SMI - STEFAN MEYER INSTITUTE

SIDDHARTA - 2 STATUS REPORT

Johann Zmeskal for the SIDDHARTA-2 Collaboration

53nd LNF-INFN SCIENTIFIC COMMITTEE May 9, 2017

WWW.OEAW.AC.AT/SMI

SIDDHARTA-2 Collaboration

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

LNF- INFN, Frascati, Italy SMI- ÖAW, Vienna, Austria Politecnico, Milano, Italy IFIN – HH, Bucharest, Romania TUM, Munich, Germany, Germany **RIKEN**, Japan Univ. Tokyo, Japan Victoria Univ., Canada Univ. Zagreb, Croatia Helmhotlz Inst. Mainz, Germany **CNRS**, Paris, France Indian Inst. of Science, Bangalore, India

FUIF Der Wissenschaftsfonds.

Ministero degli Affari Esteri

e della CooperazioneInternazionale

StrangeMatter

CONTENT

Scientific Motivation

SIDDHARTA-2 apparatus – status with time lines

- Mounting frame
- Beam pipe
- Luminosity monitor
- Kaon trigger
- Cooling system
- Vacuum chamber
- Cryogenic target
- SDD X-ray detector
- Veto system

Overall time schedule

The scientific goal of SIDDHARTA-2

To perform precision measurements of kaonic atoms X-ray transitions

unique information about QCD in the non-perturbative regime in the strangeness sector not obtainable otherwise

Starting with the precision measurement *of shift* and *width* > first measurement of kaonic deuterium

to extract the antikaon-nucleon isospin dependent scattering lengths

chiral symmetry breaking, EOS for neutron stars

X-RAY TRANSITIONS TO THE 1s STATE

SIDDHARTA-2 setup

Mounting frame
Beam pipe
Luminosity monitor
Kaon trigger

□ Platform

SIDDHARTA – beam pipe

SIDDHARTA-2 - Luminosity monitor (based on kaons)

Size: 8 x 8 cm² both side of the beam pipe, made of 2 pieces 8 x 4 cm², thickness = 2 mm distance $y = \pm 4$ cm off beam

Coincidence rate:
 25.7 % per charged kaon pair
 single rate at the boost side: 42.7 %
 single rate at the anti-boost side: 32.3 %

With a luminosity $L = 10^{32}$

→ 37 Hz (coincidence) / 62 Hz (on boost-side) in 5 seconds:

185 counts (7%) / 310 counts (5.7%)

prototype under construction,
 BTF timing test summer 2017

Gantt chart SIDDHARTA-2: beam pipe + luminosity monitor + mounting frame

	Q4/2016	Q1/2017	Q2/2017	Q3/2017	Q4/2017			
SIDDHARTA-2 beam pipe + luminosity monitor								
Beam pipe – design (*)			•					
Beam pipe – construction (*)		, , , , , , , , , , , , , , , , , , ,						
Luminosity monitor – construction								
✓ Kaon trigger								
Mounting frame - construction								
Shielding - construction								

(*) Beam pipe – final diameter has to be fixed, depending on the final IR for SIDDHARTA-2

SIDDHARTA-2 setup

- Cooling systems
- Vacuum chamber + feedthroughs
- Cryogenic target

SIDDHARTA-2 cooling

✓ Target + SDD cooling: 1 Leybold MD10 – 16 W @ 20 K target cell and SDDs will be cooled via ultra pure aluminum bars $T_{TC} = 30 \text{ K}$ $T_{SDD} = 50 \text{ K}$

✓ Line driver boards: 2 CryoTiger – 30 W @ 120 K copper-band cooling lines $T_{LD} = 120 \text{ K}$

SIDDHARTA-2 vacuum chamber

53rd LNF Scientific Committee Meeti

SIDDHARTA-2 cryogenic target

Working temperature: 30 K Working pressure : 0.3 MPa

Pressurised for 16 days with P = 0.3 MPa (overP)

Cooling/pressure test

- 2.5 weeks 30 K / 0.19 MPa
- 3.5 days 30 K / 0.31 MPa

Target cell wall is made of a
 2-Kapton layer structure
 (25 μm + 25 μm + Araldit < 100 μm)

