Gas detectors: general principles

- a brief history
- how they work
- ionisation
- electric field
- electron transport
- coffee
- gas gain
- gain fluctuations
- ion transport
- signals

A brief history

Geiger counter

- Detects radiation by discharge;
- can count α, β and γ particles (at low rates ...);
- no tracking capability.
- 1908: Ernest Rutherford and Hans Geiger
- 1928: Hans Geiger and Walther Müller

Hans Geiger
(1882-1945)

Walt(h)er Müller
(1905-1979)

A Geiger-Muller counter built in 1939 and used in the 1947-1950 for cosmic ray studies in balloons and on board B29 aircraft by Robert Millikan et al.

Made of copper, 30 cm long

Motivation for the Geiger counter

In considering a possible method of counting the number of α-particles, their well-known property of producing scintillations in a preparation of phosphorescent zinc sulphide at once suggests itself.

The doubt, however, at once arises whether every α-particle produces a scintillation, for it is difficult to be certain that the zine sulphide is homogeneous throughout. No confidence can be placed in such a method of counting the total number of α-particles (except as a minimum estimate),

It has been recognised for several years that it should be possible by refined methods to detect a single α-particle by measuring the ionisation it produces in its path.

We then had recourse to a method of automatically magnifying the electrical effect due to a single α-particle. For this purpose we employed the principle of production of fresh ions by collision. In a series of papers, Townsend* has worked out the conditions under which ions can be produced by collisions with the neutral gas molecules in a strong electric field. The effect is best shown in gases at a pressure of several millimetres of mercury.
α detection by eye using ZnS scintillation suffers from efficiency losses + is laborious.

Ionisation signal is usable but small.

Use multiplication at low pressure as discovered in 1901 by JS Townsend.

[^0]
From Tube to TPC

Drift electrode

MWPC

- First gaseous tracking device
- 1968: Georges Charpak

One of the NA60 muon chambers

Georges Charpak
(1924-2010)

TPC

- Typically very large
- Almost empty inside
- Excellent for dealing with large numbers of tracks
- 1976: David Nygren (for PEP4)

Alice

Star

MSGC: an early MPGD

- Built using solidstate techniques;
- good resolution;
- poor resistance to high rates.
- 1988: Anton Oed

Substrate

Micromégas

- Fast, rate tolerant tracking device
- 1994: Yannis Giomataris and Georges Charpak

[^1]

Wire diameter: $18 \mu \mathrm{~m}$, Pitch: $63 \mu \mathrm{~m}$, Gap: $192 \mu \mathrm{~m}$
[Purba Bhattacharya et al., 10.1016/j.nima.2013.07.086; ILC NewsLine]

Muon tomography

- Tower structure and water level are visible.
- Portable system (30 W).

[Sébastien Procureur, Simon Bouteille, David Attié]

GEMs

- Acts as a "pre-amplifier"
- 1996: Fabio Sauli

A few electrons enter here

Many electrons exit here

Fabio Sauli

How they work

- Perhaps surprisingly, they all work according to much the same principles:
- a charged particle passing through the gas ionises a few gas molecules;
- the electric field in the gas volume transports the ionisation electrons and provokes multiplication;
- the movement of electrons and ions leads to induced currents in electrodes;
- the signals are processed and recorded.

At the $100 \mu \mathrm{~m}-1 \mathrm{~mm}$ scale

- Example:
- CSC-like structure,
$-\mathrm{Ar} 80 \% \mathrm{CO}_{2} 20 \%$,
- $10 \mathrm{GeV} \mu$.
- Electron are shown every 100 collisions, but have been tracked rigorously.
- Ions are not shown.

Ionisation

1896: Ionisation by radiation

- Early in the study of radioactivity, ionisation by radiation was recognised:

" Becquerel discovered in 1896 the special radiating properties of uranium and its compounds. Uranium emits very weak rays which leave an impression on photographic plates. These rays pass through black paper and metals; they make air electrically conductive."
[Pierre Curie, Nobel Lecture, June 6 ${ }^{\text {th }}$ 1905]
"A sphere of charged uranium, which discharges spontaneously in the air under the influence of its own radiation, retains its charge in an absolute vacuum. The exchanges of electrical charges that take place between charged bodies under the influence of the new rays, are the result of a special conductivity imparted to the surrounding gases, a conductivity that persists for several moments after the radiation has ceased to act."
[Antoine Henri Becquerel, Nobel Lecture, December $11^{\text {th }}$ 1903]

Ionisation electrons per cm in pure Ar

- Ionisation electrons deposited in Ar by a minimum ionising particle:
- $\mathrm{d} E / \mathrm{d} x$ / IP:
- Heed:
- Degrad:
$160 \mathrm{e}^{\mathrm{e} / \mathrm{cm}}$
$41 \mathrm{e}^{-/ c m}$
$50 \mathrm{e}^{-/ \mathrm{cm}}$
(from PDG, $2.5 \mathrm{keV} / \mathrm{cm}$)
(most probable)
(most probable)
- Apparently, ionising takes more than the binding energy:
not all energy is used (\rightarrow Fano factor),
$>$ some energy goes into excitations (\rightarrow Work function),
$>$ or there may be errors in the $\mathrm{d} E / \mathrm{d} x$ tables ?

