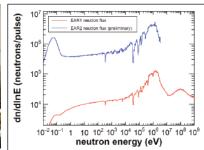
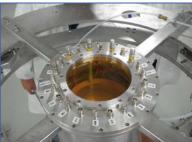


Workshop on Basic research and interdisciplinary applications with small accelerators
Naples, Italy
17 - 18 January, 2018


Neutron beams produced by TANDEM and potential applications

Nicola Colonna


Istituto Nazionale Fisica Nucleare, Sezione di Bari, Italy

Outline

Motivations

nuclear Astrophysics, energy production, nuclear medicine, neutron imagine, etc...

Techniques

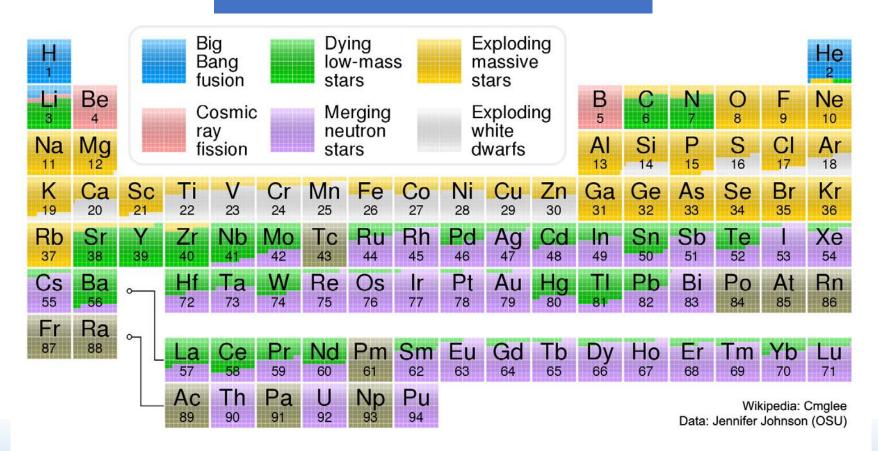
time-of-flight, activation, monoenergetic

Accelerator-based neutron facilities in the world

large scale (high energy) and small scale (low energy)

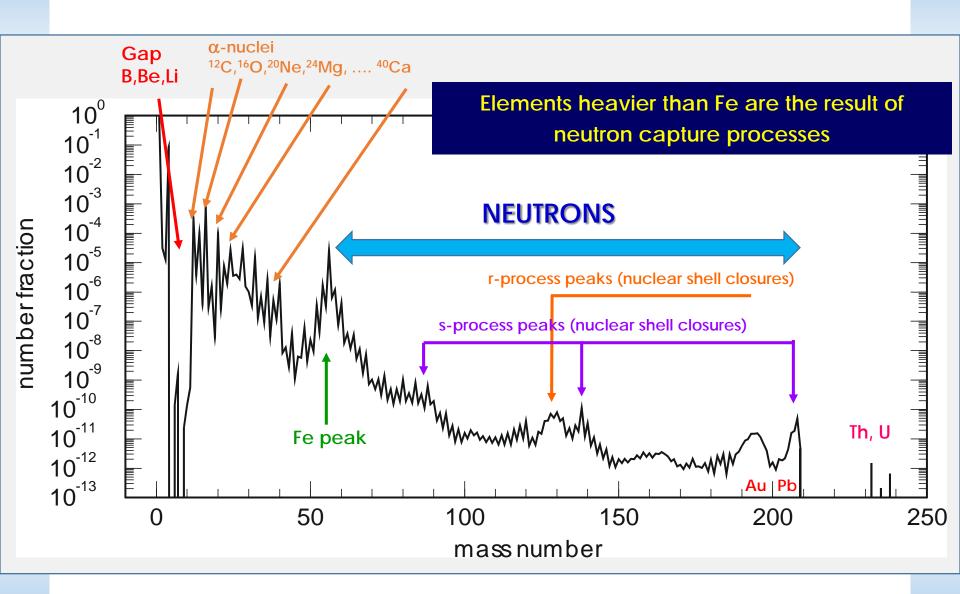
Some ideas

IVNAA, atom counting, etc...

