

CMOS MAPS: Design Challenges and State of the Art

Lucio Pancheri

Department of Industrial Engineering, University of Trento TIFPA – INFN, Trento

Cogne, 12-16 February 2018

Research on silicon detectors in Trento

Pixel detectors for tracking in HEP

Hybrid Pixel Sensors

- Adopted in major experiments at LHC (ATLAS, CMS, ALICE)
- Detectors and electronics are developed and optimized separatly
- Excellent radiation damage tolerance
- Monolithic Active Pixel Sensors (MAPS)
 - Detectors and electronics fabricated on the same substrate
 - Emerging, still not widespread in HEP

L. Gonella, Particle Physics Seminar, 2017

MAPS development - motivation

- Adoption of MAPS in HEP applications:
 - Higher spatial resolutions
 - Lower material budget
 - Cost
- Synergies outside HEP tracking applications:
 - X-ray imaging
 - IR imaging
 - Medical imaging with particles
 - Space

Outline

- Radiation detection in silicon
- CMOS technologies: characteristics, opportunities and challenges
- Monolithic active pixels for photon imaging
- MAPS: design approaches and research directions
- SEED project overview

Radiation detection in silicon

- CMOS technologies: characteristics, opportunities and challenges
- Monolithic active pixels for photon imaging
- MAPS: design approaches and research directions

SEED project overview

Radiation signal detection

- Charge generation
- Charge collection
- Amplificaton analogue processing (shaping)
- Recording (Signal Amplitude, Thresholding, Time of arrival, Signal Width)

Photons: absorption length

NUV – Visible – NIR light: 1 e-h pair per photon

EUV, X-rays: "Point-like" interaction with the production of many e-h pairs in a small region, a few μ m wide.

Charged particles: ionization energy loss in Si

Energy loss distribution in silicon

Generated electrons vs. thickness

S.Terzo, PhD thesis, MPI, 2015

Detector bias

Minimum bias voltage for full depletion:

Charge collection

In a **fully depleted** detector, collection speed depends on carrier transit time in the depleted region (W)

Charge collection

In a **partially depleted** detector, there is a contribution of diffusion time in the non-depleted region (L)

Detector bias

Early breakdown at the junction borders

Influence of interface charge

Two extreme cases depending on Si/SiO₂ interface charge (process, humidity, radiation damage, ...):

- **1**. Early Breakdown at the junction edge
- 2. Extension of the depleted region up to the cut line: large reverse bias due to the generation in the damaged cut region

G.Lutz, Semiconductor Radiation detectors, Springer, 1999

Detector bias

Handling Large Bias Voltages:

- Deep implantations or diffusion (large r_i)
- Multiple guard rings protection structures

L. Pancheri – XXVII Giornate di studio sui rivelatori – Cogne, 12-16 Feb. 2018

Readout electronics

Preamplifier:

Charge to voltage conversion gain: 1/C_f

Requirements for low-noise

- Low **detector** and amplifier input **capacitance**
- Low detector leakage current
- Optimized amplifier design
- Optimized shaping filter

Total noise summarized with the **Equivalent Noise Charge (ENC)**

Radiation damage in detectors

Two general types of radiation damage to the detector materials:

- Surface damage due to lonizing Energy Loss (IEL): accumulation of positive charge in the oxide (SiO₂) and at the Si/SiO₂ interface
- Bulk (Crystal) damage due to Non Ionizing Energy Loss (NIEL): displacement damage, built-up of crystal defects

Surface radiation damage

T.R. Oldham, Ionizing radiation effects in MOS oxides, World Scientific, 1999

Consequences for detectors

- 1. Positive fixed oxide charge density induces a negative charge at the Si-SiO₂ interface, which affects:
 - a) isolation between n⁺ regions;
 - b) parasitic capacitance between adjacent regions
 (→ noise);
 - c) electric fields at surface: breakdown;
- 2. Surface generation/recombination leads to increased surface leakage current;

Radiation effects may vary with detector structure ...