Energy loss fluctuations

- 2 GeV protons on an (only !) 5 cm thick Ar gas layer:

[Diagram: Richard Talman, NIM A 159 (1979) 189-211]

Clustering - primary interactions

- Electrons are not evenly spaced, not even exponentially:

(reported to have 25-30 clusters/cm, hard to see)
- From ILD TPC test beam studies:
- 4×2 InGrid Octopuce, pixels: $55 \times 55 \mu \mathrm{~m}^{2}$,
- T2K gas: $\mathrm{Ar} 95 \%, \mathrm{CF}_{4} 3 \%, \mathrm{iC}_{4} \mathrm{H}_{10} 2 \%$;
- DESY II, 5 GeV e.
[Michael Lupberger, AIDA-PUB-2014-010,
Robert Menzen, AIDA-THESIS-2013-001]

δ-electrons

- Deposits are not always "lumps":

5 mm

- Laboratory tests:
modified MediPix;
- pixels: $55 \times 55 \mu \mathrm{~m}^{2}$;
$-\mathrm{He} 80 \%, \mathrm{iC}_{4} \mathrm{H}_{10} 20 \%$.
[Harry van der Graaf and co-workers (2004)]

Virtual photon exchange

Basic formulae of the PAI model

- Key ingredient: photo-absorption cross section $\sigma_{\gamma}(E)$ $\left.\left.\frac{\beta^{2} \pi}{\alpha} \frac{\mathrm{~d} \sigma}{\mathrm{~d} E}=\frac{\sigma_{y}(E)}{E} \log \right\rvert\, \frac{1}{\sqrt{\left(1-\beta^{2} \epsilon_{1}\right)^{2}+\beta^{4} \epsilon_{2}^{2}}}\right)+$ Relativistic rise
$\begin{aligned} & \text { Cross section to } \\ & \text { transfer energy E }\end{aligned} \quad \frac{1}{N \hbar c}\left(\beta^{2}-\frac{\epsilon_{1}}{|\epsilon|^{2}}\right) \theta+$

$$
\frac{\sigma_{\gamma}(E)}{E} \log \left(\frac{2 m_{e} c^{2} \beta^{2}}{E}\right)+
$$

Черенков radiation

Resonance region

$$
\frac{1}{E^{2}} \int_{0}^{E} \sigma_{\gamma}\left(E_{1}\right) d E_{1}
$$

Rutherford scattering

With: $\quad \epsilon_{2}(E)=\frac{N_{\mathrm{e}} \hbar c}{E Z} \sigma_{y}(E)$

$$
\epsilon_{1}(E)=1+\frac{2}{\pi} \mathrm{P} \int_{0}^{\infty} \frac{x \epsilon_{2}(x)}{x^{2}-E^{2}} \mathrm{~d} x
$$

$$
\theta=\arg \left(1-\epsilon_{1} \beta^{2}+i \epsilon_{2} \beta^{2}\right)=\frac{\pi}{2}-\arctan \frac{1-\epsilon_{1} \beta^{2}}{\epsilon_{2} \beta^{2}}
$$

Photo-absorption in Ar (Heed)

- Argon has 3 shells, hence 3 groups of lines:

$$
\begin{aligned}
& \mathrm{K}=1 \mathrm{~s} \\
& \mathrm{~L} 1=2 \mathrm{~s} \\
& \mathrm{~L} 2=2 \mathrm{p} 1 / 2 \\
& \mathrm{~L} 3=2 \mathrm{p} 3 / 2 \\
& \mathrm{M} 1=3 \mathrm{~s} \\
& \mathrm{M} 2=3 \mathrm{p} 1 / 2 \\
& \mathrm{M} 3=3 \mathrm{p} 3 / 2
\end{aligned}
$$

De-excitation

Ralph de Laer Kronig (1904-1995)

Dirk Coster (1889-1950)

Lise Meitner
(1878-1968)

Pierre Victor Auger (1899-1993)

References:

D. Coster and R. de L. Kronig, Physica 2 (1935) 13-24.

Lise Meitner, Über die β-Strahl-Spektra und ihren Zusammenhang mit der γ-Strahlung, Z. Phys. 11 (1922) 35-54.
L. Meitner, Das β-Strahlenspektrum von $U X_{1}$ und seine Deutung, Z. Phys. 17 (1923) 54-66.
P. Auger, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 1923/07 (T177)-1923/12, 169-171.
P. Auger, J. Phys. Radium 6 (1925) 205.

Importance of the PAI model terms

- All electron orbitals (shells) participate:
- outer shells: frequent interactions, few electrons;
- inner shells: few interactions, many electrons.
- All terms in the formula are important.

Electric fields \& Electron transport

1600: "Electric force"

1544: William Gilbert born in Colchester

- 1600: De magnete, magneticisque corporibus, et de magno magnete tellure.
- Concluded that the Earth is a magnet and credited with the first use of the term "electric force":
> vim illam electricam nobis placet appellare quæab humore prouenit

1601: Physician to Elizabeth I and James I.
[Guilielmi Gilberti, De magnete ..., excudebat Petrus Short anno MDC, Londini, courtesy Universidad Complutense de Madrid and Google books]

Mean free path in argon

- Literature will tell you
$>\mathrm{e}^{-}$cross section Ar atom: $\quad \sigma \approx 1.510^{-16} \mathrm{~cm}^{2}$
\rightarrow atoms per unit volume: $\quad n_{0} \approx 2.710^{19} \quad$ atoms $/ \mathrm{cm}^{3}$
- Mean free path for an electron ?
$>$ An electron hits all atoms of which the centre is less than a cross section σ radius from its path;
- over a distance L, the electron hits $n_{0} \sigma L$ atoms;
\rightarrow mean free path $=$ distance over which it hits 1 atom;

$$
\lambda_{\mathrm{e}}=1 /\left(\sigma n_{0}\right) \approx 2.5 \mu \mathrm{~m}
$$

\rightarrow much larger than

- 4 nm
$>140-600 \mathrm{pm}$
distance between atoms, and typical gas molecule diameters.