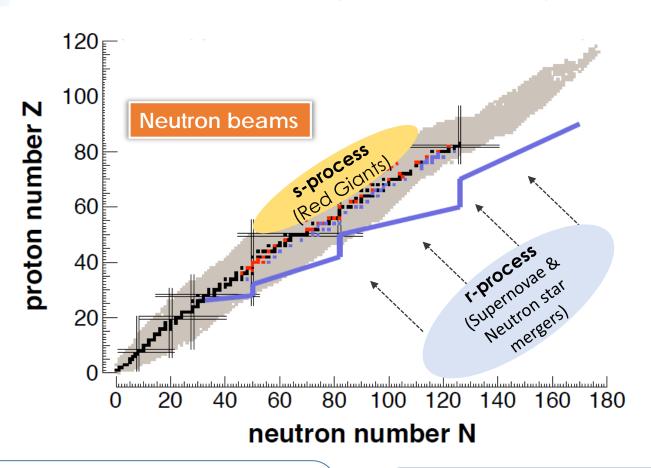

Summary

Astronomy Picture of the day

NASA web site – 24 Ottobre 2017


Where your elements came from

https://apod.nasa.gov/apod/ap171024.html

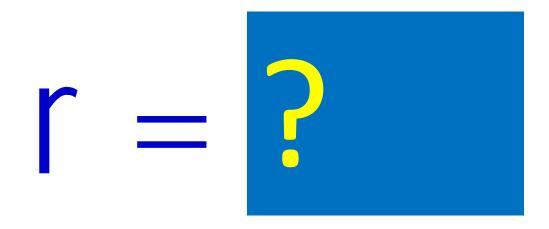


Nucleosynthesis of heavy elements

The stellar nucleosynthesis of heavy elements

s-process (slow process):

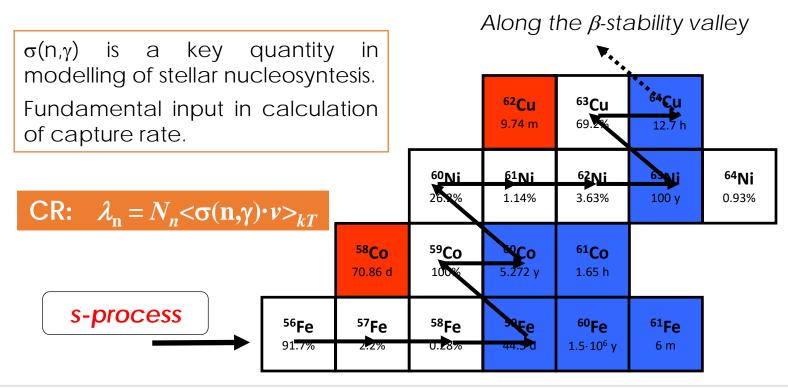
- Capture times long relative to decay time
- Involves mostly stable isotopes
- $N_n = 10^8 \text{ n/cm}^3$, kT = 0.3 300 keV


r-process (rapid process):

- Capture times short relative to decay times
- Produces unstable isotopes
- $N_n = 10^{20-30} \text{ n/cm}^3$

Importance of s-process

How do we determine the contribution of the r-process to the solar abundance?


A detailed knowledge of the s-process is a fundamental prerequisite for any calculation of the galactical chemical evolution, including the contribution from supernovae and neutron star mergers

The s-process

The abundance of elements in the Universe depends on:

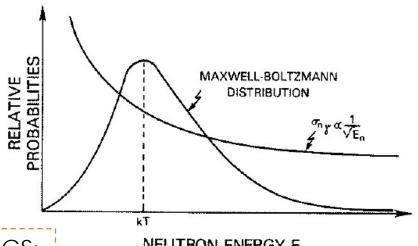
- thermodinamic conditions in stars (temperture and neutron density)
- neutron capture cross-sections

Accurate neutron capture cross-sections allow to:

- refine models of stellar nucleosynthesis in the Universe;
- obtain information on the stellar environment and evolution

