

High-Granularity Calorimetry

- 1. Brief summary of high-energy calorimetry
- 2. The present CMS electromagnetic calorimeter
- 3. The main **challenge for future** calorimeters & possible solutions
- 4. High-granularity calorimetry
 - **1. CALICE**
 - 2. CMS HGCAL

Frascati Detector School, 21-23 March 2018, David Barney (CERN)

Calorimeters played a crucial role in the discovery of the Higgs boson in 2012

Two high-energy photons observed in the ATLAS Liquid Argon (LAr) electromagnetic calorimeter in 2012 \rightarrow Candidate H $\rightarrow\gamma\gamma$ event

High-Granularity Calorimetry, Frascati Detector School 2018

Calorimeters played a crucial role in the discovery of the Higgs boson in 2012

Four high-energy electrons observed in the CMS crystal electromagnetic calorimeter in 2012 \rightarrow Candidate H \rightarrow ZZ* \rightarrow 4e

The Last and The Indian Contract				
Channel	4e	4μ	2e2µ	4ℓ
ZZ background	6.6 ± 0.8	13.8 ± 1.0	18.1 ± 1.3	38.5 ± 1.8
Z+X	2.5 ± 1.0	1.6 ± 0.6	4.0 ± 1.6	8.1 ± 2.0
All background expected	9.1±1.3	15.4 ± 1.2	22.0 ± 2.0	46.5 ± 2.7
$m_H = 125 \text{ GeV}$	3.5 ± 0.5	6.8 ± 0.8	8.9 ±1.0	19.2 ± 1.4
$m_H = 126 \text{ GeV}$	3.9 ± 0.6	7.4 ± 0.9	9.8 ±1.1	21.1 ± 1.5
Observed	16	23	32	71

CMS $H \rightarrow 4$ leptons

High-Granularity Calorimetry, Frascati Detector School 2018

3

CMS LEAD-TUNGSTATE ECAL

High-Granularity Calorimetry, Frascati Detector School 2018

CMS ECAL is just outside of the Tracker, and inside the HCAL and solenoid

All three parts of CMS ECAL are located within the solenoid

High-Granularity Calorimetry, Frascati Detector School 2018

CMS ECAL: homogeneous calorimeter based on PbWO₄ scintillating crystals

• Criteria for design of ECAL in CMS

- Hermetic, compact and granular, with excellent energy resolution to $|\eta|{<}2.5$
 - → homogeneous calorimeter (minimizes sampling fluctuations)
- Large dynamic range, coupled with excellent linearity, to > 1 TeV
- Provide triggering info. e.g. particle ID, energy, isolation
- Radiation tolerant to expected dose rates and cumulative doses/fluences
- Several options in the early days (early 1990s) of CMS, including:

	Sampling	Homogeneous scintillators			
Property	Pb/plastic Shashlik	Liquid Xenon	CeF ₃ crystals	PbWO ₄ crystals	
Density (g cm ⁻³)	4.5	3.06	6.16	8.28	
Radiation length X_0 (cm)	1.7	2.77	1.68	0.85	Selected
Molière radius R_{M} (cm)	3.4	4.1	3.39	2.19	in 1994
Wavelength peak (nm)	500	175	300	440	
Fast decay constant (ns)	<10	2.2	5	<10	
Light yield (y per MeV)	13	$\sim 5 \ge 10^4$	4000	100	

The CMS ECAL: ~75000 PbWO₄ scintillating crystals with APD/VPT light detection

Very compact:

X₀ ~0.85cm, R_M ~ 2.2cm
Excellent energy resolution
Fast << 100ns signals
High transverse granularity
No longitudinal segmentation
→ No angular measurement
Time-dependent variations, due to:

- Temperature dependence
- Radiation damage

Avalanche PhotoDiodes (APDs, gain ~50) or Vacuum PhotoTriodes (VPTs, gain ~10) are glued to the lead tungstate (PbWO₄) crystals to detect the scintillation light in the barrel and endcaps of the CMS ECAL respectively

High-Granularity Calorimetry, Frascati Detector School 2018

Crystal response stability is monitored and corrected through a laser system

Light from laser (447nm, ~peak emission) injected into each crystal

- One (averaged) measurement of the crystal transparency every 40 minutes
- Corrections ready for prompt reconstruction in less than 48 hours!
 - Validity checked using electrons from W decays

High-Granularity Calorimetry, Frascati Detector School 2018

The CMS ECAL Benchmark: $H \rightarrow \gamma \gamma$

- The energy resolution measured in data with $Z \rightarrow ee$ is used to model the expected $H \rightarrow \gamma \gamma$ signal in the simulation
- Steady progress and excellent results