MPGDs and the mean free path

- Recall:
- Mean free path of electrons in Ar: $2.5 \mu \mathrm{~m}$,
- Compare with:
- Micromegas mesh pitch:

$$
63.5 \mu \mathrm{~m}
$$

- GEM polyimide thickness: $\quad 50 \mu \mathrm{~m}$
- Micromegas wire thickness: $18 \mu \mathrm{~m}$
- GEM conductor thickness: $5 \mu \mathrm{~m}$
- Hence:
- mean free path approaches small structural elements;
- such devices should be treated at a molecular level.

Velocity in electric fields

- Imagine that an electron stops every time it collides with a gas molecule and then continues along E.
- To cover a distance λ_{e}, it will need a time t :

$$
\frac{1}{2} \frac{q E}{m_{\mathrm{e}}} t^{2}=\lambda_{\mathrm{e}}, \quad t=\sqrt{\frac{2 \lambda_{\mathrm{e}} m_{\mathrm{e}}}{q E}}, \quad \bar{v}=\frac{\lambda_{\mathrm{e}}}{t}=\sqrt{\frac{\lambda_{\mathrm{e}} q E}{2 m_{\mathrm{e}}}}
$$

- For example:

$$
\bar{v} \approx 13 \mathrm{~cm} / \mu \mathrm{s} \text { for } E=1 \mathrm{kV} / \mathrm{cm}
$$

Drift velocity in argon

- Compare with a Magboltz calculation for pure argon:
- E dependence is not too far off (although linear is more common at low fields),

BUT

the velocity is vastly overestimated ! Magboltz finds a velocity that is 30 times smaller ...

WHY ?

Adding CO_{2}

$-\mathrm{CO}_{2}$ makes the gas faster, dramatically.

- Drift velocities calculated by Magboltz for $\mathrm{Ar} / \mathrm{CO}_{2}$ at 3 bar.
(Note where the arrow is !)

CO_{2} - vibration modes

$-\mathrm{CO}_{2}$ is linear:
$-\mathrm{O}-\mathrm{C}-\mathrm{O}$

- Vibration modes are numbered V(ijk)
- i : symmetric,
- j : bending,
- k : anti-symmetric.

Vibrations V(ijk)

Electrons in $\mathrm{Ar} / \mathrm{CO}_{2}$ at $E=1 \mathrm{kV} / \mathrm{cm}$

Electrons in $\mathrm{Ar} / \mathrm{CO}_{2}$ at $E=1 \mathrm{kV} / \mathrm{cm}$

Drift velocity vs Electron velocity

- Drift velocity v_{D} :
distance effectively travelled \div time needed.
- Compare rabbit and turtle:

$$
\begin{aligned}
& v_{\mathrm{D}}=\bar{v} \\
& v_{\mathrm{D}} \ll \bar{v}
\end{aligned}
$$

Diffusion

- The combination of a high velocity and low drift velocity implies that the electrons scatter a lot.
- Diffusion = RMS of the difference between the actual and the average movement

In a homogeneous field, if the diffusion over 1 cm of drift is $100 \mu \mathrm{~m}$, how large is the diffusion over 1 m ?

Adding CO_{2}
 - Transverse diffusion is much reduced by CO_{2}.

- Calculated by Magboltz for $\mathrm{Ar} / \mathrm{CO}_{2}$ at 3 bar.

$\mathrm{E}[\mathrm{V} / \mathrm{cm}]$

Calculating transport properties

- One can of course measure every mixture one needs ...
- ... but it would be far more efficient if one could compute the transport properties of arbitrary mixtures.

1935: Electron energy distribution

- Calculation of the electron energy distribution
- allowing for energy loss in elastic collisions;
detailed balancing of energy and momentum gain (Efield, diffusion) and loss (elastic collision);
velocity dependent cross section;
use of Legendre expansion (crediting H.A. Lorentz, 1916):

$$
\begin{aligned}
& f(x, v, \omega)=f_{0}(x, v)+P_{1}(\cos \omega) f_{1}(x, v) \\
&+P_{2}(\cos \omega) f_{2}(x, v)+\cdots \\
&=f_{0}(x, v)+(\xi / v) f_{1}(x, v)+\cdots .
\end{aligned}
$$

$\left(P_{1}, P_{2}:\right.$ Legendre polynomials $)$

The function f_{0} determines the random distribution in velocity, and f_{1} determines the electron drift. The higher terms in the series are nearly always very small and do not correspond to any simple physical property of the distribution, but serve simply to improve the form of the distribution function.

1962: Numerical e- transport

- Iterative approach, allowing for inelastic cross section terms:
- educated guess of cross sections (elastic \& inelastic);
- numerically solve the Boltzmann equation (no moments);
\rightarrow compare calculated and measured mobility and diffusion; $>$ adjust cross sections.
"... more than 50,000 transistors plus extremely fast magnetic core storage. The new system can simultaneously read and write electronically at the rate of $3,000,000$ bits of information a second, when eight data channels are in use. In 2.18 millionths of a second, it can locate and make ready for use any of 32,768 data or instruction numbers (each of 10 digits) in the magnetic core storage. The 7090 can perform any of the following operations in one second: 229,000 additions or subtractions, 39,500 multiplications, or 32,700 divisions. " (IBM 7090 documentation)

[L.S. Frost and A.V. Phelps, Rotational Excitation and Momentum

 Transfer Cross Sections for Electrons in H_{2} and N_{2} from Transport Coefficients, Phys. Rev. 127 (1962) 1621-1633.]