Branching point isotopes at n_TOF

REVIEW OF MO	Sample	Half-life (yr)	Q value (MeV)	Comment
	⁶³ Ni	100.1	$\beta^-, 0.066$	TOF work in progress (Couture, 2009), sample with low enrichment
The a process. Nuclear ph	⁷⁹ Se	2.95×10^{5}	β^{-} , 0.159	Important branching, constrains s-process temperature in massive stars
The s process: Nuclear ph	111	2.29×10^{5}	EC, 0.322	Part of ⁷⁹ Se branching
	⁸⁵ Kr	10.73	$\beta^-, 0.687$	Important branching, constrains neutron density in massive stars
F. Käppeler*	⁹⁵ Zr	64.02 d	β^{-} , 1.125	Not feasible in near future, but important for neutron density low-mass AGB stars
Karlsruhe Institute of Technology,	¹³⁴ Cs	2.0652	$\beta^-, 2.059$	Important branching at $A = 134, 135$, sensitive to s-process temperature in low-mass AGB stars, measurement not feasible in near future
Germany	¹³⁵ Cs	2.3×10^{6}	$\beta^-, 0.269$	So far only activation measurement at $kT = 25 \text{ keV}$ by Patronis <i>et al.</i> (2004)
D. Callingt	¹⁴⁷ Nd	10.981 d	$\beta^-, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars
R. Gallino [†]	¹⁴⁷ Pm	2.6234	$\beta^{-}, 0.225$	Part of branching at $A = 147/148$
Dipartimento di Fisica Generale, l	¹⁴⁸ Pm	5.368 d	β^{-} , 2.464	Not feasible in the near future
INAF-Osservatorio Astronomico d	¹⁵¹ Sm	90	$\beta^-, 0.076$	Existing TOF measurements, full set of MACS data available (Abbondanno <i>et al.</i> , 2004a; Wisshak <i>et al.</i> , 2006c)
S. Bisterzo [‡]	¹⁵⁴ Eu	8.593	$\beta^-, 1.978$	Complex branching at $A = 154$, 155, sensitive to temperature and neutron density
	¹⁵⁵ Eu	4.753	$\beta^-, 0.246$	So far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1995)
Dipartimento di Fisica Generale, l	¹⁵³ Gd	0.658	EC, 0.244	Part of branching at $A = 154, 155$
	¹⁶⁰ Tb	0.198	β^{-} , 1.833	Weak temperature-sensitive branching, very challenging experiment
Wako Aoki [§]	¹⁶³ Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)
National Astronomical Observator	¹⁷⁰ Tm	0.352	$\beta^-, 0.968$	Important branching, constrains neutron density in low-mass AGB stars
	¹⁷¹ Tm	1.921	$\beta^-, 0.098$	Part of branching at $A = 170, 171$
	¹⁷⁹ Ta	1.82	EC, 0.115	Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope
	¹⁸⁵ W	0.206	$\beta^-, 0.432$	Important branching, sensitive to neutron density and s-process temperature in low-mass AGB stars
	²⁰⁴ Tl	3.78	$\beta^-, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System


The maxwllian averaged cross sections (MACS)

For Astrophysical applications it is important to determine **Maxwellian Averaged Cross-Sections (MACS)**, for various temperatures (kT depends on stellar site).

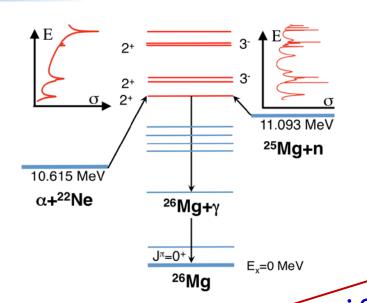
Reaction rate $r = N_A N_n \langle \sigma \cdot v \rangle$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

MACS typically needed in a temperature range from 5 to 100 keV

NEUTRON ENERGY En

Two methods used to determine MACS:


- integral measurements (energy integrated) with neutron beams of Maxwell-like spectrum
- time-of-flight technique to measure energy-differential cross-sections.
 - TOF allows to determine MACS at various stellar temperatures and for any isotope.

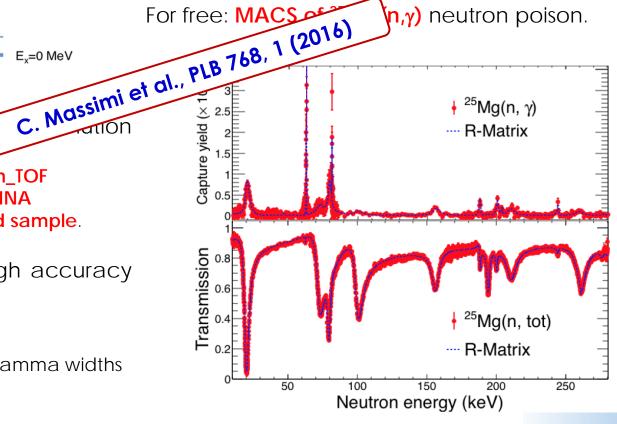
Large activity currently undergoing at accelerator-based neutron beams:

- TOF facilities
- Quasi-maxwellian beams
- monoenergetic beams

Neutron data for stellar neutron sources

spectroscopy of ²⁶Mg Neutron levels information on the ²²Ne(α ,n) provide neutron source.

Levels not easily accessible in α +²²Ne studied via ²⁵Mg capture and total cross section.


For free: MACS (n,γ) neutron poison.

High accuracy, measurements of:

- capture XS at n_TOF
- Total XS at GELINA
- highly enriched sample.