P-on-N vs N-on-P

With reference to pixel detectors

N-on-P (N-on-N)

P-on-N

P-on-N: edge breakdown

Irradiation: CNR Bologna, ⁶⁰Co gamma source, 200krad(Si)

M. Da Rold, et al., IEEE TNS 44(3) (1997) 721

Breakdown voltage decreases after irradiation, and is slightly recovered with room temperature annealing

Multiple rings with field plates

- Guard ring potential scales according to punch-through spreading
- The potential (field) can be evenly distributed enhancing the breakdown voltage, at the expense of dead area at the edges
- Main design parameters: ring spacing, FP size, oxide thickness

L. Pancheri – XXVII Giornate di studio sui rivelatori – Cogne, 12-16 Feb. 2018

Radiation Damage – Bulk Effects

Spatial distribution of vacancies created by a 50 keV Si-ion in silicon.

(typical recoil energy for 1 MeV neutrons)

M.Huhtinen 2001

L. Pancheri – XXVII Giornate di studio sui rivelatori – Cogne, 12-16 Feb. 2018

NIEL - Displacement damage functions

NIEL - Hypothesis: Damage parameters scale with the NIEL (! does not hold for all particles & damage parameters)

Michael Moll – MC-PAD Network Training, Ljubljana, 27.9.2010

Bulk (Crystal) damage due to Non Ionizing Energy Loss (NIEL)

- 1. Increase of leakage current (increase of shot noise)
- 2. Change of effective doping concentration (higher depletion voltage, under- depletion)
- 3. Increase of charge carrier trapping (loss of charge)

Impact on detector performance and Charge Collection Efficiency

Outline

Radiation detection in silicon

- CMOS technologies: characteristics, opportunities and challenges
- Monolithic active pixels for photon imaging
- MAPS: design approaches and research directions

SEED project overview

CMOS process

- Twin-tub process: industrial standard for digital electronics
- Standard CMOS process includes p/n junctions that can be used for radiation detection
- Commercial development of CMOS optical image sensors started in the 1990s

Standard CMOS process - simplified cross section

CMOS process layer stack

In standard CMOS, stack thickness increases with technology advancement

2-metal process: Passivation stack: < 1µm 6-metal process passivation stack thickness: 3-5µm

CMOS technologies

MOSFET gate length scaling

K. Schuegraf, IEEE J. Electron Devices Society, 2013

CMOS technology roadmap

Date Production Part Available*									
Foundry	2012	2013	2014	2015	2016	2017	2018	2019	2020
tsinc	28HPM		205oC 28HPC	16FF-T 16	16FFC FF+	10FF	7FF	7НРС	5nm
SAMSUNG			20LPE	14LPE	14LPP	10LPE	10LPP	7n	m
FOUNDRIES					14LPP	22FDX		7nm 12FDX	
(intel)	22nm	22SoC	14nm	14SoC	14nm+	10nm 1050	oC		7nm
	*ri	sk product	ion and quali	fication star	t is typically	1 year ahead	d i	Tech Insig	hts

www.techinsights.com

Digital mainstream

How transistors are evolving

www.sec.gov

Add-ons to standard CMOS

- Supply voltage reduces with CMOS node size: advanced digital nodes not ideal for analog design:
 - Low input/output voltage range
 - Low headroom for cascode stages
- Technology add-ons for analog circuits:
 - 3.3V 5V transistors
 - Different thresholds: high low 0 threshold
 - Metal capacitors

High-Voltage CMOS

- Power electronics: high voltage MOSFETS
- Low-doped substrate or epitaxial layers
- Deep nwells and pwells in addition to regular nwell and pwells

S. Dai, IEEE TCAS I, 2015

SOI processes

- Insulator substrate: SiO₂ buried oxide or sapphire
- Low parasitics (RF applications, high speed)
- Higher substrate costs