Magboltz: microscopic e^{-}transport

- A large number of cross sections for 60 molecules...
- Numerous organic gases, additives, e.g. CO_{2} :
$>$ elastic scattering,
- 44 inelastic cross sections (5 vibrations and 30 rotations + super-elastic and 9 polyads),
$>$ attachment,
-6 excited states and
> 3 ionisations.
\rightarrow noble gases (He, Ne, Ar, Kr, Xe):
$>$ elastic scattering,
>44 excited states and
> 7 ionisations.

LXcat

- LXcat (pronounced elecscat) is an open-access website for collecting, displaying, and downloading ELECtron SCATtering cross sections and swarm parameters (mobility, diffusion coefficient, reaction rates, etc.) required for modeling low temperature plasmas. [...]"
[http://www.lxcat.laplace.univ-tlse.fr/]

LXcat people

Leanne Pitchford

- Art Phelps,
- Leanne Pitchford - Toulouse,
- Klaus Bartschat - Iowa,
- Oleg Zatsarinny - Iowa,
- Michael Allan - Fribourg,

Michael Allan

- Steve Biagi
- ...

Gas gain

Multiplication

- Ionisation gave us just a few electrons+ions per mm of gas. We have transported them to the read-out, hopefully not losing too many.
- But ... if we collect them directly on a read-out electrode, the current will be tiny.
- We need to multiply them.
- Requires fields where the electron energy occasionally is sufficient to ionise.

1901: Gas multiplication

- John Townsend:

Let a force X be applied to N_{0} negative ions in a gas at pressure p and temperature t. Let N be the total number of negative ions after the N_{0} ions have travelled a distance x. The new negative ions travel with the same velocity as the original N_{n} ions, so that all the negative ions will be found together during the motion. The number of negative ions produced by N ions travelling through a distance $d x$ will be $\alpha \mathrm{N} d x$; where α is a constant depending on X, p, and t.

Then

$$
d \mathrm{~N}=\alpha \mathrm{N} d x
$$

Hence

$$
\mathrm{N}=\mathrm{N}_{0} \epsilon^{\alpha x}
$$

[J.S. Townsend, "The conductivity produced in gases by the motion of negatively charged ions", Phil. Mag. 6-1 (1901) 198-227. If access to the Philosophical Magazine is restricted, then consult a German-language abstract at http://jfm.sub.uni-goettingen.de/.]

Mean size of the avalanche

- Townsend coefficient α : probability per unit length that an electron creates an additional electron.
- Avalanches grow proportionally to their size:

$$
\begin{aligned}
& \mathrm{d} n(x)=n(x) \alpha(x) \mathrm{d} x \\
& n(x)=n(0) e^{\int_{0}^{x} \alpha(y) \mathrm{d} y}
\end{aligned}
$$

- Intuitively, α is merely a matter of ionisation.

$\alpha\left(\mathrm{Ar}-\mathrm{CO}_{2}\right)$

$\alpha=$ number of e^{-} an avalanche e^{-} creates per cm.
\rightarrow Adding CO_{2} reduces the gain.

Calculated by Magboltz for $\mathrm{Ar} / \mathrm{CO}_{2}$ at 3 bar.

Does this reproduce the measurements ?

$-\mathrm{Ar}-\mathrm{CH}_{4}$

$-\mathrm{Ar}-\mathrm{CO}_{2}$

Level diagram argon and admixtures

Penning effect

- $\mathrm{Ar}^{*} 3 p^{5} 4 s$ can transfer to $\mathrm{iC}_{4} \mathrm{H}_{10}, \mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$;
- two $4 s$ are metastable, the two others live 2.6 ns and 8.6 ns ;
- $\mathrm{Ar}^{*} 3 p^{5} 4 p$ can also ionise CH_{4};
- $4 p$ decays to $4 s$ with a lifetime of $20-40 \mathrm{~ns}$;
$-\mathrm{Ar}^{*} 3 p^{5} 3 d$ can in addtion transfer to CO_{2};
radiative $3 d$ decays take $\sim 3.5 \mathrm{~ns}$, the others $\sim 50 \mathrm{~ns}$.
- For comparison, collision frequencies of Ar^{*} in pure quencher are $\sim 100 \mathrm{ps}$.

Data covers 5 orders of magnitude!

- Current reference is taken at the ionisation level.
- Main source of error: ~5 \%.

Determining the Penning parameters

- The Penning transfer rate $r(p, c)$ is measured by finding, in experimental data, the fraction of excitations to be added to α :

$$
\left.G=\exp \int \alpha \left\lvert\, 1+r(p, c) \frac{v_{\text {exc }}}{v_{\text {ion }}}\right.\right)
$$

- The model parameters may be found by fitting:

$$
\begin{gathered}
r(p, c)=\frac{p c f_{B^{+}} / \tau_{A B}+p(1-c) f_{A^{+}} / \tau_{A A}+f_{\mathrm{rad}} / \tau_{A^{*}}}{p c\left(f_{B^{+}}+f_{\bar{B}}\right) / \tau_{A B}+p(1-c)\left(f_{A^{+}}+f_{\bar{A}}\right) / \tau_{A A^{\prime}}+1 / \tau_{A^{*}}} \\
A^{*} \rightarrow B^{+} \quad A^{*} \rightarrow A^{+} \quad A^{*} \rightarrow A \gamma
\end{gathered}
$$