For various levels high accuracy determination of:

- energy
- spin and parity
- Neutron and gamma widths

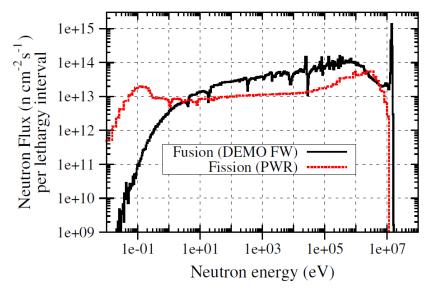
Neutron data for applications

Current activity in nuclear energy production by fission:

- Criticality assesment and safety re-evaluation of current nuclear reactors (including decay heat generation)
- Evaluation of nuclear waste at decommissioning
- Design of Generation IV fast nuclear reactors for recycling of nuclear fuel (closed cycle)
- Transmutation of minor actinides in different types of nuclear power reactors and accelerator-driven systems

Accurate nuclear data needed for advanced fission reactor systems in the fast energy region (from a few keV to several MeV):

- Capture and inelastic cross section on FP and minor actinides
- fission of major and minor actinides


Reliable data needed for reliable simulations (GIGO effect)

Needs related to fusion for energy

Two main needs of **neutron data for Fusion for Energy**:

- Activation (and transmutation) data for structural material;
- Gas production (H and He) and He embrittlment of structural material

reactors extends from 14 MeV down to thermal.

The **neutron spectrum** in future **fusion**

Neutron data are needed in a wide energy range for **ITER** and **DEMO**

Neutron facilities based on low-energy accelerators well suited for studying neutron-induced reactions for **Fusion**

lournal of Nuclear Materials xxx (2013) xxx-xxx

Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials

M.R. Gilbert*, S.L. Dudarev, D. Nguyen-Manh, S. Zheng, L.W. Packer, J.-Ch. Sublet EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Abbingson, Oxfordshire CX14 3DB, UK

OP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY

Nucl. Fusion 52 (2012) 083019 (12pp)

NUCLEAR FUSIO

doi:10.1088/0029-5515/52/8/083019

An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation

M.R. Gilbert, S.L. Dudarev, S. Zheng, L.W. Packer and J.-Ch. Sublet

Need of activation data for fusion

Cross sections for (n,p) and (n,α) reactions required for structural elements for application to Fusion Reactors (embrittlement of structural elements).

For most **stable isotopes**, **the (n,cp) cross section** could be measured at a TANDEM-based neutron source

Nuclide	Abund.	Reaction	Residual	Priority	Comment
Ne-20	90%	(n,p)	F-20	1	No data, judged measurable
Ne-22	9.2%	(n,α)	0-19	1	No data, judged measurable
Ne-22	9.2%	(n,d)	F-21	1	No data, judged measurable
S-34	4.2%	(n,d)	P-33	1	No data, judged measurable
S-34	4.2%	(n,α)	Si-31	1	Discrepant data
Cl-37	24%	(n,p)	S-37	1	Discrepant data
Ni58	68%	(n,t)	Co-56	1, A	Discrepant data
Zn-67	4.1%	(n,p)	Cu-67	1, B	Discrepant data
Ga-71	40%	(n,t)	Zn-69	1	No data, judged measurable
Kr-78	0.3%	(n,α)	Se-75	1	No data, judged measurable
Zr-90	51%	(n,p)	Y-90g	1, B	Discrepant data
Mo-92	15%	(n,d)	Nb-91	1	Discrepant data
Mo-94	9.2%	(n,p)	Nb-94	1	Discrepant data
Xe-132	27%	(n,α)	Te-129	1	No data, judged measurable
Re-187	63%	(n,t)	W-185	1	No data, judged measurable
Pt-195	34%	(n,d)	Ir-194m	1	No data, judged measurable
Pb-208	52%	(n,t)	Tl-206	1	No data, judged measurable

Neutron-induced reactions on the main structural materials (Fe, V, Cr, Mo, Nb, Ta, W, Be and Zr) may have a significant impact on their lifetime.

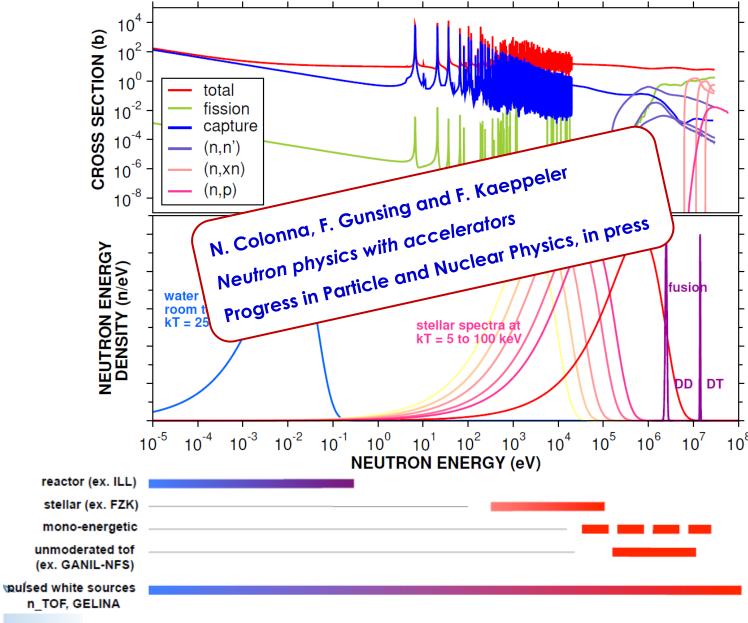
The ¹⁶O(n,a)¹³C is the timereversal reaction of the main neutron source in stars (s-process). Big interest in this reaction for Nuclear Astrophysics.