Gantt chart SIDDHARTA-2: target

	Q4/2016	Q1/2017	Q2/2017	Q3/2017	Q4/2017		
SIDDHARTA-2 cryogenic target + cooling							
✓ Target – prototype testing							
 ✓ Target - construction 							
Final target cells testing							
✓ Cooling tests – target prototype	-						
Cooling tests – target + SDDs							

SIDDHARTA-2 setup

SDD X-ray detector

The "new" Silicon Drift Detector

> SIDDHARTA

- JFET integrated on SDD
- lowest total anode capacitance
- limited JFET performance
- sophisticated SDD+JFET technology

- external CUBE preamplifier (MOSFET input transistor)
 - larger total anode capacitance
 - better than FET performances
 - standard SDD technology

SDD cooler

The CUBE preamplifier

- A full CMOS preamplifier is mounted on ceramic board connected via bonding
- The **CUBE** replaces the JFET, which was direct implanted on the anode side on the SIDDHARTA type SDDs
- Short bonding lines from CUBE to SDD, no difference in the detector performance
- Advantage, the preamplifier is connected close to the SDD and not only the FET → ASIC of analogue processing can be placed relatively up to ~100 cm away

4x2 SDD array - single unit

J-PARC 23rd PAC Meeting January 11-13, 2017

SDD mounting / bonding

4x2 SDD chip

device for gluing and bonding

mounting and bonding process under control

J-PARC 23rd PAC Meeting January 11-13, 2017

Place the Ceramic board in the back bonding block.

Back

Place the Kapton bi-adhesive correctly on the
ceramic back side.

4 x 2 matrix SDD chip - testing

New SDD testing facility - LNF

Mounting device for 8 SDD units

SDD testing facility - SMI

New SDD technology: CUBE preamplifier

J-PARC 23rd PAC Meeting January 11-13, 2017

4x2 SDD arrays around the cryogenic target

In total 48 SDDs will be used

~

SDD arrays, delivery and qualification

48 SDDs arrays needed

Delivery status: 52 arrays received

Batch	Wafer	Matrix	Q-index	Batch	Wafer	Matrix	Q-index
SIDDHARTA1b	W01	1,2	8.080	SIDDHARTA1b	W03	1,4	8.080
SIDDHARTA1b	W01	2,1	8.080	SIDDHARTA1b	W03	1,1	8.620
SIDDHARTA1b	W01	3,2	8.080	SIDDHARTA1b	W04	3,2	8.260
SIDDHARTA1b	W01	3,3	8.530	SIDDHARTA1b	W04	2,1	8.611
SIDDHARTA1b	W02	1,4	8.161	SIDDHARTA1b	W04	1,2	8.710
SIDDHARTA1b	W02	3,1	8.800	SIDDHARTA1b	W05	3,4	8.710
SIDDHARTA1b	W02	3,3	8.530	SIDDHARTA1d	W14	3,1	8.080
SIDDHARTA1c	W12	2,1	8.440	SIDDHARTA1d	W14	3,2	8.440
SIDDHARTA1c	W17	1,1	8.080	SIDDHARTA1d	W14	2,1	8.521
Q-index: N.DGS N = number of functioning channels (with J _{anode} < 2nA/cm ²) D = number of "diamond" channels (with J _{anode} < 80pA/cm ²) G = number of "gold" channels (with J _{anode} < 250pA/cm ²) S = number of "silver" channels			SIDDHARTA1d	W14	3,3	8.620	
			SIDDHARTA1d	W15	3,4	8.170	
			SIDDHARTA1d	W15	3,1	8.251	
			SIDDHARTA1d	W15	3,3	8.260	
			SIDDHARTA1d	W15	2,1	8.440	
			SIDDHARTA1d	W19	1,2	8.260	
			SIDDHARTA1d	W19	3,1	8.260	
			SIDDHARTA1d	W19	1,1	8.350	
(with $J_{anode} < 600 \text{pA/cm}^2$)			SIDDHARTA1d	W19	1,4	8.350	

Table 1: *Q*-index classification based on anode leakage current density

Gantt chart SIDDHARTA-2: X-ray detector

SIDDHARTA-2 setup

 \succ the veto system

SIDDHARTA-2 setup: Veto-1 + Veto-2

The veto-1 system

To achieve a good timing resolution, (independent of the "hit" position) < 600 ps (FWHM), the scintillator has to be read out on both side.