$\mathrm{Ar}-\mathrm{CO}_{2}$ transfer rates

Loss of excitation

- Penning parameter fits with data from Tadeusz Kowalski et al. 1992 and 2013.
- At $p=1070 \mathrm{hPa}$.
[10.1016/0168-9002(92)90305-N,
10.1016/j.nima.2014.09.061]

Gas gain fluctuations

G.U. Yule (1923), W.H. Furry (1937), R.A. Wijsman (1949) \& others

- If the distance between ionisations fluctuates exponentially with a mean of $1 / \alpha$ (reciprocal of the Townsend coefficient),
then, the avalanche size fluctuates (nearly) exponentially:

$$
p(n)=\frac{1}{\bar{n}}\left|1-\frac{1}{\bar{n}}\right|^{n-1}
$$

George Udny Yule (1871-1951)
[G. Udny Yule, A Mathematical Theory of Evolution, based on the Conclusions of Dr. J.C. Willis, F.R.S., Phil. Trans. Roy. Soc. London B 213 (1925) 21-87.
W.H. Furry, On Fluctuation Phenomena in the Passage of High Energy Electrons through Lead, Phys. Rev. 52 (1937) 569-581.
Robert A. Wijsman, Breakdown Probability of a Low Pressure Gas Discharge, Phys. Rev. 75 (1949) 833-838.]

Statistics Yule-Furry

- Yule-Furry is exponential for large mean avalanche sizes:

$$
\begin{aligned}
p(n) & =\frac{1}{\bar{n}}\left|1-\frac{1}{\bar{n}}\right|^{n-1} \\
& \approx \frac{e^{-n / \bar{n}}}{\bar{n}-1}
\end{aligned}
$$

- Mean: \bar{n}

RMS: $\bar{n} \sqrt{1-1 / \bar{n}} \approx \bar{n}$

S.C. Curran (1949)

- S.C. Curran et al. measured the pulse height distribution in a cylindrical counter ($d=150 \mu \mathrm{~m}$ wire, $\operatorname{Ar} 50 \% \mathrm{CH}_{4} 50 \%$, $p=670 \mathrm{mbar}$) at $G \sim 10^{4}-10^{5}$:

$$
\begin{aligned}
& p(n)=\sqrt{n} \mathrm{e}^{-n} \\
& f \equiv\left|\frac{\sigma}{\bar{n}}\right|^{2} \approx \frac{2}{3}
\end{aligned}
$$

Assumptions

- Yule-Furry follows if one assumes:
- probability to ionise over a distance $\mathrm{d} x$ is $\alpha \mathrm{d} x$ =
distance between ionisations fluctuates exponentially with mean $1 / \alpha$.
- no history: Townsend coefficient α is constant,
- no attachment losses.

Two schools of thought ...

- The distance between ionisations does not simply vary exponentially (e.g. the Raether group).

The Townsend coefficient is not constant (e.g. Byrne, Lansiart \& Morucci).

Mean and Minimum step size

- Mean distance between successive ionisations:

$$
\bar{\lambda}=\frac{1}{\alpha}
$$

- Minimum distance between successive ionisations:
- Define

$$
\begin{gathered}
\lambda_{\text {min }}>\frac{I P}{E} \\
\frac{\bar{\lambda}}{\lambda_{\min }}=\frac{E}{\alpha I P}=\kappa
\end{gathered}
$$

large $\kappa \quad$ minimum distance has no effect $\quad \rightarrow$ exponential $\kappa \simeq 1$ little room for fluctuations $\quad \rightarrow$ hump

Shape vs E-field

- Mean / minimum distance: χ $\frac{\bar{\lambda}}{\lambda_{\text {min }}}=\frac{E}{\alpha I P}=\kappa$
- Shape:
- $\kappa>20$ exponential
- $10<\kappa<20$ levels off
- $\kappa<10$ hump
- One might think that $\kappa \propto E$ but α rises faster than E.
$\mathrm{iC}_{4} \mathrm{H}_{10} 5 \%, \mathrm{O}_{2} 2 \%, \mathrm{Ar} 93 \%, \mathrm{~T}=300 \mathrm{~K}, \mathrm{p}=1 \mathrm{~atm}$

Minimum step length

- Imposing a minimum distance between ionisations adds a hump.

Hans Schlumbohm (1958)

Dimethoxymethane spectra: increasing E, decreasing $p d$ and \sim constant mean gain.

Hans Schlumbohm, Zur Statistik der Elektronenlawinen im ebenen Feld III, Z. Phys. 151 (1958) 563-576.

The Magnettrommelrechner (1961)

- Excellent agreement ... but no closed form

Abb. 5. Lawinenverteilung in Methylal nach Schlumboнm ${ }^{8}$. $E^{\prime} / p=186,5 \mathrm{Volt} / \mathrm{cm} \cdot$ Torr, $\quad a \cdot U_{\mathrm{i}} / E=0,19$. Ausgezogene $\mathrm{K}=5.3$ Kurve: Theoretische Verteilung im Modellgas für $\alpha x_{0}=0,18$.

The alternative school

- Townsend coefficient not constant ...

A. Lansiart \& J.P. Morucci (1962)

- Small avalanches are composed of electrons that
- have ionised less, hence
- have more energy, hence
- will ionise more easily.
- They modeled this with an avalanche size-dependent α :

$$
\left.\alpha(n)=\alpha(0) \left\lvert\, 1+\frac{k}{n}\right.\right)
$$

- Implies that $(\sigma / \mu)^{2}=1 /(1+k)<1$, in agreement with Curran's measurements.
- Electron energy distribution continues to decrease, without reaching an equilibrium.