S. Chung, IEEE J. Solid-State Circuits, 2018

Research on hybrid bonding

		3D-SIP		3D-SIC		3D-SOC		3D-IC
3D Technology	"PoP"	"Chip last"	"Chip first"	Die stacking	Parallel W2W		Sequential FEOL	
3D-Wiring level	Package I/O	Chip I/O Interposer I/O	Chip I/O	Global	Semi-global	Intermediate Local		FEOL
				Chip BEOL Wiring Hierarchy				
Partitioning	Functional unit	subsystem	Embedded die	Die	Blocks of star	ndard cells	Standard cells	Transistors
Technology	Package-to Package reflow	Multi-die SIP 3D/2.5D stack	FO-WLP Embedded die	3D D2D, D2W	Wafer-to-Wafer bonding		Active layer transfer	
				2.5D Si-interpose	Hybrid bonding	onding Via-last or dep		osition
2-tier stack Schematic					<mark>ргуг</mark>			
Characteristic	Solder ball Stack	 C4, Cu-pillar Si-Organic Through- Mold-vias 	 Bumpless Si-RDL Through- Package-vias 	 µbump Si-to-Si Through- Silicon-Via 	BEOL	between 2 FEG	OL layers	FEOL stack
					Overlay 2 nd ti W2W alignn	ier defined by nent/bonding	Overlay 2 nd tier defined by litho scanner alignment	
Contact Pitch	400⇒350⇒300µm	I 20⇒80⇒60µm	60 ⇒40 ⇒20µm	40 ⇒20 ⇒10⇒5µm	$5 \mu m \Rightarrow I \ \mu m$	$2 \ \mu m \ \Rightarrow 0.5 \ \mu m$	200 nm \Rightarrow 100nm	< 100 nm
Relative density:	1/100⇒1/77⇒1/55	1/9⇒1/4⇒1/2.3	$1/2.3 \Rightarrow 1 \Rightarrow 4$	$I \Rightarrow 4 \Rightarrow 16 \Rightarrow 64$	64 ⇒ 1600	400 ⇒ 6400	$4 \ 10^4 \Rightarrow 1.6 \ 10^5$	> 1.6 105

Eric Beyne, IMEC, January 2018

Hybrid bonding – State of the Art

L By David Manners 🕔 24th January 2017

Electronics Weekly.com

Imec, EVG demo superior overlay accuracy for wafer-to-wafer bonding

Imec and EVG have demonstrated 1.8µm pitch overlay accuracy for waferto-wafer bonding.

https://www.evgroup.com/en/about/news/2017_01_imec/

Outline

Radiation detection in silicon

 CMOS technologies: characteristics, opportunities and challenges

Monolithic active pixels for photon imaging

MAPS: design approaches and research directions

SEED project overview

Passive Pixel Sensor (PPS)

- The PPS consists of a photodiode and just one transistor TX.
- TX is used as a charge gate, switching the contents of the pixel to the charge integration amplifier (CIA).

First introduced by G. Weckler in 1967: G. P.Weckler, IEEE J. Solid-State Circuits, vol. SC-2, pp. 65–73,1967.

A. El Gamal, "CMOS Image Sensors", IEEE Circuits and Devices Magazine, pp. 6 – 20, 2005.

- Advantage: high fill factor each pixel has only one transistor.
- Architecture: 1 amplifier per chip or 1 amplifier per column

Major problem: large capacitive loads (metal lines):

- High readout noise
 250 electrons rms typically
- Low readout speed in large pixel arrays.

Active Pixels

- Buffer amplifier in the pixel
- Origins: end of the 1960s
- Optical imaging applications
- CCDs were much more reliable at the time. Active pixel emerged in the 1990

- P.J.W. Noble, "Self-Scanned Silicon Image Detector Arrays". IEEE Tran. Electron Dev. Vol. 15, pp. 202–209, 1968.
- S. G. Chamberlain, "Photosensitivity and Scanning of Silicon Image Detector Arrays". IEEE Journal of Solid-State Circuits vol. 4 pp. 333–342, 1969.