For a complete list, see R. Forrest, Fus. Eng. and Design 81 (2006) 2143

Needs related to Nuclear Medicine

There is an ongoing "Coordinated Research Project" of the IAEA on "Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production".

It focuses mostly on charged-particle induced reactions. However, there are a few neutron-induced reactions for medical applications, for which it may be important to measure the cross sections:


- 90Zr(n,p)90Yg+m
- ⁶⁷Zn(n,p)⁶⁷Cu, ⁶⁸Zn(n,x)⁶⁷Cu, ⁶⁴Zn(n,p)⁶⁴Cu
- New isotopes for theranostic (a new frontier in oncology)
- Elements involved in BNCT (like Sulphur)

Other applications:

- Detector test (response to neutrons of new scintillators)
- Dosimetry
- In vivo neutron activation analysis

Neutron beams

Neutrons beams

Neutron studies related to **Nuclear Astrophysics** and Nuclear **Technology** are mainly done at **a few large-scale facilities** in the world (n_TOF, LANSCE, JRC-IRMM, etc...).

However, many measurements cannot be performed at these facilities, because of technical difficulties or beam-time limitations.

Several small scale neutron facilities currently operating in the world and producing a wealth of data on basic and applied neutron physics. **Complementary to large-scale facilities**.

Neutrons time-of-flight facitlies

(p,n) and (d,n) reactions:

- Low and medium energy accelerator (pulsed)
- thick targets (for higher flux)
- moderated spectrum

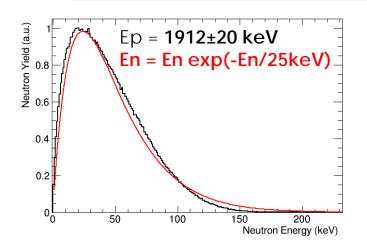
Many facilities, often at Universities
Tandem, VdG, cyclotron
NFS, Ganil

High-intensity **electron beams**:

- neutron production though (γ,n) reactions
- target made of high-Z material (and U, in some cases)
- moderated spectra

GELINA (JRC-Geel, Belgium)
ORELA (Oak Ridge, USA)
nELBE (Dresden, Germany)

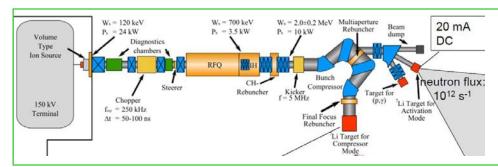
Spallation neutron sources:


- based on high-energy (GeV) protons beams
- Large blocks of heavy material
- Moderated spectrum

LANSCE (Los Alamos, USA)
n_TOF (CERN)
J-PARC (Japan)
CSNS (China)

Quasi-maxwellian neutron beams

Practically all based on near-threshold ⁷Li(p,n) reaction

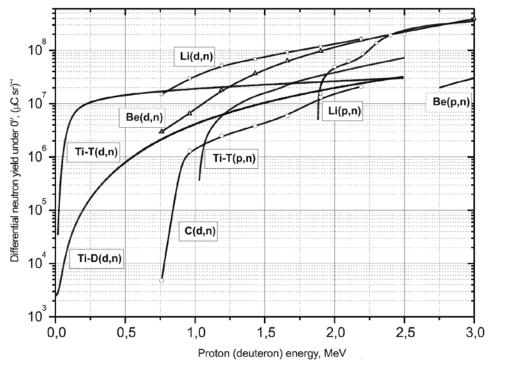


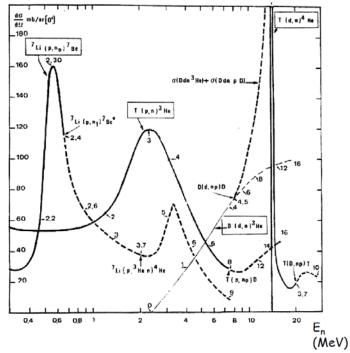
Current frontier: high-intensity proton beams

Soreq Applied Research Accelerator Facility - SARAF (Israel)