Monte Carlo approach - a way out ?

- Analytic models are precious for the insight they afford.
- But the complexity of real gases and detectors make realistic models unwieldy:
- inelastic collisions (vibrations, rotations, polyads);
- excitations and Penning transfers;
- ionisation;
- attachment;
intricate, position-dependent E and B fields.
- Predictions for experiments are more practical using a Monte Carlo approach, here based on Magboltz.

$\mathrm{Ar} / \mathrm{CO}_{2}:$ size distribution

- Lower gain than pure Ar, but with increasing field, the size distribution still becomes more and more round:

Multiplication at $\mathrm{E}=45 \mathrm{kV} / \mathrm{cm}$
Under: 0, in: 4993, over: 7

Distance between ionisation

- The distance between successive ionisations oscillates, shown here for Ar (also happens in CH_{4} for instance).
- Why ?

[Magboltz calculations by Heinrich Schindler]

Single-electron spectra

blue: Pólya signal + Gaussian noise fit; red: Monte Carlo (Magboltz), not fits !
Ar $95 \% \mathrm{C}_{4} \mathrm{H}_{10} 5 \%, \mathrm{E}=28.12 \mathrm{kV} / \mathrm{cm}$, $\mathrm{Ne} 95 \% \mathrm{iC}_{4} \mathrm{H}_{10} 5 \%$, $\mathrm{E}=26.25 \mathrm{kV} / \mathrm{cm}$, $\mathrm{He} 95 \% \mathrm{C}_{4} \mathrm{H}_{10} 5 \%$, $\mathrm{E}=26.25 \mathrm{kV} / \mathrm{cm}$,

Hump - good or bad ?

- Smaller gain fluctuations:
- better energy resolution.
- Smaller probability of small gain:
- higher detection efficiency.
- Smaller probability of high gain:
fewer discharges.

Ion transport

Ions

- Avalanches produce not only electrons, but also ions at least as many.
- Detectors like Micromegas and wire chambers get their signal mostly from ion motion (\rightarrow Signals).
- Hence we better know the basics of ions:
- which ions are moving?
- how fast do the ions move?
- are they subject to diffusion?

Avalanche products

- We'll later see that ion motion is responsible for the bulk of the signal in some detectors.
- In $90 / 10 \mathrm{Ar}-\mathrm{CO}_{2}$, the main avalanche product is Ar^{+}.
- Are Ar^{+}ions responsible for the signal?

Ions drifting in pure Ar

- In pure argon, dimers are formed:
$>\mathrm{Ar}^{+}\left({ }^{2} \mathrm{P}_{3 / 2}{ }_{3 / 2}\right)+2 \mathrm{Ar} \rightarrow \mathrm{Ar}^{+} \cdot \mathrm{Ar}+\mathrm{Ar}$ ($k=2.3 \pm 0.110^{-31} \mathrm{~cm}^{6} / \mathrm{s}, 7 \mathrm{~ns}$)
- Note: dimers move faster than ions due to $\mathrm{Ar} \leftrightarrow \mathrm{Ar}^{+}$ resonant charge exchange
[P.N.B. Neves et al. 10.1063/1.3497651]

Thermal collision frequency

- Mean relative velocity ($\mu=$ reduced mass):

$$
\bar{v}_{\mathrm{rel}}=\sqrt{\frac{8 k_{\mathrm{B}} T}{\pi \mu}} \approx 570 \mathrm{~m} / \mathrm{s}
$$

- Multiplying with the cross section σ gives the rate constant:

$$
k=\sigma \bar{v}_{\mathrm{rel}} \approx 910^{-10} \mathrm{~cm}^{3} / \mathrm{s}
$$

Combine with the number density to get collision time:

$$
\tau=\frac{1}{N \sigma \bar{v}_{\text {rel }}}=\frac{k_{\mathrm{B}} T}{p} \frac{1}{\sigma \bar{v}_{\text {rel }}}=\frac{1}{p \sigma} \sqrt{\frac{\pi \mu k_{\mathrm{B}} T}{8}} \approx 45 \mathrm{ps}
$$

Principal reactions involving CO_{2}

$-\mathrm{Ar}^{+}$: charge exchange, $\tau \approx 0.85 \mathrm{~ns}$
$\rightarrow \mathrm{Ar}^{+}+\mathrm{CO}_{2} \rightarrow \mathrm{Ar}+\mathrm{CO}_{2}^{+}$
$-\mathrm{CO}_{2}:$ 3-body association, $7-20 \mathrm{ps}$
$\rightarrow \mathrm{CO}_{2}^{+}+2 \mathrm{CO}_{2} \rightarrow \mathrm{CO}_{2}^{+} \cdot \mathrm{CO}_{2}+\mathrm{CO}_{2}$
[For $10 \% \mathrm{CO}_{2}$, atmospheric pressure, room temperature]

Situating cluster ions

- Chemically bound molecules:
- covalent or ionic bond
- Cluster ions:
- bound by charge-induced dipole forces
constituents retain their identity
- van der Waals molecules:
- bound by van der Waals forces
- observed at low temperatures
[B.M. Smirnov, "Cluster Ions and Van Der Waals Molecules," CRC press]