Active Pixel Sensor

- Charge is integrated on photodiode capacitance
- Output of the photodiode is buffered using in-pixel follower

A. El Gamal, IEEE Circuits and Devices Magazine, 2005.

Active Pixel Sensor (3T - APS)

Conversion gain depends on the total capacitance at the SF gate: PD + parasitic capacitances

E. R. Fossum, "CMOS image sensors :electronic camera-on-a-chip", IEEE Trans. On Electron Devices 44 (10) (1997)

Array redout: rolling shutter

- Pixel voltage is read out one row at a time
- Row integration times are staggered by row/column readout time
- The progressive scanning of the image cause artifacts (distortion) when the scene is changing fast.

Rolling shutter effects

Global shutter pixels

- In-pixel Sample-and Hold
- Problem: GS adds complexity and reduces the Fill Factor

Ref: IEEE Transactions on Electron Devices, Vol. 50, No. 1, Jan. 2003

3T – APS: signal sampling

Two different sampling schemes:

Correlated double sampling (CDS):

- eliminates reset noise
- Samples are separated in time
- Delta-reset sampling:
 - Does not eliminate reset noise
 - samples are close in time

A. El Gamal, IEEE Circuits and Devices Magazine, 2005.

Pinned – photodiode APS (4T – APS)

- Pinned photodiode: buried p+/n/p photodiode that can be fully depleted of electrons
- First introduced in CCDs, later ported to CMOS image sensors

A. Theuwissen, Proc. IEEE ESSDERC 2007

Pinned photodiode operation

A. Pelamatti PhD Thesis, University of Toulose, 2015

4T-APS vs 3T-APS

Advantages:

- Conversion gain (q/C_{FD}) is independent of detector, 4T-APS can achieve higher conversion gain than photodiode APS
- Lower noise: reset noise cancellation and lower dark current

Higher performance (SNR) for low-light imaging

Disadvantages:

- More devices than 3T-APS (lower Fill Factor)
- Destructive readout

Transistor sharing

- A group of pixels (typically 4) can share some transistors (reset, SF, row select).
- Total number of transistors in 4 pixels: 4 + 3
- Transistors x pixel: 7/4 = 1.75
- Other sharing schemes can be implemented

Noise reduction

Sub-electron noise reduction by

- Boosting conversion gain
- Implementing advanced filtering techniques
- Optimizing process

Output signal histogram

L. Pancheri – XXVII Giornate di studio sui rivelatori – Cogne, 12-16 Feb. 2018

1000

Pixel size scaling

- Commercial products with 0.9um pixels are entering the market
- Current research: deep sub um pixels (0.4 0.7um pitch)

CIS processes: backside illumination

- Thinning down to 2.5um 3um
- Backside processing
- Color filters
- Microlenses

http://image-sensors-world.blogspot.it

CIS processes: 3D stacking

State of the art: Sony 3-layer stacked image sensor

Sony, IEDM 2017

- Upper TSV connects pixels and DRAM chips
- Lower TSV connects DRAM and logic chips
- TSV wiring is located on DRAM backside

TSV diameter: 2.5µm pitch: 6.3µm

Deep Depletion PPD sensors

18 µm thick, 1kΩ·cm epitaxial silicon 180nm CMOS process

Goal: low-noise IR imaging

K.D. Stefanov, IEEE Electron Dev. Lett., vol. 38, no. 1, pp. 64-66, Jan. 2017.

Deep Depletion PPD: backside bias

Backside current vs. DDE implant dose

Outline

Radiation detection in silicon

- CMOS technologies: characteristics, opportunities and challenges
- Monolithic active pixels for photon imaging
- MAPS: design approaches and research directions

SEED project overview

MAPS applications in HEP

Few example applications in HEP so far:

- STAR: detector area = 0.15 m², data taking started in 2014
- ALICE: detector area = 12 m², to be installed in 2020
- Promising for precision experiments (ILC)
- R&D for outer pixel layers at HL-LHC

Pixel detectors for HEP

Rate and Radiation Levels

Numbers for innermost layers (r ≈ 5cm,) -> scale by 1/10 for typical strip layers (r > 25 cm)