- Superconducting Linac
- Liquid Lithium Target

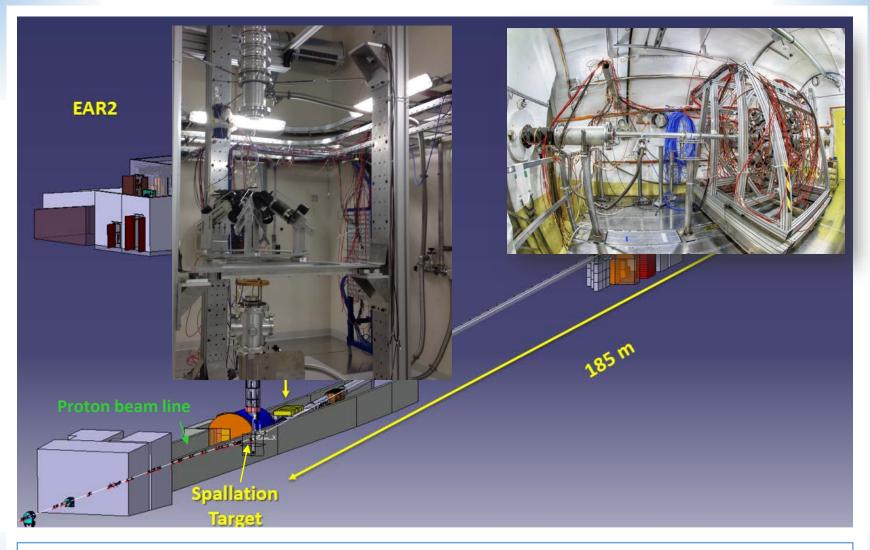
FRANZ (Germany)

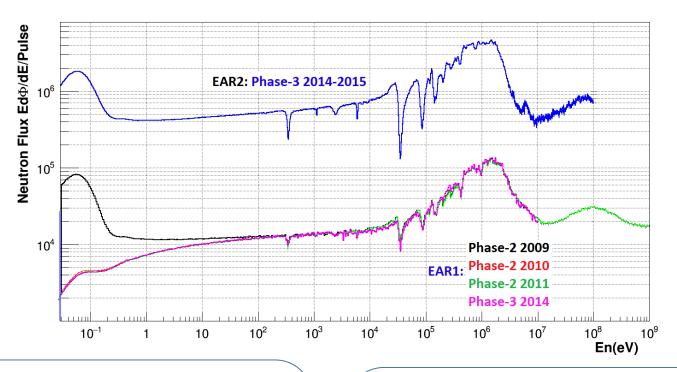

Delay in construction, possible to use a TANDEM at Un. of Frankfurt.



Monoenergetic neutrons beams

Monoenergetic neutron sources:

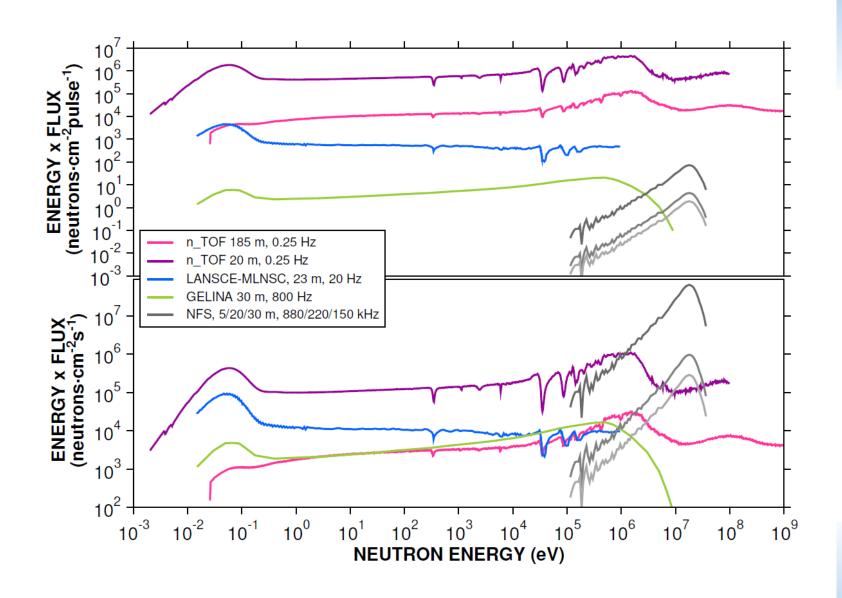

- typically based on p- or d-induced reaction produced with low- and medium-energy accelerators (VdG, Pelletron, cyclotrons, etc ...)
- The fabulous four: D(d,n), T(d,n), ⁷Li(p,n), ⁹Be(p,n)
- Other neutron-producing reactions: T(p.n), ¹⁵N(p,n)
- accordable neutron energy (by changing energy of the primary beam)
- neutron energies up to 20 MeV


The n_TOF facility at CERN

The main advantage over other facilities is the **high neutron intensity**, allowing to measure reactions on **radioactive isotopes** (such as **branching points**).

