

LABORA I ORI NAZIONALI DI FRASCA II www.lnf.infn.it

MPDG and μ -RWELL R&D at LNF

G. Morello on behalf of DDG group 53rd LNF Scientific Committee May 9th, 2017

MPDG at LNF

Activities at LNF involving construction and development of **MicroPattern Gaseous Detectors**:

Past:

- Planar triple-GEMs for LHCb muon system trigger
- Cylindrical triple-GEMs for KLOE-2 tracking system

Future upgrades:

- MicroMegas for the new ATLAS small wheels
- Large area triple-GEMs for the CMS GE1/1 region
- Cylindrical triple-GEMs for BESIII experiment
- Micro-Resistive WELL ($\mu\text{-RWELL}$) proposed for CMS upgrades (GE2/1) and LHCb

Cylindrical GEMs

- First **CGEM bundle** ever built, equipped with a digital FEE on a X-V strips-pads readout.
- Standard gas-gaps 3/2/2/2
- Operated with Ar/iC₄H₁₀ 90/10 gas mixture to decrease the discharge probability
- The project pushed CAEN to develop a dedicated floating HV board

The BESIII-Italy collaboration is realizing three cylindrical GEMs to replace the inner part of the Drift Chamber.

- Non standard-gaps 5/2/2/2
- Analog FEE for charge analysis
- Requirements: 130 μm on r-φ plane in 1 T axial magnetic field, 2 mm along z

ATLAS upgrade

The ATLAS collaboration is building a New Small Wheel (NSW) with sTGC and MM. **Frascati** is heavily involved in MM construction, focusing the efforts of other INFN sections.

8 Large + 8 Small

- 15% P_T resolution at 1 TeV
- → ~100 µm resolution per plane
- Keep single muon trigger under control
- → 1 mrad online angular resolution

About 15kHz / cm² at L \approx 5 x 10³⁴ cm⁻²s⁻¹

Challenge in MM construction: alignment of the strips on each detection layer

30 μm RMS in η

 $80 \ \mu m RMS in z$

Preliminary results from the 2015 H8 Test Beam: Spatial resolution of 81 μ m on the 'precision coordinate' f(η), 2.4 mm on the second coordinate

CMS upgrade

- CMS-LNF group has the
 responsibility to coordinate
 the CMS GEM general
 production in the different
 production sites (CERN, INFN,
 USA, India and Pakistan)
- CMS-LNF group contributed in the definition CMS GEM final design, proposing several mechanical and design solutions studied during the test on prototypes in the framework AIDA2020

GE1/1

- Total number of chambers to be produced @ LNF = 40
- Chambers with a size ~ 130x50⁻ cm²

LHCb upgrade

Requirements @ 2×10^{34} cm⁻² s⁻¹

- Rate up to 3 MHz/cm² with an additional filter in front of M2
- Efficiency for single gap > 95% within a BX (25 ns)
- Long stability up to 6 C/cm² accumulated charge in 10 y of operation
- Pad cluster size < 1.2

	Expected max rate MHz/cm ² (*)	Active area cm ²	Pad Size cm ² (*)	Rate/Pad MHz	# pad/gaps	# gaps	#chambers (with 2 gaps)
M2R1	3	30x25	0.63x0.77	1.5	1536	24	12
M2R2	0.5	60x25	1.25x1.58	1	768	48	24
M3R1	1	32.4x27	0.67x1.7	1	768	24	12
M3R2	0.15	64.8x27	1.35x3.4	0.7	384	48	24

(*) average rate is about 50% of maximum rate

(*) X, Y/4 w.r.t. present logical pads in M2R1-R2; a factor 2 more in Y, to halve the rate/Pad

X, Y/2 w.r.t. present logical pads in M3R1 and M3R2

in this framework the **GEM detector** is still **a valid option**, however we are proposing a new detector \rightarrow the µ-RWELL

The µ-RWELL: motivations

Because of the micrometric distance between electrodes, every MPGD suffers from spark occurrence that can damage the detector or the FEE.

The R&D on μ -RWELL is mainly motivated by the wish to improve

- stability under heavy irradiation

And simplify as much as possible

- construction/assembly procedures

Consequently reducing the costs of the device.