		STAR	Belle II	ALICE-LHC	ILC	LHC	HL-LHC-pp	
				heavy ion		рр	Outer	Inner
BX-time (ns	;)	110	2	20 000	350	25	25	25
Particle Rate (kHz/mm²)	e	4	400	10	250	1 000 1 000		10 000
Φ (n _{eq} /cm ²)		few 10 ¹²	3 x 10 ¹²	> 10 ¹³	10 ¹²	2x10 ¹⁵	10 ¹⁵	2x10 ¹⁶
TID (Mrad)	k	0.2	20	0.7	0.4	80	50	> 1000
*per (assumed) liftetime LHC, HL-LHC: 7 years ILC: 10 years others: 5 years		e • •	need for much less ma higher resolut thinner strips	iterial tion & monolithic pixels	state of the art large area strips hybrid pixels R&D of new typ 			n larger area hard sensors her rates R/O D of new types
N. Wermes, 14th VCI W	/ien	, 2/2016						

L. Pancheri – XXVII Giornate di studio sui rivelatori – Cogne, 12-16 Feb. 2018

Monolithic sensors

Standard CMOS has problems:

- Collection speed: slow diffusion in undepleted substrate
- Competitive collection by nwell: low efficiency

Solutions

- Lowering substrate doping: high resistivity silicon
- High bias voltage
- Avoid competitive charge collection. Three approaches:
 - Isolating nwells other than collection electrodes with deep pwell
 - 2. Put CMOS electronics inside the collection electrode
 - 3. Isolate the electronics from the detectors with a buried oxide layer \rightarrow SOI

ALPIDE approach

- Nwell shielded by deep pwell
- High resisivity (> 1kΩ cm) p-type epi-layer with 25 µm thickness
- 28 x 28 μm² pixel size
- Small sensor capacitance \rightarrow low noise
- Partial depletion: drift and diffusion
- Radiation tolerance (TID) up to 700 krad

J.P. Crooks, et al., IEEE TNS 2007

L. Pancheri – XXVII Giornate di studio sui rivelatori – Cogne, 12-16 Feb. 2018

ALPIDE performance

- Efficiency > 99.5%
- Fake hit rate < 10⁻⁵ over wide threshold
- NIEL up to 10¹³ (1MeV n_{eq})/cm²

G. Aglieri Rinella, NIMA 845 (2017) 583-587

ALPIDE with n-layer

- Fully depleted n- layer: collection by drift
- Fast charge collection: few ns
- Good efficiency and speed at 10¹⁵ (1MeV n_{eq})/cm²

Efficiency vs. hit position

H. Pernegger et al., 2017 JINST 12 P06008

High Voltage CMOS

- The collection diode is a deep nwell.
- The CMOS electronics (pwells + nwells) is inside the deep nwell
- High voltage bias can be applied

I. Peric et al., NIM A582 (2007) pp. 876-885

High-Resistivity HV-CMOS

High resistivity substrates (>2 kOhm/cm)

Promising approach:

- Fast charge collection
- High efficiency at fluence > 10¹⁵ n_{eq}/cm²
- Main drawback:
- Parasitic capacitance: large noise

D.-L. Pohl, 2017 JINST 12 P06020

Fully depleted SOI sensors

Buried oxide: separates detectors from electronics

Y. Arai, IEEE IEDM 2017

FD-SOI progress

- Problem: buried oxide affects electronics → back-gate effect
- Solution: 2 buried oxide layer
- Ionizing radiation tolerance up to 100kGy

FD-SOI: X-ray imaging

- Pixel size: 17 μm
- Pixel count: 512 x 832
- Substrate thickness 500µm
- In-pixel photon counting electronics

Monolithic pixel array with backside junction

W. Snoeys, IEEE Tran. Electron Dev., 1994 J. D. Segal, IEEE NSS, Knoxville, TN, 2010, pp. 1896-1900.

- PMOS-only pixel electronics
- BS junction terminates on a trench for breakdown prevention
- Difficult to integrate in a commercial CMOS