High-Granularity Calorimetry, Frascati Detector School 2018

Intrinsic timing performance of ECAL (<200ps) can help in searches for exotic physics

CMS ECAL design requirements: ~1ns timing precision Can easily achieve <400ps (including beamspread σ~300ps)

ECAL timing information used in direct searches for SUSY signatures. Limits could be far lower with even better timing performance

ECAL also includes a 2-layer silicon-strip-based "Preshower" in its endcaps, to aid particle ID

6 x 6cm² silicon sensor, 32 strips ~ $1 \text{ cm}^2/\text{strip}$ 4 planes of 1072 sensors = 137000 channels, ~ 16m^2 total (largest silicon-based calorimeter!)

Used mainly for π^0 identification, but ID power not as good as foreseen due to upstream TK material

High-Granularity Calorimetry, Frascati Detector School 2018

Preshower is a compact device, with one layer requiring ~5cm for absorber, cooling & modules

High-Granularity Calorimetry, Frascati Detector School 2018

CURRENT FRONTIER IN HEP CALORIMETRY -> IMPROVE JET MEASUREMENTS!

High-Granularity Calorimetry, Frascati Detector School 2018

Real need to improve jet energy resolution for the next generation of calorimeters

Multi-jet final states (outgoing quarks, gluons) Missing energy relies upon accurate jet energy measurements Need to separate heavy bosons (W, Z, H) in hadronic decays

"Typical" jet:

- ~62% charged particles (mainly hadrons)
- ~27% photons
- ~10% neutral hadrons
- ~1% neutrinos

Jet reconstruction:

weighted sum of energies in a cone \rightarrow energy of original parton

Resolution: driven by calorimeter with worst resolution (HCAL)

Hadron showers contain electromagnetic and hadronic components

Efficiency of detecting hadronic & em components differs from unity: non-compensation

Fraction of non-em component ("h") detected is far lower than for the emcomponent ("e"): e/h > 1 for most detectors. This leads to:

- Non-linearities
- Non-Gaussian response
- Relatively poor energy resolution

Substantial improvement of the energy resolution of hadronic calorimeters for single hadrons:

dual (or triple!) readout, e.g. DREAM

Precise reconstruction of each particle within the jet → reduction of HCAL resolution impact: particle flow algorithms and imaging calorimeters e.g. CALICE detectors, CMS HGCAL

Both techniques aim at separating charged/neutral & electromagnetic/hadronic components

The previous generation of calorimeters could "see" showers! Can we do this again?

High-Granularity Calorimetry, Frascati Detector School 2018

Particle flow technique: make best use of all detectors to measure jet energies

High-Granularity Calorimetry, Frascati Detector School 2018

Particle flow resolution is clearly better than calorimeter alone

Simulated ILD calorimeter/PF performance

realistic ILC calorimeter (ILD)

PFA

"ideal" traditional HAD calorimeter

"Confusion": wrong association between tracks and calorimeter clusters

> at high jet energy: correct association between tracks and calorimeter clusters is very important ⇒ calorimeter with very high granularity

> at low jet energy: dominated by "classical" calorimeter energy resolution ⇒ hadronic calorimeter with good energy resolution

Katja Krüger | Basics of Calorimetry in Test Beams | 24 January 2017 | Page 10/46

DESY

(slide shamelessly stolen from Katja Kruger from BTTB5)

High-Granularity Calorimetry, Frascati Detector School 2018

For best results: high granularity in 3D – separation of individual particle showers

For a Particle-Flow Calorimeter:

- **Granularity** is more important than energy resolution
- Lateral granularity should be **below Molière radius** in ECAL and HCAL
- In particular in the ECAL: small Molière radius to provide **good two-shower separation** (particularly in high pileup environment)

 \rightarrow dense absorbers and thin sensors

• Sophisticated software needed!

Particle flow already used in Aleph & CMS (both have relatively low resolution HCALs)

Measurement of jets in **CMS** is **enhanced greatly** by the use of particle flow techniques

High-Granularity Calorimetry, Frascati Detector School 2018

CALICE: R&D COLLABORATION FOR HIGHLY-GRANULAR SAMPLING CALORIMETERS AT E⁺E⁻ COLLIDERS

High-Granularity Calorimetry, Frascati Detector School 2018

Various sampling layer types being explored

- Digital (D): count # pixels OFF/ON (e.g. MAPS)
- Semi-digital (SD): basic info of signal size in pixels OFF/standard/ large/very large (e.g. RPCs or micromegas)
- Analogue (A): large dynamic range in (sometimes) larger pixels (e.g. silicon or scint+SiPM or GEM)