The n_TOF neutron beams

EAR1 (185 m)


- In operation since 2001.
- Measure radionuclides with halflife down to a few hundred years
- High resolution in energy allows to study resolved resonances up to several keV.

EAR2 (19 m)

- In operation since 2014.
- Neutron intensity increased by a factor 40, relative to EAR1.
- Possible to measure sub-mg samples, and radionuclides with half-life of a few years.

Neutrons time-of-flight facitlies

The n_TOF Astrophysics program

The combination of **excellent resolution**, **unique brightness** and **low background** has allowed to collect **high-accuracy data**, in some cases for the **first time ever**.

n_TOF measurements relevant for Nuclear Astrophysics

Capture cross sections (s-process)

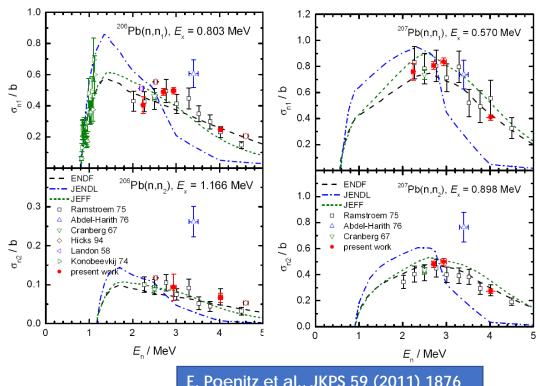
- branching point isotopes
 - ¹⁵¹Sm, ⁶³Ni, ¹⁴⁷Pm, ¹⁷¹Tm, ²⁰⁴Tl
- abundancies in presolar grains
 - 91,92, 93,94,96**7**r
- magic nuclei and end-point
 - 139La, 90Zr, 204,206,207,208Pb,209Bi
- seeds isotopes
 - 54,56,57Fe, 58,60,62Ni
- Cosmocronometer, neutron poison, etc.
 - 186,187,188Os, 24,25,26Mq

(n,cp) reactions

- Big Bang Nucleosynthesis
 - ⁷Be(n,a) and ⁷Be(n,p)
- Various
 - 59 Ni(n,a), 26 Al(n, α), 33 S(n, α)

The PTB neutron sources

PTB Ion Accelerator Facility (PIAF) based on 3.5 MV VdG (plus cyclotron for higher energy neutrons):


- Fusion- and fission-related studies Inelastic scattering on ^{206,207}Pb, ²⁰⁹Bi β-delayed neutrons from ²³²Th and ²³⁷Np
- Metrology
- Study of the ¹⁵N(p,n)¹⁵O neutron source
- **Detector testing** (for example, the Proton Recoil Telescope for n_TOF)

Monoenergetic fields:

⁷Li(p,n): En= 144keV - 1MeV T(p,n) : En = 1MeV - 4 MeVD(d,n):En=5 MeV - 8MeV T(d,n) : En = 14.8 MeV- 17 MeV

Quasi-monokinetic fields:

 $D(d_n)$: En =8MeV - 15 MeV T(d,n): En =17MeV - 23 MeV

E. Poenitz et al., JKPS 59 (2011) 1876

The Tandem at McMaster University

In Vivo Neutron Activation Analysis performed on hand bone with thermal neutrons produced with a TANDEM at the McMaster University, Canada


Allows to determine the concentration of some isotopes in human tissues (Ca, Na, Cl, Al), due to environmental, medical, and occupational exposures.

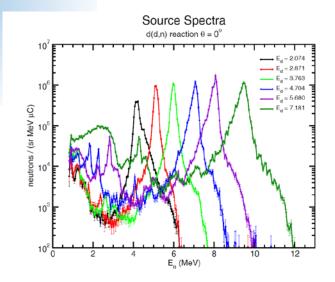
produced with the Neutrons near-⁷Li(p,n) threshold reaction, and moderated down to thermal energy.

Fig. 1. Irradiation cavity of the Tandetron accelerator at McMaster University.

Applied Radiation and Isotopes 116 (2016) 34-40

Optimization of data analysis for the *in vivo* neutron activation analysis of aluminum in bone

H.K. Mohseni a,*, W. Matysiak b, D.R. Chettle a, S.H. Byun a, N. Priest c, J. Atanackovic d, W.V. Prestwich a



a Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Canada

b University of Florida Proton Therapy Institute, Jacksonville, FL, USA

c Canadian Nuclear Laboratories, Chalk River Laboratories, Ontario, Canada

Other Tandem-based neutron sources

anistry to the first of the fir

DOI: 10.1007/s10967-007-0503-8 Journal of Radioanalytical and Nuclear Chemistry

Neutron induced reactions at Athens Tandem Accelerator NCS

seful faci R. Vlastou, 1* C. T. Papadopoulos, 1 M. Kokk M. Serris, 1 A. Lago

¹ National Technical Universit

cs. Athens, Greece

complemented n_TOF data.