The detector architecture

The μ-RWELL is composed of only two elements: the μ-RWELL_PCB and the cathode

The **µ-RWELL_PCB**, the core of the detector, is realized by coupling:

- a "WELL patterned kapton foil" as "amplification stage"
- 2. a **"resistive sheet"** for the discharge suppression & current evacuation
 - **i.** "Single resistive layer" (SL) < 100 kHz/cm²: single resistive layer → surface resistivity ~100 MΩ/□ (CMS-phase2 upgrade; SHIP)
 - ii. "Double resistive layer" (DL) > 1 MHz/cm²: more sophisticated resistive scheme must be implemented (MPDG_NEXT- LNF) suitable for LHCb-Muon upgrade

3. a standard readout PCB

G. Bencivenni et al., 2015_JINST_10_P02008

(*) DLC = Diamond Like Carbon High mechanical & chemical resistant material

Principle of operation

Applying a suitable voltage between top copper layer and DLC the "WELL" acts as multiplication channel for the ionization.

The charge induced on the resistive foil is dispersed with a *time constant*, $\tau = \rho C$, determined by

• the *surface resistivity,* ρ

- the capacitance per unit area, which depends on the distance between the resistive foil and the pad readout plane, t
- the **dielectric constant** of the insulating medium, ε_r [M.S. Dixit et al., NIMA 566 (2006) 281]
- The main effect of the introduction of the resistive stage is the suppression of the transition from streamer to spark
- As a drawback, the capability to stand high particle fluxes is reduced, but an appropriate grounding of the resistive layer with a suitable pitch solves this problem (see High Rate scheme)

The μ -RWELL

Main features:

simple assembly:

- only two components $\rightarrow \mu$ -RWELL_PCB + cathode
- no critical & time consuming **assembly** steps:
 - no gluing
 - *no stretching* (→ no stiff & large frames needed)
 - easy handling
- suitable for large area with PCB splicing technique w/small dead zone

cost effective:

1 PCB r/o, 1 μ -RWELL foil, 1 DLC, 1 cathode and very low man-power

easy to operate:

very simple HV supply \rightarrow only **2** independent HV channels or a trivial passive divider (while 3GEM detector \rightarrow 7 HV floating/channels)

The low rate scheme (CMS/SHiP)

The high rate scheme (LHCb)

12

Towards a High Rate scheme

The µ-RWELL performance: X-rays test

The prototypes, with different surface resistivities, have been tested with X-rays for first measurements in current mode (gain and rate capability **under local irradiation**).

Under global irradiation we expect a lower rate capability for single layer scheme

The µ-RWELL performance: Beam Tests

H4 Beam Area (RD51) Muon beam momentum: 150 GeV/c Goliath: B up to 1.4 T

BESIII gem chambers

 μ -RWELL prototype 12-80-880 MΩ/ \Box ; 400 μ m pitch strips with APV25 FEE for CC analysis.

Ar/iC₄H₁₀ 90/10

The µ-RWELL performance: Beam Tests

Analysis performed with the CC method, 400 μ m strips pitch

At low resistivity the spread of the charge (cluster size) on the readout strips increases, thus requiring a higher gain to reach the full detector efficiency.

- The residuals exhibit a minimum width around 100 M Ω/\Box .
- At low resistivity the charge spread increases ightarrow worse spatial resolution
- At higher resistivity ightarrow \sim 1 fired strip

The LARGE AREA $\mu\text{-}RWELL$

In the framework of the **CMS-phase2 muon upgrade** we are developing **large size μ-RWELL.** The **R&D** is performed in strict collaboration with <u>Italian industrial partners (ELTOS & MDT)</u>. The work is performed in **two years** with following schedule:

- 1. Construction & test of the first 1.2x0.5m² (GE1/1) μ-RWELL
- 2. Mechanical study and mock-up of 1.8x1.2 m² (GE2/1) µ-RWELL

3. Construction of the first 1.8x1.2m² (GE2/1) μ-RWELL (only M4 active) 01-09/2017

~40 times larger than small protos !!!

2016

2016-2017

Test beam Setup

Efficiency & time resolution measurement

The efficiency has been evaluated asking for **TDC coincidence** selected in a proper range.

Then the ratio of the triplets on the doublets gives the value.

The TDC distribution is then fitted with a simple gaussian and the sigma is then **deconvoluted** by the contribution of the VFAT.

$$\sigma_t^2 = \sigma_{TDC}^2 - \left(\frac{25}{\sqrt{12}}\right)^2$$

Efficiency & time resolution measurement

To be compared with a measurement done with GEM by LHCb-LNF in 2004 (LHCb) giving a σ_t = 4.5 ns with VTX chip [1].

Different chambers with **different dimensions and resistive schemes** exhibit a <u>very similar</u> <u>behavior</u> although realized in **different sites** (large detector partially realized outside CERN).