CALICE Digital 24-layer ECAL prototype is a potential upgrade for the ALICE FoCAL

W absorbers, so small X_0 (~0.35cm) and R_M (~0.9cm) \rightarrow relatively small transverse size prototype required

High-Granularity Calorimetry, Frascati Detector School 2018

CALICE HCAL prototypes have included digital, semi-digital and analogue options

CALICE AHCAL: Scintillator tiles (3x3cm²; 6x6cm² and 12x12cm²) readout via wavelength-shifting fibres to on-tile SiPMs

Steel absorbers with $\lambda_{INT} \sim 17$ cm \rightarrow need >40 cm-wide calorimeter

High-Granularity Calorimetry, Frascati Detector School 2018

HADRON COLLIDERS HAVE BIGGER CHALLENGES

High-Granularity Calorimetry, Frascati Detector School 2018

Hadron colliders impose the tightest constraints on future calorimeters: radiation & pileup

High-Granularity Calorimetry, Frascati Detector School 2018

D. Barney (CERN)

ERN

THE CMS HGCAL

High-Granularity Calorimetry, Frascati Detector School 2018

CMS will replace its endcap calorimeters for HL-LHC: the High Granularity Calorimeter

Motivation for upgrade for HL-LHC:

- huge radiation environment: $\sim 10^{16}$ n/cm², ~ 1 MGy
- 150-200 pileup events per bunch-crossing: need high granularity 4D detector

Present endcap calorimeters will not survive HL-LHC radiation nor cope with pileup and trigger rate

High-Granularity Calorimetry, Frascati Detector School 2018

Look for proven and adequately radiation-hard active materials To build a dense e.m./hadronic calorimeter with a good energy resolution, small R_M, good two-shower separation (e.m. and hadronic), with high lateral and longitudinal readout granularity

A silicon-sensor-based sampling calorimeter (absorber materials – W, Pb, Cu, Stainless Steel) followed by plastic scintillator tiles with direct SiPM readout for the lower radiation level region (absorber material SS)

Overall mechanical design of HGCAL heavily constrained by present endcap calorimeters

Concept: remove complete endcap calo. system and replace with HGCAL

High-Granularity Calorimetry, Frascati Detector School 2018

CMS HGCAL: a sampling calorimeter with unprecedented number of readout channels

Active Elements:

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:

- HGCAL covers $1.5 < \eta < 3.0$
- Full system maintained at -30°C
- ~600m² of silicon sensors
- ~500m² of scintillators
- 6M si channels, 0.5 or 1 cm² cell size
- ~27000 si modules

Electromagnetic calorimeter (CE-E): Si, Cu/CuW/Pb absorbers, 28 layers, 25 X_0 & ~1.3 λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, ~8.5 λ

High-Granularity Calorimetry, Frascati Detector School 2018

HGCAL has the potential to visualize individual components of showers

High-Granularity Calorimetry, Frascati Detector School 2018

Moliere radius of HGCAL is ~28mm, but high granularity \rightarrow much finer details can be resolved

Coloured rectangles: = % shower energy deposited in that layer

High-Granularity Calorimetry, Frascati Detector School 2018
Example of VBF H $\rightarrow\gamma\gamma$, with the VBF jet (two pions + γ) and a γ incident on the CMS endcap

Example of VBF H $\rightarrow \gamma\gamma$, with the VBF jet (two pions + γ) and a γ incident on the CMS endcap

~600m² of silicon sensors (3x CMS tracker) in radiation field peaking at ~10¹⁶n/cm²

DC-coupled sensor pads

- simplify production technology
- (consider n-type sensors for 300 μm sensors in lower radiation region of HGCAL)

Hexagonal vs square sensor geometry

- make most efficient use of sensor wafer
- reduce number of sensors produced & assembled into modules (factor ~ 1.3)

8" vs 6" wafer production

• reduce number of sensors produced & assembled into modules (factor ~ 1.8)

300µm, 200µm and 120µm active sensor thickness

• match sensor thickness (and granularity) to radiation field for optimal performance

Simple, rugged module design & automated module assembly

• provide high volume, high rate, reproducible module production & handling

8" silicon sensors will be hexagonal, divided into hexagonal cells (mostly)

ø ~ 190mm

Coloured groupings of cells represent trigger readout units

HGCAL will include 27000 modules based on hexagonal silicon sensors with 0.5-1cm² cells