Tandem Pelletron for Nuclear measurements Astrophysics, detector testing, imaging, etc...

Contents lists available at ScienceDirect Applied Radiation and Isotopes journal homepage: www.elsevier.com/locate/apradiso

Applied Radiation and Isotopes 107 (2016) 330-334

Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes

L. Irazola a,b,*, J. Praena c,d, B. Fernández c, M. Macías c, R. Bedogni e, J.A. Terrón b,a, B. Sánchez-Nieto ^f, F. Arias de Saavedra ^d, I. Porras ^d, F. Sánchez-Doblado ^a

^a Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Spain ^b Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Sevilla, Spain

C Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Spair

Combined activation and atom counting

Last but not least, a new technique can be exploited for challenging measurements: irradiation with neutron beams from low-energy accelerators followed by atom counting at AMS facilities.

Very sensitive technique, virtually background free, allows **high precision** measurements (neutron capture and (n,cp) reactions).

PRL **112**, 192501 (2014)

PHYSICAL REVIEW LETTERS

week ending 16 MAY 2014

Novel Method to Study Neutron Capture of ²³⁵U and ²³⁸U Simultaneously at keV Energies

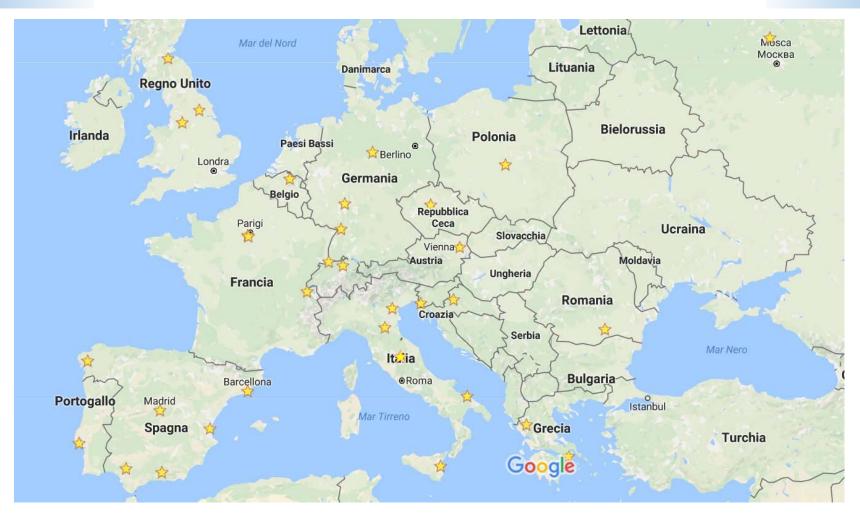
A. Wallner, ^{1,2,*} T. Belgya, ³ M. Bichler, ⁴ K. Buczak, ^{2,4} I. Dillmann, ^{5,6} F. Käppeler, ⁵ C. Lederer, ^{2,7,†} A. Mengoni, ⁸ F. Quinto, ^{2,‡} P. Steier, ² and L. Szentmiklosi ³

¹Department of Nuclear Physics, RSPE, Australian National University, Canberra, Australian Capital Territory 0200, Australia
²Faculty of Physics, VERA, Isotope Research & Nuclear Physics, University of Vienna, 1090 Vienna, Austria

OPTIMIZATION OF 236U AMS AT CIRCE

M De Cesare^{1,2,3} • Y Guan^{1,4,5} • F Quinto¹ • C Sabbarese¹ • N De Cesare^{1,3} • A D'Onofrio^{1,3} • L Gialanella³ • A Petraglia¹ • V Roca^{3,6} • F Terrasi^{1,3}

ABSTRACT. Actinide isotopes are present in environmental samples at ultra-trace levels (236U concentration is quoted to be on the order of pg/kg or fg/kg). Their detection requires the resolution of mass spectrometry (MS) techniques, but only accelerator mass spectrometry (AMS) has the sensitivity required. In order to perform the isotopic ratio measurements of actinides


Conclusions

- □ There is need of accurate new data on neutron reactions for Nuclear Astrophysics, Nuclear Technology, Nuclear Medicine, etc....
- Large-scale facilities mostly dedicated to challenging new measurements, small-scale neutron beams very important for high-precision measurements, detector testing, various applications. Complementarity.
- University-based facilities extremely important (I would say essential) for education and training (many PhD students and Postdocs in n_TOF come from small-scale facilities such as Demokritos, Sevilla, FRANZ, etc...).
- One interesting possibility is the combination of the Tandem lab in Naples with the Circe AMS facility.

Thank you

The n_TOF Collaboration

38 Participating Institues: EU (34), Japan (2), India (1), Australia (1) 120 Participating researchers