[1] G. Bencivenni et al, "Performance of a triple-GEM detector for high rate charged particle triggering", NIM A 494 (2002) 156

Performance vs Rate

The detector rate capability (with Ed=3,5 kV/cm) has been measured in current mode with a pion beam and irradiating an area of $\sim 3 \times 3 \text{ cm}^2$ (FWHM)

Ageing test: GIF++ (LNF, INFN-BO)

- To validate the (DLC-based) detector in the GE2/1 region, it is necessary (mandatory) to study the behaviour of the chamber under heavy irradiation.
- The detector, working at a gain 4000 (efficiency plateau) in Ar/CO2 70/30, will integrate about 2.5 mC/cm²
- We plan to integrate 25 mC/cm² in about 60 days (10 years with s.f. 10)
- The setup has been completed with two more μ-RWELL:

Double resistive layer scheme (high rate)

Single layer scheme (reference chamber)

Ageing test: GIF++ (LNF, INFN-BO)

Source off

Source on

Ageing test: GIF++

evaluated on sectors #3

24

Ageing test: GIF++

Currents quite constant during the operating time gates

The large area has integrated 1.92 mC/cm2 up to May 2nd.

GE2/1 µ-RWELL: mechanical studies

A very large μ-RWELL with the dimensions close to the GE2/1 chamber is going to be realized at LNF, in collaboration with INFN-BA and INFN-BO with M4 operating detectors. The dimensions of the chamber suggest preliminary studies on the mechanical aspect of the project.

The active volume is limited by two honeycombed panels, which composition has been validated by ANSYS simulations.

The largest deformation (0.78 mm) at 8 mbar has been obtained with 3 mm thick honeycomb glued between two 1 mm thick fiberglass skins with the presence of 10 pillars.

After these results:

- the thickness of the honeycomb increased up to 4 mm
- the number of pillars in the active volume increased to 12
- Expected maximum deformation: < 0.2 mm per panel (5 mbar) → < 10% on conversion drift gap

Mock-up

The two external panels are ready. **ELTOS just this week is producing the M4 PCB** that will be sent to CERN for the chemical etching

Conclusions

- LNF is strongly involved into the upgrade of LHC apparatuses with MPDG technology
- A new MPGD, based on the μ-RWELL technology, has been conceived and developed at LNF. The detector shows:
 - gas gain > 10^4
 - intrinsic spark protection
 - rate capability > 1 MHz/cm² (HR version)
 - space resolution < 60µm
 - time resolution < 6 ns
- A large-size prototype has been built, qualified and installed at GIF++ for DLC ageing test
- The final CMS prototype is going to be realized and tested
- A well defined roadmap towards Technological Transfer to industry has been planned

SPARE

A brief history of MPGDs

- **G. Charpak et al.**, *The use of multiwire proportional counters to select and localize charged particles*, Nucl. Instr. Meth. **62** (1968) 262-268.
- **A. Oed**, *Position-sensitive detector with microstrip anode for electron multiplication with gases*, Nucl. Inst. Meth. **A 263** (1988) 351-359.
- **Y. Giomataris et al.**, *Micromegas: a high-granularity, position sensitive gaseous detector for high particle flux environments,* Nucl. Inst. Meth. **A 376** (1996) 29.
- F. Bartol et al., The C.A.T. Pixel Proportional Gas Counter Detector, J. Phys. III France 6 (1996)
- F. Sauli, GEM: A new concept for electron amplification in gas detectors, Nucl. Inst. Meth. A 386 (1997) 531.
- R. Bellazzini et al., The WELL detector, Nucl. Inst. Meth. A 423 (1999) 125.
- **G. Bencivenni et al.**, *A novel idea for an ultra light cylindrical GEM based vertex detector*, Nucl. Inst. Meth. **A 572** (2007) 168.
- **P. Fonte et al.**, Advances in the Development of Micropattern Gaseous Detectors with *Resistive Electrodes*, Nucl. Inst. Meth. **A 661** (2012) 153.
- **G. Bencivenni et al.**, The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, JINST **10** (2015) P02008.

The µ-RWELL: motivations

Because of the micrometric distance between electrodes, every MPGD suffers from spark occurrence that can damage the detector or the FEE. A resistive readout quenches the discharge:

- The Raether limit is overcome
- The charge is deposited on the resistive layer
- The charge density spreads with $\tau = RC$

(M.Dixit, NIM A 518 (2004) 721)

- The resistive layer is locally charged-up with a potential V=Ri, reducing the ΔV applied to the amplification stage

- The amplification field is reduced

- The discharge is locally suppressed

Obviously this has a drawback correlated to high particle fluence, that's why we studied the performance of the detector as a function of the resistivity

GEMs for LHCb

The LHCb muon system provides high p_T muon trigger at low angles, their identification at HLT and offline reconstruction.