Binding energy of CO_{2} cluster ions

- Binding energy:
$>\mathrm{CO}_{2}{ }^{\bullet} \cdot \mathrm{CO}_{2}: \quad 0.60 \mathrm{eV} \quad(16.2 \mathrm{kcal} / \mathrm{mol})$
$\rightarrow \mathrm{CO}_{2}^{+\bullet} 2 \mathrm{CO}_{2}: \quad 0.26 \mathrm{eV} \quad(6.0 \mathrm{kcal} / \mathrm{mol})$
[M. Meot-Ner and F.H. Field, J. Chem. Phys., 66 (1977) 4527]
$-\mathrm{CO}_{2}{ }^{+} \cdot \mathrm{CO}_{2}$
0.51 eV
$(11.8 \pm 1.0 \mathrm{kcal} / \mathrm{mol})$
$\rightarrow \mathrm{CO}_{2}^{+\bullet} 2\left(\mathrm{CO}_{2}\right) \quad 0.14 \mathrm{eV} \quad(3.3 \pm 1.4 \mathrm{kcal} / \mathrm{mol})$
$-\mathrm{CO}_{2}^{+} \cdot 3\left(\mathrm{CO}_{2}\right)$
0.12 eV
$(2.8 \pm 1.4 \mathrm{kcal} / \mathrm{mol})$
[S.H. Linn and C.Y. Ng, J. Chem. Phys. 75 (1981) 4921]
Conversion: $1 \mathrm{kcal} / \mathrm{mole}=0.043 \mathrm{eV}$.
Thermal energy is 0.03 eV .

Life cycle of $\mathrm{CO}_{2}^{+\bullet}\left(\mathrm{CO}_{2}\right)_{n}$

$-\mathrm{CO}_{2}+\cdot \mathrm{CO}_{2}$ has a dissociation energy of $0.5-0.6 \mathrm{eV}$, far above thermal energies at 1 bar. It is a so-called long-lived cluster:
\Rightarrow calculated lifetime $=5 \mathrm{~ns}$
[B.M. Smirnov, "Cluster Ions and Van Der Waals Molecules," CRC press]

- much longer than the formation time $\tau=7-20 \mathrm{ps}$ via 3-body association in $10 \% \mathrm{CO}_{2}$ with $\mathrm{Ar}+\mathrm{CO}_{2}$ as "helpers".
- Any isolated CO_{2}^{+}rapidly binds again.
$-\mathrm{CO}_{2}^{+\bullet}\left(\mathrm{CO}_{2}\right)_{n}$ probably lives shorter but will recombine. The cluster size n will therefore fluctuate at the ns time scale.

Blanc's mobility interpolation

[A. Blanc, Recherches sur les mobilités des ions dans les gaz, J. Phys. Theor. Appl. 7 (1908) 825-839, 10.1051/jphystap:019080070082501]

Blanc diagram for $\mathrm{Ar}-\mathrm{CO}_{2}$

- Coxon: pure CO_{2}
- Schultz: 1 atm
- Coimbra: 0.01 atm , smaller clusters?
- NA49: 1 atm
- ALICE: 1 atm , water clusters?

How about alkanes ?

$-\operatorname{Ar} 90 \%-\mathrm{C}_{2} \mathrm{H}_{6} 10 \%$, at low pressure.

- Expect Ar^{+}or $\mathrm{C}_{2} \mathrm{H}_{6}$ but ... none are seen - why?

[André Cortez et al. 10.1088/1748-0221/8/12/P12012]

Summary

- Quenchers play a major role in electron transport:
- increase drift velocity
decrease diffusion
- Some quenchers increase the gain:
- Penning effect
- Gain fluctuations are influenced
- The ions responsible for the signal are almost never noble gas ions like Ar^{+}, but heavy alkanes, dimers, trimers, CO_{2} clusters ...

Signals

Signals

- Remains reading the signals induced by the electrons and ions moving around in the chamber.
- The charge of the electrons and ions tries to change the voltage of the electrodes.
- The electronics compensates for this by supplying charge.

Current induction

Current induction

Current induction

Current induction

Current induction

No charge creation:

$$
\Delta q_{o}+\Delta q_{c}+\Delta q_{p}=0
$$

Trying to guess the signals ...

- Properties of the current induced in an electrode:
- proportional to the charge Q ;
\Rightarrow proportional to the velocity of the charge $\overrightarrow{v_{d}}$;
\rightarrow dependent on the geometry.
- This leads to the following ansatz:

$$
I=-Q \vec{v}_{\mathrm{d}} \cdot \vec{E}_{\mathrm{W}}
$$

(the sign is mere convention, see next slide)

- The geometry is contained in \vec{E}_{W}, necessarily a vector, the weighting field:
- each electrode has its own weighting field;
- unit of the weighting field?

Signs of Current and Weighting field

- Sign of the current:
- Signal current is (by convention) positive if positive charge flows from the read-out electrode to ground (via HV).
- Orientation of $\overrightarrow{E_{\mathrm{w}}}$:
- place a positive charge Q on the surface of the read-out; move it away from the read-out;
\Rightarrow positive charge flows in to compensate: negative current;
\rightarrow to make the signs match, $\vec{v}_{\mathrm{d}} \cdot \vec{E}_{\mathrm{W}}$ needs to be positive;
$-\vec{E}_{\mathrm{w}}$ points away from the electrodes being read out; \vec{E}_{W} points into all other electrodes.
- Many people invert the signs - which is perfectly fine.

Weighting field - examples

- The weighting field is often easy to guess:

Read-out electrode

Weighting field - examples

- The weighting field is often easy to guess:

Read-out electrode

Weighting fields - more in general

- Claim: \vec{E}_{W} for a given read-out electrode can be computed the same way as a potential:
- read-out electrode set to 1 ;
- all other electrodes set to 0;
- note ... 0 and 1 , not 0 V and 1 V !
- the resulting potential is called "weighting potential";
- This is plausible considering examples, and is proven using Green's reciprocity.