Simulated potential

J. D. Segal, IEEE NSS, Knoxville, TN, 2010, pp. 1896-1900.

Outline

Radiation detection in silicon

- CMOS technologies: characteristics, opportunities and challenges
- Monolithic active pixels for photon imaging
- MAPS: design approaches and research directions

SEED project overview

Sensor with Embedded Electronics Development

- Goal: fully depleted monolithic pixel sensor
- High timing resolution (ns)
- Integrated CMOS pixel electronics
- Process development with an industrial partner (LFoundry)

INFN sections: Torino, Padova, Trento, Frascati, Perugia

INFN-LFoundry patent pending

SEED approach

Starting point: 110nm CMOS process with 1.2V transistors Substrate thickness: 300um Substrate doping: n-type, phosphorus, 2.5e12 cm⁻³

Sensor bias

Backside bias:

0

-50

-100

-150

-200

-250

0

Backside bias [V]

- Large enough to reach full depletion
- Small enough to avoid **punch through** -

Constraint: maximum n-well voltage is 1.2V (available low voltage transistors)

N-type epitaxial layer with doping larger than substrate: increased control of the potential barrier below deep pwell

Sensing

pwell

n-epi

Charge collection: 300um

Collection node capacitance

Dominant contribution: perimeter capacitance

Approximate perimeter cap: **0.25fF/um**

Capacitance for a 10um x 10um collection node = 10fF

Sensor periphery

- Nwell guard ring in the top plane
- Pwell ring termination structures in the back plane

Breakdown voltage simulations

- P+ shallow junction: many guard rings are needed
- Simulations with low (10¹¹ cm⁻³) and high (10¹² cm⁻³) positive oxide charge density
- At least 20 GR are needed to bias the sensor at 200V in the worst case

Test structures: breakdown voltage

- Test diodes with different guard ring number (GRN)
- Breakdown voltage increases with GRN
- Test on unirradiated diodes and after 1Mrad irradiation (X-rays)
- Diodes with 20 and 30 guard rings have a breakdown voltage larger than 1000V

Continuous lines: unirradiated diodes Dashed lines: irradiated diodes (1Mrad)

Test structure: pseudo-pixel array

 Small (8x8) pixel array in parallel without electronics with external readout. Pixel size 50um x 50um

Test pixels dark current

- Dark current can be measured only if the sensor is depleted
- Strong depletion dependence on small applied nwell voltage

Array cross section

Pixel array

n co n co n co
R R R R 1 2 3 4

- Die area: 2×2 mm²
- Iow voltage operation: 1.2 V
- matrix of 24×24 pixel units organized in 4 independent sectors
- 6 columns x 24 rows in each sector

Pixel schematic and layout

- Both NMOS and PMOS transistors are used
- The electronics fits an area of 30 μm ×30 μm
- Digital in-pixel logic

Parameter	Value
Analog gain	\approx 130 mV/fC (2.1 mV/100 e ⁻)
	Transmission $pprox$ 370 μ W
Sensor Cap	40 fF
Storage Cap	pprox 70 fF (MIM CAPS)
Linearity Range	400 mV - 950 mV
Readout Speed	Up to 5 MHz
Other features	Internal Test Pulse
	Mask Mode
	Baseline Regulator
Shutter type	Snapshot Shutter
Readout Type	Correlated Double Sampling [3]

Array backside measurements - CV

Doping 2.4 x 10¹² cm⁻³ – same as wafer specification

Pixel array characterization

Average noise ~ 1mV: ENC < 50e- rms at RT

IR laser pulse intensity map

LASER PULSE RECONSTRUCTION

Measurements with ⁵⁵Fe

- Expected energy for the ⁵⁵Fe peak: 5.9 keV (1650 e−)
- Standard deviation: 520 eV at RT
- Measured energy value: 420 counts used to estimate analog gain (117mV/fC)

SEED: on-going and future plans

- Measurements on more chips and test structures (information on tech. variability)
- Radiation damage (IEL and NIEL)
- Charge collection speed (laser)

- New run with different substrate thickness:
 - 100 150um: particle tracking
 - 500um: X-ray imaging