Composed of 5 stations (1380 **MWPC**) separated by iron walls, the M1 central region there has been equipped with **GEM detectors**.

LHCb is one of the first experiments using **GEMs**. Their features are:

- 20 x 24 cm² active area
- Non-standard gaps: 3/1/2/1 mm, to decrease the probability that ionization in T1 can trigger the discriminator
- Innovative gas mixture: Ar/CO₂/CF₄ 45/15/40, providing high time resolution (4.5 ns) and no aging effect after 2.2 C/cm² integrated during R&D

ATLAS upgrade

MM Quadruplet Exploded View

Building Large Area MM

- Panel is a sandwich of 0.5 mm PCB skin with honeycomb in the middle and frames in the perimeter and in the joint of two adjacent PCB. Honeycomb and frames are in Al.
- Different Panels are needed for a Quadruplet
 - RO Panels (Eta and Stereo)
 - N.2 External Drift Panels
 - One Central Drift Panel
- For each gas layer a unique Mesh is glued on the drift panel, using a custom frame that define the 5 mm height.
- Slow bi-component epoxy is used as glue.

X-ray measurements

Two prototypes with the **double resistive layer scheme** (ρ =40 M Ω/\Box) have been completed last Summer; the detectors have been tested with a 5.9 keV X-rays flux **(local irradiation)**.

Gain in $Ar:iC_4H_{10}$ 90:10

Gain in $Ar: CO_2: CF_4$ 45:15:40

Measurement performed in current mode.

Gain measured up to 10000. Similar behaviour for the two chambers.

ELTOS tests

From ELTOS tests, it is quite visible that without PACOFLEX the surface is very flat.

Metallographic cross sections: on the left we have an example with one pre-preg layer (50 um), on the right with two pre-preg layers (100 um)

Technology improvements: NS2 assembly

Advantages:

- No gluing, nor soldering
- No spacers in the active area
- Re-opening of detectors if repairs needed

LHCb-LNF

The LARGE AREA $\mu\text{-}RWELL$

- A large area prototype, following the **single resistive layer scheme**, has been realized for tests. The amplification stage suffered delamination (copper removal) in some sectors during the etching process. The origin of the problem is the combination of a wrong operation done by Eltos with the choice of a corrupted base material.
- The amplification stage has been glued on the readout PCB with the vacuum bag technique.
- The detector has been completed with a frame and a cathode

The LARGE AREA µ-RWELL

- Anyway the HV sectors drew in some cases anomalous currents and we needed an intervention by Rui.
- The whole stack composed of readout and u-RWELL has been washed in a ultrasonic bath, with the consequence of a separation of the foil from the PCB.
- After supplying up to 1 kV, four sectors were labeled as "good" (R >10 GΩ when ΔV = 500 V).
- The foil has been glued again on the PCB with a 50 um thick FILM GLUE produced by 3M company.

Detector Gain

The prototype has been characterized by measuring the gas gain, rate capability in current mode with an 5.9 keV X-rays (local irradiation, ~1cm² spot).

A shift of ~ 25 V has been measured between the two sectors probably due to the different geometry of the amplification stage (to be confirmed with microscope check – left/right asymmetry)

GEM detector currently running @ HEP

Experime nt	Instrum ented area (m ²)	Gas Mixture	Gain	Flux (MHz/cm ²)	HV-type	# lost sector for shorts	% damaged area	Front-End Electronic s
COMPASS	2	Ar/CO ₂	4000	<1	HV passive divider	???		APV25
LHCb	0.6	Ar/CO ₂ /CF ₄	8000	1	HV active divider	5 (All on GEM #1)	1%	CARIOCA -GEM
TOTEM	0.6	Ar/CO ₂	8000	<1	HV passive divider	6	percent level	VFAT2
KLOE2	4	Ar/i-C ₄ H ₁₀	12000	0,01	7 independent ch; then active divider	61 (8 GEM#1, 28 GEM#2, 25 GEM#3)	5%	GASTONE

A damaged GEM sector could required for the replacing of a whole a detector gap !!

Rate capability with X-rays (double layer)

Double resistive layer w/ 1x1 cm² through-vias grounding pitch

The μ -RWELL performance

Discharge study: µ-RWELL vs GEM

o discharges for μ-RWELL of the order of few tens of nA (<100 nA @ max gain)

 $\circ~$ for <u>GEM</u> discharges the order of <u>1µA</u> are observed at high gas gain