1828: George Green's work

- The basic techniques to solve electrostatics problems, still used today, were published by George Green in: " An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism". "(...) it was written by a young man, who has been obliged to obtain the little knowledge he possesses, at such intervals and by such means, as other indispensable avocations which offer but few opportunities of mental improvement, afforded."
- Now available from http://arxiv.org/pdf/0807.0088v1, originally only 53 copies were printed, only for the subscribers.
[Original printed for the author by T Wheelhouse, Nottingham (1828). Facsimile Mayer \& Müller, Berlin (1889), scanned by Google books.]

Integrating the current

- Net charge over a trajectory $z(t)$:

$$
\begin{aligned}
& Q_{\text {net }} \int_{t_{\text {enten }}}^{t_{\text {ton }}} I(t) \\
& =-\int_{t_{\text {eren }}} Q E_{\mathrm{w}}(z(t)) \cdot v_{\text {difit }}(z(t)) \mathrm{d} t \\
& =\int_{t_{\mathrm{tem}}}^{t_{\mathrm{tem}}} Q \frac{\mathrm{~d} V_{\mathrm{w}}(z)}{\mathrm{d} z} \cdot \frac{\mathrm{~d} z}{\mathrm{~d} t} \mathrm{~d} t \\
& =Q\left(V_{\mathrm{w}}\left(z_{\text {end }}\right)-V_{\mathrm{w}}\left(z_{\text {satar }}\right)\right)
\end{aligned}
$$

- By construction, all electrodes have $V_{\mathrm{w}}=0$ or $V_{\mathrm{w}}=1$. Hence, the integral of the current between electrodes can only be $-1,0$ or 1 .

Sum of all currents

- Summing the current on all electrodes, observe that $E_{\mathrm{w}}^{\text {tot }}=\sum E_{\mathrm{w}}^{i}$ is computed by placing a unit weighting potentiabl on every electrode, exactly once.
- The weighting potential is constant and the weighting field vanishes:

$$
\begin{aligned}
I_{\mathrm{tot}}(t) & =\sum_{i} I_{i}(t)=\sum_{i}-Q v_{\mathrm{d}} \cdot E_{\mathrm{w}}^{i}=-Q v_{\mathrm{d}} \cdot \sum_{i} E_{\mathrm{w}}^{i} \\
& =0
\end{aligned}
$$

- Thus, the sum of all currents is zero at all times.

Changing sign of charge and velocity

- Observe that the following are equivalent in terms of total charge induced - the time dependence will differ:

Combined e- - ion ${ }^{+}$current

- How about the total current induced by an $\mathrm{e}^{-}-\mathrm{ion}^{+}$pair ?

Not used
Muon mass estimate

Trigger counters

Veto counter

[J. C. Street and E. C. Stevenson, Phys. Rev 52 (1937) 1003]

How many ionisation e^{-}per cm ?

- Heed, a photo-absorption \& ionisation model, finds for a minimum ionising $\mu^{ \pm}$:
- Peak:

$$
n_{\mathrm{e}}=41 / \mathrm{cm}
$$

"Mean": $n_{\mathrm{e}}=72 / \mathrm{cm}$

- Degrad, an e- transport program, finds for an e^{-}at the same $\beta \gamma$:
- Peak: $\quad n_{\mathrm{e}}=50 / \mathrm{cm}$
- "Mean": $n_{\mathrm{e}}=62 / \mathrm{cm}$
- Mean is ill-defined due to rare but large deposits.

Attachment

- Some of the quencher gases have the potential of attaching electrons.
- Examples include:
$-\mathrm{O}_{2}$: mostly 3-body O_{2}^{-}and at higher $\epsilon 2$-body dissociative;
$\Delta \mathrm{H}_{2} \mathrm{O}:\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$ has positive electron affinity, $\mathrm{H}_{2} \mathrm{O}$ does not;
$-\mathrm{CF}_{4}$: mostly dissociative $\mathrm{F}^{-}+\mathrm{CF}_{3}, \mathrm{~F}+\mathrm{CF}_{3}^{-}$(below 10 eV);
$\Delta \mathrm{SF}_{6}: \mathrm{SF}_{6}^{-}$up to $0.1 \mathrm{eV}, \sigma=10^{-18} \mathrm{~cm}^{2}$, then $\mathrm{F}^{-}+\mathrm{SF}_{\mathrm{n}}^{-}(\mathrm{n}=3,4,5)$
$-\mathrm{CS}_{2}$: negative ion TPC;
$-\mathrm{CO}_{2}: \mathrm{O}^{-},\left[\mathrm{CO}_{2}\right]_{\mathrm{n}}^{-}$but no $\mathrm{CO}_{2}^{-}(4 \mathrm{eV}$ and 8.2 eV$)$.

Attachment in CO_{2}

$-\mathrm{CO}_{2}$ is a linear molecule:

[Source: presumably SS Zumdahl, Chemistry (1983) DC Heath and Company.]

Direct vs Exchange ionisation

Exchange ("Auger")

[^0]: * 'Phil. Mag.,' February, 1901 ; June, 1902; April, 1903; September and November, 1903.
 [E. Rutherford and H. Geiger, An Electrical Method of Counting the Number of α-Particles from Radio-Active Substances, Proc. R. Soc. Lond. A 81 (1908) 141-161]

[^1]: Yannis Giomataris

