



## ,Options and performance of laser to RF conversion schemes'



F.Ludwig (Presenter: P.Gessler) - DESY

**Content :** 

- (M.Felber, B.Lorbeer, F.Ludwig, H.Schlarb DESY)
- High precision Down Converters
   (M.Hoffmann, F.Ludwig, G.Moeller, S.Simrock DESY, K.Suchecki - TU Warsaw,
   W.Jalmuzna - TU Lodz,
   H.Piel - Cryoelectra GmbH)
- Beam Stability Update
   (C.Gerth, F.Ludwig DESY,
   C.Schmidt TU Hamburg Harburg)
- **RF Master-Reference Update** (F.Ludwig, S.Simrock, H.Weddig - DESY, K.Czuba - TU Warsaw)





### Implementation of entire system 06/2008 - 2010







FLASH

### • Direct extraction to RF from a pulse train :





PAC07, 'Noise and Drift Characterization of Direct Laser to RF Conversion Scheme', B.Lorbeer et.al.

### • Short-term and long-term performance :



- 10fs-25fs(rms) jitter [1kHz-10MHz] @ 1.3GHz
- 80fs peak-to-peak long-term phase drifts
- AM to PM limitation (might be overcome) (Typical AM to PM conversion 1-10ps/mW)





### • Phase-locked loop (PLL):



Frank Ludwig, DESY



## Laser to RF Conversion – Sagnac Loop



• Topology : RF Connector Fiber Connector rt 1 optische Komponenten elektronische Komponenten Input f<sub>ref</sub> Isolator Combiner f<sub>DRO</sub> f <sub>IF</sub> Reference ╋ Generation 90/10 Coupler 10% B  $(\mathbb{C})$ EOM 90% Co-Puls 50/50 Coupler Output Mixer 🚫 Ē Counter variable Delay  $\bigcirc$ Collimate Ē Collimator on Delay Stage λ/2 (optional) Coulped Port f<sub>Cpl</sub> Output Detection





### • Long-term stability: Sagnac loop vs. direct photodiode detection :







• Long-term stability: Sagnac loop vs. <u>direct photodiode detection</u>:



 $\rightarrow$  Next step: Beat 2 good Sagnac loops against each other

- 33fs peak-to-peak





### Implementation of entire system 06/2008 - 2010



High precision down converter – cavity field and beam stability





• Down converters using the non-IQ-sampling scheme :



# DESY

## Beam Stability – Multi-channel Downconverter









• Stability lab results (single channel) :

Short-term, bunch-to-bunch (800us) :  $\Delta A / A_{rms} = 0.015\%, \quad \Delta \varphi_{rms} = 0.0092 \ deg$ Mid-term, pulse-to-pulse (10min):  $\Delta A / A_{rms} = 0.016 \%$ ,  $\Delta \varphi_{rms} = 0.0147 \ deg$ Long-term, drifts (1hour):  $\Delta A / A_{pkpk} = 0.09\%, \quad \Delta \varphi_{pkpk} = 0.05 deg$  $\theta_{\Lambda} = 2e-3/^{\circ}C, \ \theta_{P} = 0.2^{\circ}/^{\circ}C$ BW=1MHz 0.3342 • A 81, 10min BW=1MHz 0.334 0.3336 P 81. 10mi 0.8595 0.8585 0.8575

#### **Parameter :**

- VME active multi-channel receiver, Readout bandwidth 1MHz
- LO / IF leakage -72dB, Crosstalk -67...-70dB
- SIMCON DSP (14-Bit ADC)

• Pulse-to-Pulse Beam Stability :







### • <u>Very</u> compact **R**ear **T**ransition **M**odule (RTM) :

**RF inputs (8 channels):** 1300MHz, +0dBm input power



### Cryoelectra

Gesellschaft für kryoelektrische Produkte mbH

| Receiver Type : LT5527 (Gilbert-Mixer) |                               |             |  |  |
|----------------------------------------|-------------------------------|-------------|--|--|
| RF:                                    | 1300MHz                       | , <10dBm    |  |  |
| LO:                                    | [1310MHz, 1350M               | 1Hz], 10dBm |  |  |
| IF :                                   | [10MHz, 60MHz], diff. outputs |             |  |  |

| CHARACTERISTICS                             | RATING   |
|---------------------------------------------|----------|
| IF Frequency, MHz                           | 1 - 50   |
| Conversion Loss, dB                         | -2 (typ) |
| Noise Figure (incl. the accessory card), dB | 18 (typ) |
| IF Spurious Signals, dBc                    | <-60     |
| IF Filter cut-off, MHz                      | 60       |
| IF Harmonic Distortion (IF < 15 MHz, RF     | 1        |
| input power < 0 dBm), %                     |          |
| IF Harmonic Distortion (IF > 30 MHz, RF     | 0.25     |
| input power < 9 dBm), %                     |          |
| Inter-Channel Crosstalk, dB                 | >65      |

Frank Ludwig, DESY





- Downconverter Noise and Drift Sources :
- LO-Generation, ADC Noise, Receiver and FPGA IQ Detection
- Cable drifts
- Microphonics from Vector-Sum Calibration caused by non-linearity, cross-talk, field-flatness
- Status of the Performance Evaluation

EUROFEL DS3.9, Delivery Report 01/2008 Section 1.5, F.Ludwig et.al.

| Status of the Performance Evaluation:<br>[10min. 1MHz]                                 | Switched-modulation<br>(existing at FLASH) | CW modulation<br>(non-IQ-sampling) | Direct-sampling    |
|----------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|--------------------|
| Self test using the reference in Laboratory<br>(Single channel, 8 channels to be done) | to be done                                 | 0.003% (PAC2007) <sup>1</sup>      | to be done         |
| Beam based in FLASH using SR-4BC2                                                      | 0.016% (11/2008) <sup>3</sup>              | 0.022% (10/2007) <sup>2</sup>      | to be done         |
| 2 DUT in FLASH using cavity probe splitting                                            | 0.016% (06/2008) <sup>3</sup>              | to be done                         | to be done         |
| Self test using the reference in FLASH (Single channel, 8 channels to be done)         |                                            | 0.016% (11/2007) <sup>2</sup>      | 0.022% (09/2008) 4 |
| Long-term operation at FLASH                                                           | YES                                        | No                                 | No                 |
| Calibration scheme tested in laboratory / FLASH                                        | to be done                                 | to be done                         | Reference tracking |

<u>Confguration:</u> **1:** Passive Receiver, 16-bit ADC ACB 2.1, **2:** Active Receiver, 14-bit ADC SIMCON 3.1 **3:** Active Receiver, 14-bit ADC FLASH Boards, **4:** 12-bit ADC, 200Msps













- ✓ -> Field fluctuations of 0.016% are caused by 1/f-noise below 1kHz from field-detectors.
  - -> Fluctuations are in accordance to the beam energy spread of 0.0116%.
  - -> P-type controller and actuator chain worked fine on an scale 0.0029%.
  - -> **Optimize:** Vector-sum principe, <u>LO-generation</u>, receiver, <u>ADCs</u> and reference.







Norm of RF amplitude and Phase errors during flattop
Fast convergence and stable





### • Energy beam stability ACC1 measured with SR ICCD camera and SR PMT

**Fast PMT Detector** 









FLASH



• Learning algorithm removes energy spread within 50 iterations

Pulse to pulse fluctuations are mostly stochastic





## Thanks for your attention !