

FRASCATI DETECTOR SCHOOL

LNF, 21-22-23 March 2018

Commissioning Calibration

Responsible: T. Spadaro LOC: G. Bencivenni, D. Domenici, G. Felici, S. Miscetti

A calorimeter primer

- \rightarrow Calorimeter concept
- \rightarrow Calorimeter kind: etherogeneous/homogeneous
- \rightarrow Electromagnetic showers
- \rightarrow Energy resolution terms
- \rightarrow Hadronic showers
- \rightarrow Compensating calorimeters
- \rightarrow Homogenous calorimetry
- \rightarrow Scintillation crystals
- \rightarrow Photodetectors

The main usage of a calorimeter (HEP) is to measure the particle energy.

□ They typically do this by means of totally absorbing energy in the calorimeter material (destructive measurement)

- □ What kind of particle can be measured ? neutral and charged
 - em calorimeter (photons, π^0 , electrons)
 - hadron calorimeters (n, p, $\pi^{+/-}$, K, Jets)

\Box Basic assumption of the response \rightarrow Linearity

Q (response pC) = a (Calib Constant) x Ep (Particle Energy)

What is a calorimeter ? (2)

Calorimeter and trackers are complementary in HEP. Many good reasons to have it one in your detector:

- Energy resolution improves for increasing energy (like k/sqrt(Ep), stochastic measurement)
- Tracker momentum resolution deteriorates for increasing momentum (larger sagitta errors)
- Calorimeters can be extremely fast and easy to be used for triggering.
- □ Tracking + calorimeter helps: → PID (ex photons/e, e/pi-mu, ...) → Energy flow (i.e. tracking correction of energy deposits to improve Jets determination .. Started LEP-CDF, CMS-Atlas improved)
 - **In 4-π detectors missing energy** becomes also very important (neutrinos)

MUSE.

INFN

3

INFN How many calorimeter kinds ? (1)

Calorimeters have assumed any form since they were born but basic sub-division remains for dimension scale and methods of operation:

Electromagnetic, Hadronic E.M. well described shower γ, π^0, e radiation length (X₀) Had .. not well described shower $\mathbf{n}, \mathbf{p}, \pi^{+/-}, \mathbf{K}$ interaction length (Λ)

INFN How many calorimeter kinds?

Heterogeneous: Sampling signal in active material, mostly absorbed in passive material. Possibility of longitudinal segmentation. Many choices.

<u>Can be both EM and hadronic calorimeter</u>. Can be fast.

Are cheap. Can be adapted to many situation \rightarrow Poor resolution.

Homegeneous: signal is fully absorbed in active material.

Small longitudinal segmentation. Limited choice of material. Expensive. <u>Cannot be hadronic calorimeter.</u> Very good resolution.

Timing can be great with some expedients.

Can be used also in other fields (PET).

Signal generation

- 1. A particle deposits its full energy in the calorimeter media
- 2. The energy is converted into a measurable signal

The most used materials \rightarrow gases / semiconductors / scintillators

- semiconductors: dE/dx or photon-absorption
- + drift of e-h
- gases: dE/dx or photon-absorption
 + charge diffusion
- scintillators: dE/dx or photon-absorption
 + light emission

(Silicon Trackers/Vertex)
 eV per e-hole pair
 (Trackers)
20-40 eV per e-ion pair
 (Calorimeters)
400-1000 eV per photon

ALLSE.

(charge / light / sound / heat)

generated charges/photons yield the measurable signal: **statistical process = the more the better !**

6

INFN

Dominant processes at high energies (E > few MeV) : Photons : Pair production Electrons : Bremsstrahlung

Primer of EM showers (2)

An alternating sequence of interactions creates a cascade

Simplified shower model [Heitler]

- $E > E_c$: shower development governed by X_0
- e- loses energy via Bremsstrahlung
- γ pair production with mean free path 9/7 X₀
- N. particles doubles every X₀ of material,
- Energy gets reduced by 2 @ each iteration
- Shower continues until the particles energy reaches E_c

Shower max @ tmax = ln(E_0/E_c)/ln2 After this point dE/dx, Compton and photoelectric effects take over. Shower energy deposition diminishes and then stops. It is referred as shower tail.

t (95 %)= [t(max) + 0.008 Z + 9.6] in X₀ units

Primer of EM showers (3)

Cloud chamber photo of EM cascade between spaced lead plates.

• The energy resolution is parametrized as:

$$\frac{\sigma(E)}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + \left(\frac{b}{E}\right)^2 + c^2}$$

or
$$\displaystyle rac{\sigma(E)}{E} = rac{a}{\sqrt{E}} \oplus rac{b}{E} \oplus c$$

ALLSE.

relevant at low E

Stochastic term a

E ∝ N → σ ∝ 1/vN : all statistical effects contribute
 i.e. intrinsic and sampling fluctuations, photoelectron statistics

- Noise term b (energy independent term)
 - Electronic noise, radioactivity
- Constant term c (linearly dependent of energy) dominates at high E
 - inhomogeneities, calibration uncertainties, radiation damage, (leakage), ...

