned, the strict collaboration with ELTOS made possible the construction of large area detectors with single resistive layer (GE1/1-, GE2/1-like)

- This allowed us to well define the coupling procedure of the amplification stage with the readout
- ELTOS is now producing other μ -RWELL_PCB to be etched at CERN
- The industrialization of the double resistive layer construction is much more difficult due to the manufacturing of the conductive vias
- Other (simpler) layouts must be developed in order to be included in an industrial process
 G. Morello, LNF-INFN

New layouts, new ideas, new challenges

The aim is to maintain a very short path for charges drifting on the resistive layer, while simplifying the construction process.

Two ideas are now under development: silver grid and resistive grid Silver Grid (SG)

Small conductive strips are screen-printed on the bottom part of the DLC

Clearly the introduction of a conductive strip on the bottom layer of the amplification stage can induce strong instabilities due to discharges over the DLC surface.

First prototypes of SG designed with safe geometrical parameters: grid pitch 6 mm, dead area around 1/3 of the total area

Silver Grid v1: X-rays and H4 test beam (July 2017)

• A SG μ -RWELL has been installed inside the RD51 tracking system and characterized together with a Double Layer chamber

At the H4 test beam we could supply up to 700 V, much more than for the other μ -RWELL without instabilities. The reason of a so high instability voltage is under investigation. The lower efficiency is due to the geometrical effects. The increasing gain improves the collection efficiency partially compensating this leak.

A dedicated study on the minimum distance between the strip and the holes has been done to increase the efficiency G. Morello, LNF-INFN

Silver Grid: optimization

In order to reduce the dead area, we measured the Distance Of Closest Approach (without discharges) between two tips connected to a PS. We recorded the minimum distance as a function of the ΔV supplied for different foils before a discharge on the DLC occurs

Silver Grid: 2nd generation

The two detectors have been equipped with 6 x 8 mm² pad-segmented readout

The grid lines are connected to the ground through the resistance provided by the DLC itself (9-10 $M\Omega$)

Silver Grid: 2nd generation

The detector is mounted on a support moved by a stepper motor. The position is given within few tenths of millimeter.

Scan along the coordinate orthogonal to the grid lines direction

Resistive grid

Small resistive strips are screen-printed on the bottom side of DLC

No dead areas

Y distance	Resistive	X distance
of pads:	strip width:	of pads:
217.23 μm	296.99 µm	105.03 μm

Gain drop measurement with 5.9 keV X-ray

The gain drop is only due to Ohmic effect on the resistive layer: the charges collected on the DLC drift towards the ground facing an effective resistance Ω , depending on the evacuation scheme and computed by the

The primary ionization of 5.9 keV is ~7 times larger than the one created by a m.i.p. In order to face a **3 MHz/cm² m.i.p. fluence, with a 5% gain drop,** the effective resistance Ω must be at maximum 2 M Ω .

Anyway a 5% drop of G_0 =6300 allows still to operate the detector at full efficiency. A measurement of the efficiency with a high rate particles has been planned for the next test beam

Conclusions & outlook

- The single layer layout has been exploited to build large area detectors (~1/2 m²), but we also demonstrated that even larger detectors can be realized with the splicing technique, with the cooperation with ELTOS SpA, within TT
- Several prototypes have been realized, with different simplified evacuation charge scheme for high rate purposes
- Further optimization of the new high rate schemes must be done, addressed by the measurement of the gain drop done with X-rays

So far the best measured performances are:

- 1 MHz/cm² rate capability with pion beam (Double Layer working at G=10000)
- space resolution 52 \pm 6 μ m (80 M Ω / \Box , orthogonal tracks, no B field)
- well below 100 μ m with non-orthogonal tracks, with the μ -TPC/CC combination
- time resolution **5.7** ns (with FEE saturation)
- Both the Silver Grid v1 reached a gain of almost 10^5 (to be understood)
- An ageing test at GIF++ is ongoing: the detector integrated up to 90 mC/cm² without showing gain loss

Spare

μ -RWELL: other prototypes

Resistivity declared by the deliverer: **1** G Ω / \Box ; from fit ρ_s = 883.8 ± 176.7 M Ω / \Box

Resistivity declared by the deliverer: 80 M Ω / \Box ; from fit ρ_s = 79.3 ± 15.8 M Ω / \Box

Resistivity declared by the deliverer: **1** M Ω / \Box ; from fit ρ_s = **11.7** ± **2.3** M Ω / \Box

Detector Gain

The prototype has been characterized by measuring the **gas gain, rate capability** in **current mode** with an **5.9 keV X-rays (local irradiation, ~1cm² spot)**.

A shift of ~ 25 V has been measured between the two sectors probably due to the different geometry of the amplification stage (to be confirmed with microscope check – left/right asymmetry)

X-ray measurements

Two prototypes with the **double resistive layer scheme** (ρ =40 M Ω/\Box) have been completed last Summer; the detectors have been tested with a 5.9 keV X-rays flux **(local irradiation)**.

Gain in $Ar:iC_4H_{10}$ 90:10

Measurement performed in current mode.

Gain measured up to 10000. Similar behavior for the two chambers.