Silicon sensor glued to baseplate and PCB containing front-end electronics

hexaboard sensor Kapton foil Cu/W

Wire bonding from PCB to silicon through holes

D. Barney (CERN)

Silicon modules are arranged in hexagonal matrices to cover fiducial area of HGCAL

HGCAL will also include 500m² of scintillator tiles with on-tile SiPM readout

For first beam tests, modified CALICE AHCAL used for rear hadron calorimeter: 3x3cm² scintillator tiles + direct SiPM readout

Regions of silicon or silicon + scintillator/SiPM governed by radiation field

Silicon in high-radiation regions

Wedge-shaped "Cassettes" containing arrays of silicon modules or silicon+scintillator/SiPM

Thinner sensors show less change in CCE than thicker sensors vs fluence

High-Granularity Calorimetry, Frascati Detector School 2018

The front-end electronics are particularly challenging in the compact HGCAL

- Low noise (<2500e⁻) and high dynamic range (~ $0.2 \text{fC} \rightarrow 10 \text{pC}$)* - See MIPs (~3.5 fC in 300µm silicon) with S/N > 3 for whole lifetime of HL-LHC
- Provide timing information to tens of picoseconds
- Have **fast shaping time** (<20ns) to minimize out-of-time pileup
- On-detector digitization and zero suppression
- On-detector creation of trigger sums
- Buffering of data to accommodate 12.5µs L1 latency
- High-speed readout links to interface with 10 Gb/sec lpGBT chipset
- <20mW per channel (roughly limited by cooling power)
- High radiation resistance (>1.5 MGy and $10^{16} n_{eq}/cm^2$)
- And be in production ~2021

*want S/N ~8 at beginning of HL-LHC for 1 MIP in 120 μ m silicon ~ 1.5fC; upper limit from 1.5TeV photon shower producing ~6000 MIPs in a single cell

"dummy" cassette being assembled with PCBs containing only connectors and heat loads

8" hexagonal PCBs glued to silicon and baseplates → modules 3 modules connected to a single "motherboard" providing power, data concentrator and optical links

High-Granularity Calorimetry, Frascati Detector School 2018

Dummy cassette is installed in a cold box to study heat-transfer characteristics – works well!

CE-E cassettes are self-supporting sandwich structures with Pb, Cu and Cu/W as absorbers

High-Granularity Calorimetry, Frascati Detector School 2018

Prototype silicon modules + CALICE AHCAL tested at CERN in 2017; more in 2018

High-Granularity Calorimetry, Frascati Detector School 2018

Beam tests in 2016 & 2017 validated basic design; good stability; MIPs seen in all parts

High-Granularity Calorimetry, Frascati Detector School 2018

Beam tests in 2016 & 2017 validated basic design; good comparison to simulation

Distributions from electrons and pions match those predicted by simulation (to within 5%) demonstrating accuracy and scalability First indications that HGCAL performance is as expected from simulation More test beam data will be taken in 2018 (ongoing test in DESY now!)

Silicon sensors also have good intrinsic timing resolution that does not degrade with radiation

The detailed implementation of the detector geometry necessarily **lags behind technical design choices**. In autumn 2016, before the making of many of the important engineering decisions that are described in the TDR, the **HGCAL geometry implemented in** the CMS simulation and reconstruction software, **CMSSW**, **was frozen to allow simulation work to proceed**.

G4 simulation used to predict performance of HGCAL in presence of pileup: E/m resolution

Jet identification greatly improved using shower-shape information from HGCAL

High-Granularity Calorimetry, Frascati Detector School 2018

Longitudinal and transverse shower shapes can also distinguish VBF jets from pileup jets

EE/FH/BH refer to names of parts of HGCAL at time of TP (2016): simulation is based on this (not very different) geometry

Pileup jets tend to start earlier in the calorimeter and be less collimated than VBF jets

High-Granularity Calorimetry, Frascati Detector School 2018

HGCAL TDR was submitted in Nov. 2017 R&D continues; construction starts in 2020

CERN European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire

The Phase-2 Upgrade of the CMS Endcap Calorimeter Technical Design Report

CMS-TDR-17-007

HIGHLY-GRANULAR CALORIMETERS, SUCH AS HGCAL, WILL PROVIDE MUCH MORE INFORMATION THAN ANY PREVIOUS CALORIMETER.

BUILDING AND EXPLOITING THEM BRING MAJOR CHALLENGES. AN EXCITING TIME FOR DETECTOR AND SOFTWARE DEVELOPMENT!