21/3/2018

INFN Calorimeter Types: homogeneous (1)

Detectable signal is proportional to the total track length of e+ and ein the active material, intrinsic limit on energy resolution is given by the fluctuations in fraction of initial energy that generates detectable signal

$$N_{tot} \propto \frac{E_0}{E_C} \qquad \text{Total track length} \qquad T_0 = N_{tot} X_0 \approx \frac{E_0}{E_C} X_0$$
Detectable track length $T_r = f_s T_0$
 f_s fraction of N_{tot} with $E > E_s$
Fluctuations in track length:
Poisson process
Fix $E_0 \implies \frac{\sigma(E)}{E} \propto \frac{1}{\sqrt{f_s}} \sqrt{\frac{E_C}{X_0}} \propto \frac{1}{\sqrt{f_s}} \sqrt{\frac{Z}{A}} \implies \text{maximize } f_s$
 $\text{minimize } Z/A$

MALESE.

INFN Calorimeter Types: homogeneous(2)

Homogeneous calorimeters: all the energy is deposited in an active medium. Absorber = active medium All e+e- over threshold produce a signal Excellent energy resolution

Compare processes with different energy threshold

Scintillating crystals

Cherenkov radiators

$$E_{s} \approx \beta E_{gap} \sim eV$$
$$\approx 10^{2} \div 10^{4} \gamma / MeV$$
$$\sigma / E \sim (1 \div 3) \% / \sqrt{E(GeV)}$$

 $\beta > \frac{1}{n} \rightarrow E_{s} \sim 0.7 \text{MeV}$ $\approx 10 \div 30 \text{ } \gamma / \text{MeV}$

$$\sigma/E \sim (10 \div 5)\%/\sqrt{E(GeV)}$$

Lowest possible limit

INFN Calorimeter Types: Sampling

A structure of passive and active material. Cheaper. Only a fraction (**Sampling Fraction**, f_s) of the deposited energy is detected (1-5%)

$$\Gamma_{\rm r} = f_{\rm s} T_0 = f_{\rm s} N_{\rm tot} X_0^{\rm abs} \approx f_{\rm s} \frac{E}{E_{\rm C}^{\rm abs}} X_0^{\rm abs}$$

Resolution scales with absorber thickness $t_{abs}=d/X_0$

$$\frac{\sigma(E)}{E} \propto \frac{1}{\sqrt{N_r}} \propto \frac{1}{\sqrt{f_s}} \sqrt{\frac{E_C t_{abs}}{E}}$$

σ(E)/E ~ 10-30% / ✓ (E)
Notable exception: KLOE-like
calorimeter (tomorrow)

MUSE.

Hadron showers are more complicated than EM.

→ We need to consider the strong interaction with detector material.

In nuclear collisions, the following objects are produced:

- \rightarrow high energetic secondary hadrons [O(GeV)]
- \rightarrow electromagnetically decaying particles ($\pi 0, \eta$) initiate EM showers
- \rightarrow spallation p/n and nuclear excitation from soft nuclear processes [O(MeV)]
- \rightarrow part of the energy is invisible: binding energy of nuclei, v, μ , soft y's

Different scale: hadronic interaction length

	λι	X0		
Polystyren	81.7 cm	43.8 cm		
PbWO	20.2 cm	0.9 cm		
Fe	16.7 cm	1.8 cm		
W	9.9 cm	0.35 cm		

Compare X₀ for high-Z materials, we see that the size needed for hadron calorimeters is large compared to EM calorimeters.

INFN The structure of hadronic showers

hadronic showers have a complex structure also in time

- Importance of delayed component strongly depends on target nucleus
- Sensitivity to time structure depends on the choice of active medium

INFN Example of hadronic calorimeters

S.Miscetti @ Frascati Detector School: Calorimeter Primer

INFN Hadronic Calo: Compensation (1)

- A hadron calorimeter shows in general different response to hadronic and electromagnetic shower components $R_h = eE_e + hE_h$
- The fraction of the energy deposited hadronically depends on the energy E_h the energy E_h the function of the energy E_h the

$$\frac{E_h}{E} = 1 - f_{EM} = 1 - klnE(GeV) \quad k \approx 0.1$$

- → Calorimeter response to hadrons becomes not-linear
- \rightarrow Energy resolution degrades

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} + d\left(\frac{e}{h} - 1\right)$$

INFN Hadronic calo: Compensation (2)

□ To "Compensate" a Hadronic Calorimeter means make e/h → 1

- To do so .. there are typically 3 ways (example for common e/h >1)
 - \rightarrow A) enhance sensitivity to low neutrons \rightarrow boost h (H-enriched)
 - \rightarrow B) add special absorbers for neutrons (Uranium) \rightarrow boost h
 - \rightarrow C) <u>Reduce electron response</u> \rightarrow correcting sampling fraction

Magic Thumb Rule (Wigmans) Fs (Lead/Fiber= 4/1)

ALLSE.