Because the available space is limited due to shielding material, the photomultiplier tubes have to be on the same side (a special light-guide mirror design was used).

The veto-2 system

Veto-2 arrangement

SiPM – 4x4 BC-408 NUV-Trento scintillator tile

53rd LNF Scientific Committee Meeting, May 9, 2017

SiPM read-out: the 16-channel IFES board

Analogue differential out

Bias voltage boards

LVDS digital ToT output

Cryogenic target – SDDs – veto-2 arrangement Veto-2 **SDDs** Cryotarget

Gantt chart SIDDHARTA-2: Veto systems

SIDDHARTA-2 setup

Assembling plan
Installation at DAΦNE

Gantt chart SIDDHARTA-2:

SIDDHARTA-2 plan for the K-d measurement

- 200 pb⁻¹, to debug and optimize the SIDDHARTA-2 apparatus
- **800 pb⁻¹**, to perform the first measurement of the strong interaction induced energy shift and width of the konic deuterium ground state (similar precision as K-p) !

SIDDHARTA-2 future programme and perspectives

- Other light kaonic atoms (K⁻O, K⁻C,...)
- Heavier kaonic atoms (K⁻Si, K⁻Pb...)
- Kaonic helium transitions to the 1s level
- Kaon mass precision measurement at a level < 7 keV</p>
 - > Radiative kaon capture Λ (1405) study
 - Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic hydrogen ?)

11-15 SEPTEMBER 2017 AUSTRIAN ACADEMY OF SCIENCES THEATERSAAL SONNENFELSGASSE 19 **1010 VIENNA, AUSTRIA** EXA2017@OEAW.AC.AT

INTERNATIONAL CONFERENCE ON **EXOTIC ATOMS AND RELATED TOPICS**

TOPICS:

- · Antihydrogen: CPT and gravity
- Leptonic atoms: QED and gravity
- Kaon-nucleon and kaon-nucleus interaction
- Low-energy QCD · Precision experiments with atoms,
- neutrons and charged particles
- · Hadron physics with antiprotons
- Hadron physics at LHC
- Future facilities and instrumentation

International Advisory Committee

H, Abele (Vienna), R, Alkofer (Graz), P, Campana (Frascati), E, Elsen (CERN), A, Gal (Jerusalem), P, Giubellino (FAIR), C, Guaraldo (Frascati), R, Havano (Tokyo), E. Hiyama (RIKEN), K. Jungmann (Groningen), A. Kalweit (CERN), A. Kostelecky (Indiana), P. Krizan (Ljubljana), K. Langanke (GSI), N. Mavromatos (London), C. Mever (Pittsburgh), P. Moskal (Cracow), G. Testera (Genova), J. Wambach (ECT*), W. Weise (Munich), U. Wiedner (Bochun

LOCAL ORGANIZING COMMITTEE:

11-15 SEPTEMBER 2017 AUSTRIAN ACADEMY OF SCIENCES THEATERSAAL **SONNENFELSGASSE 19 1010 VIENNA, AUSTRIA** EXA2017@OEAW.AC.AT

Constraining the $\bar{K}N$ interaction from the 1S level shift of kaonic deuterium

Tsubasa Hoshino,¹ Shota Ohnishi,¹ Wataru Horiuchi,¹ Kenta Miyahara,² Tetsuo Hyodo,³ and Wolfram Weise^{3,4} ¹Department of Physics, Hokkaido University, Sapporo 060-0810, Japan ²Department of Physics, Kyoto University, Kyoto 606-8502, Japan ³Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan ⁴Physik-Department, Technische Universität München, 85748 Garching, Germany (Dated: April 19, 2017)

Stefan Meyer Institute

C. Amsler

G. Konrad

K. Suzuki

M. Weber

E. Widmann (Chair)

J. Marton (Co-Chair)

I. Zmeskal (Co-Chair)

J. Matejka (Secretary)

P. Buehler (Scientific Secretary)

Thank you !

Special thanks to the accelerator division, in particular to the DA Φ NE and to the BTF staff, to the LNF Director and to the KLOE-2 collaboration