High-Granularity Calorimetry, Frascati Detector School 2018

BACKUP

High-Granularity Calorimetry, Frascati Detector School 2018

Calorimeters are perhaps the most versatile particle detectors

- Primary objective is to measure the **energy** of incoming particles as **accurately as possible** both charged and neutral (including neutrinos through missing E)
- Can also measure:
 - -Position
 - -Angle of incidence
 - -Arrival time
- **Compact** detectors: longitudinal shower spread increases only **logarithmically with E**
- Unlike spectrometers, E resolution improves with increasing E
- Calorimeter signals can be fast: provide triggering information

Two main types of calorimeter: Sampling and Homogeneous

Sampling Calorimeter

σ/E ~ (10-30)%/√E

Layers of passive 'absorber' (e.g. Pb, Cu, W) alternate with active layers, such as Si, scintillator, liquid Argon (LAr)

Homogeneous Calorimeter

 $\sigma/E \sim (1-3)\%/\sqrt{E}$

Single dense medium serves as both absorber and signal producer, e.g. liquid Xe or Kr (ionization), crystals such as BGO, $PbWO_4$ (scintillation)

Choice of homogeneous vs sampling calorimeter depends on application

Homogeneous

Advantages

- See all charged particles in the shower → best statistical precision (lowest stochastic term)
 - → minimizes detector contribution to measured particle widths
- Same response from everywhere
 - → good linearity (in principle)

Disadvantages

- Limited segmentation
- Relatively high cost

• Examples

- B-factories (small γ energies)
- OPAL, Delphi, L3 (LEP)
- ALICE PHOS & CMS ECAL

Sampling

- Advantages
 - Relatively **low cost**
 - Transverse & longitudinal segmentation possibilities
 - → can significantly help to suppress background

• Disadvantages

 Only part of the shower is seen → higher stochastic (sampling) term

• Examples

- Aleph ECAL (LEP)
- LHCb ECAL & ATLAS calorimeters
- All HCALs (that I am aware of)

ATLAS LIQUID ARGON CALORIMETERS

High-Granularity Calorimetry, Frascati Detector School 2018

ATLAS Liquid Argon Sampling Calorimeters

ATLAS Liquid Argon electromagnetic and endcap/forward hadronic calorimeters

Liquid Argon:

EM barrel and end-cap

- * Lead absorber
- * Accordion geometry
- * Barrel: |η|< 1.475
- * End-cap: 1.375< |\u03c4|<3.2

Hadronic end-cap

- * Copper absorber
- * Parallel plate electrodes
- * Coverage: 1.5< |η|<3.2

Forward Calorimeter

- * tubes and rods in copper or tungsten matrix
- * Coverage: 3.1< |η|<4.9

ATLAS Liquid Argon calorimeter system

Sampling calorimeters using liquid argon as signal producer \rightarrow ionization

- High # electron-ion pairs / MeV deposited
 → no amplification needed,
 small fluctuations
- Good energy resolution
- Medium granularity (110000 channels)
- Longitudinally **segmented** → angle measurement; background suppression
- Intrinsically **uniform** & **radiation hard**
- Argon = liquid @ -183°C
 → cryogenic system
- Not so fast (~450ns)
- Temperature **sensitive** ~2%/°K
- Not too compact: $25 X_0 = 47 cm$

Signal is given from collection of released electrons

Drift velocity depends on electron mobility and applied field. In ATLAS :

LAr gap 2 mm, $\Delta V = 2kV$

ATLAS LAr calorimeter uses a novel "accordion" geometry to optimize performance

Absorber and gap layers in sampling calorimeters are normally perpendicular to the incoming particle direction \rightarrow gaps/cracks at boundaries; long signal cables Largely avoided in ATLAS by using novel "accordion" geometry

High-Granularity Calorimetry, Frascati Detector School 2018

Keeping the constant term low was a major challenge for the ATLAS LAr

Mechanical non-uniformities can modify the electric field and detector response. Great care needed during construction; try to reproduce effects and apply corrections

1% variation in Pb (~200 μ m) \rightarrow 0.6% change in response Measured dispersion $\sigma = 10\mu$ m Translates to < 2% on constant term

φ-modulations measured &simulated, and corrections applied

High-Granularity Calorimetry, Frascati Detector School 2018

70

Calorimeters are not only for energy measurements!

Electron identification efficiency as a function of η for the ATLAS LAr calorimeters. **Above 97%** except for barrel/endcap transition region

High-Granularity Calorimetry, Frascati Detector School 2018

Timing performance in LAr endcaps

Timing measurements can help with pileup rejection. The above plot includes a contribution of ~200ps from the beamspread \rightarrow intrinsic timing precision approaches 65ps! (about the same as in CMS ECAL)

Composition of hadronic showers is complex!