 $\sigma(E)/E = 35\%/sqrt(E/GeV)$

More detailed discussion on compensation and nowadays trends and developments will be shown on Friday by Dr. Gabriella Gaudio \rightarrow DREAM project

Scintillators and photosensors

S.Miscetti @ Frascati Detector School: Calorimeter Primer

Relevant characteristics for particle detection:

- X Light Yield (LY) number of photons produced for a given absorbed energy
- X Transparency to the emitted radiation
- X Spectral emission compatible with light detectors (photosensors), where light is collected and then converted into electrons via photoelectric effect
- X Linearity of response
- X Time response
- X Density, X_0 , Rm

Types of scintillators

Organic scintillators

- X Complex organic molecules (typically soluted in plastics materials) where UV light is emitted after excitation of molecular levels. Other molecules (wave length shifters) are then added to transfer light into visible radiation
 - Fast emission time (2.5-10 ns)
 - Low scintillation efficiency (< 2 k photons / MeV)</p>
 - > Low density (1 g/cm³)
 - > Can be easily machined to any shape (fibers)

Inorganic scintillators

- X Crystals (alkali, alkaline earth and rare earth), usually doped with impurities uniformly dispersed throughout the crystal lattice
 - High scintillation efficiency (10-70 k photons / MeV)
 - Slow emission time (100-600 ns)
 - High density (4-7 g/cm³)

- > Discovery and development of new scintillators driven by basic R&D in physics
- HEP has played a major role in developing new scintillators at an industrial scale and affordable costs (Csl, BGO, PbWO)

Crystals for HEP

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3
Melting Point (°C)	651	621	621	1280	1050	2050	1123
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20
Hygroscopicity	Yes	Slight	Slight	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420
Decay Time ^b (ns)	245	1220	30 6	<mark>650</mark> 0.9	300	40	30 10
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1
d(LY)/dT ʰ (%/ °C)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5

Broad variety of scintillator parameters: relative importance depends on the application Typical LY of Nal ~ 40000 γ/MeV

MUSE-

Emission Spectra

MUSE-

INFN Detecting the light: Photosensors

Light is guided to a photo-detector (i.e. photomultiplier tube, silicon photomultiplier) and converted into charge:

- Conversion of a photon into electrons via photo-electric effect
- Amplification of the electron signal by factor 10⁵-10⁶ via secondary emissions on dynodes or avalanche in silicon

Photo-detector requirements:

- cover a large range of wave lengths (UV to IR)
- good efficiencies, single photon detection possible
- cover large active areas (SuperKamiokande O 46cm)
- PMT (SiPM) are (not) sensitive to B-Field

Silicon Photosensors

- A silicon photo-sensor is "in practice" a reverse Silicon N-P junction with a photo sensitive layer where "photo-electrons" are extracted.
- The reverse bias helps to create a large depleted region and reduce to negligible values the "dark current", Id, i.e. the current seen without any signal in input
- 3 work regimes:
 - \rightarrow Photodiode (G=1) all e- produced in the photosensitive layer are collected at the anode.
 - → APD (G=50-2000) , or Avalanche Photodiode, working in proportional regime and
 - \rightarrow Geiger APD (G=10⁵-10⁶) working in Geiger mode

INFŃ Silicon Photomultipliers (SiPM)

The basic SIPM element (pixel) is a combination of Geiger-APDs and quenching resistors

- \rightarrow a large number of pixels are electrically connected and arranged in two dimensions;
- \rightarrow Each pixel generates a pulse of the same amplitude when it detects a photon .
- \rightarrow The output signal from multiple pixels is the superimposition of single pixel pulses.

S. Miscetti @ Frascati Detector School : Calorimeter Primer

29

INFNPhotosensors & Scintillator matching

21/3/2018

MUSE

Tomorrow we will describe few practic → Electromagnetic , homogeneous! <u>Many possible "on-paper" solutions dep</u>

- High sampling heterogeneous calorimete
- Contraction (MEG-like)
- State Stat
- ni now energy, Mu2e for the high intensity regime.

MUSE.

21/3/2018

Longitudinal development

Z + 9.6

33

MUSE-

Silicon PMT : quenching

- The MPPC (multi-pixel photon counter) is one of the devices called silicon photomultipliers (SiPM) or Geiger APD. It is a photon-counting device that uses multiple APD pixels operating in Geiger mode;
- The Geiger mode allows obtaining a large output by the discharge even when detecting a single photon. Once the Geiger discharge begins, it continues as long as the electric field is maintained.
- One specific example for halting the Geiger discharge is a technique using a so-called quenching resistor connected in series with each APD pixel. This quickly stops the multiplication in the APD since a voltage drop occurs when the output current flows.

