Synchronization of a Ti:Sapphire laser to the optical reference system

Vladimir Arsov

on behalf of the Laser-based Synchronization Team at DESY-Hamburg:
M. Bock¹, M.Felber ${ }^{1}$, P. Gessler ${ }^{1}$, K.Hacker ${ }^{1}$, F.Loehl ${ }^{1}$, B.Lorbeer ${ }^{2}$, F.Ludwig ${ }^{1}$, K.-H.Matthiesen ${ }^{1}$, H.Schlarb ${ }^{1}$, B.Schmidt ${ }^{1}$, S.Schulz ${ }^{2}$, A. Winter ${ }^{1}$, L.Wißmann ${ }^{2}$, J.Zemella ${ }^{1}$
${ }^{1}$ Deustsches Elektronen-Syncrotron (DESY), Hamburg
2 Hamburg University

II Timing \& Synchronization Workshop, ICTP, Trieste, 9 March 2009

I to BAMs...

- Optical synchronization with beam based stabilization of the arrival time
- High precision synchronization of lasers via optical cross-correlation
- Point-to-point synchronization ~ 10 fs rms
- Distribution over actively length-stabilized fiber links
- Permanent operation and long term stability

Layout of the two-wavelength laser synchronization

Input in the OCC from the diagnostic laser:
$\lambda_{1}=800 \mathrm{~nm}, \delta \lambda_{1}=\sim 60 \mathrm{~nm}, \tau_{1} \sim 100 \mathrm{fs}, \mathrm{P}_{1} \sim 50 \mathrm{~mW}, \mathrm{f}_{\text {rep }}=81 \mathrm{MHz}$
Input in the OCC from the link:
$\lambda_{2}=1560 \mathrm{~nm}, \delta \lambda_{1}=\sim \mathbf{7 0} \mathrm{nm}, \tau_{1} \sim 200 \mathrm{fs}, \mathrm{P}_{1} \sim 15 \mathrm{~mW}, \mathrm{f}_{\text {rep }}=216 \mathrm{MHz}$

Layout of the balanced detection set-up

DM1 - dichroic mirror HT@ λ_{1} and $\lambda_{2}, \mathrm{HR} @ \lambda_{\text {sF }}$
DM2 - dichroic mirror HR@ λ_{1} and λ_{2}, HT @ $\lambda_{\text {sF }}$
SFG - non-linear crystal, e.g. BBO
GD - group delay adjustment
F - band pass filter, HT @ $\lambda_{\text {sF }}$

Design of the two-wavelength optical cross-correlator: group delay adjustment

Assume Gaussian pulses

$$
I_{i}(t)=\frac{1}{\sqrt{\pi} \sigma_{i}} \exp \left(-\frac{\left(t-t_{i}\right)^{2}}{\sigma_{i}^{2}}\right)
$$

The convolution of two Gaussian pulses is also a Gaussian pulse:
$I_{i}(t)=I_{1} * I_{2}=\int_{-\infty}^{\infty} I_{1}(\tau) \cdot I_{2}(t-\tau) d \tau=\frac{1}{\sqrt{\pi\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}} \exp \left(-\frac{\left(t-t_{1}-t_{2}\right)^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)$

Design of the two-wavelength optical cross-correlator: group delay adjustment

The biggest change S in the overlap is given by the derivative of the convolution:

$$
S=\left(I_{1} * I_{2}\right)^{\prime}=\frac{2(t-\boldsymbol{\tau})}{\sqrt{\pi}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{\frac{3}{2}}} \exp \left(-\frac{(t-\boldsymbol{\tau})^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)
$$

Delay between the extrema in terms of pulse lengths (FWHM):

$$
\tau=\sqrt{\left(\tau_{1}^{2}+\tau_{2}^{2}\right) / 2 \ln (2)}
$$

Examples (after accounting the group velocity delays in the crystal and the lenses):
Ti:Sa + EDFA: $\tau_{1}=100 \mathrm{fs}$ and $\tau_{2}=200 \mathrm{fs}: \tau=190 \mathrm{fs}$
\rightarrow need a $65-80$ fs additional delay: a double pass through a $2-3 \mathrm{~mm}$ silica slab
Nd:YLF + EDFA: $\tau_{1}=11 \mathrm{ps}$ and $\tau_{2}=200 \mathrm{fs}: \tau=9 \mathrm{ps}$
\rightarrow if the same swapping technique is to be used: 20 cm SF66! \rightarrow delay stage

Design of the two-wavelength optical cross-correlator: choice of the crystal

Guiding criteria:

- highest possible efficiency
- highest bandwidths
- smallest background
\rightarrow type of interaction: Type I or Type II

Parameters to calculate:

- phase matching angles
- phase and group velocities
- relative group delays
- walk-off angle
- reflection losses at the crystal surfaces
- effective non-linear coefficients
- group velocity dispersion, group delay dispersion
- chirp, pulse broadening
- effective lengths
- phase mismatch - mix acceptance bandwidth, mix acceptance angle, internal angular BW etc...

Design of the two-wavelength optical cross-correlator: choice of the crystal

Equations from:
Handbook of nonlinear optical crystals, Dimitriev V.G., Gurzadyan G.G., Nikogosyan D.N., Springer Series of Optical Sciences, vol 64 (1999)

Geometric factors:
\rightarrow phase matching
\rightarrow cut angle
\rightarrow crystal thickness
\rightarrow focusing

Phase matching angles for BBO

$\lambda_{1}=1550 \mathrm{~nm}, \lambda_{2}=800 \mathrm{~nm}, \lambda_{\mathrm{SFG}}=528 \mathrm{~nm}$
Type $I(-)($ ooe $): ~ \Theta=22.2^{\circ}$
Type III-(eoe): $\Theta=27.2^{\circ}$
Type III-)(oee): $\Theta=38.8^{\circ}$

Phase velocities in BBO

$$
\begin{aligned}
\mathrm{V}_{\mathrm{Ph}}=\mathrm{c} / \mathrm{n}(\lambda, \Theta) \quad \begin{array}{l}
\text { Type } \mathrm{I}(-)(\text { ooe })
\end{array} \begin{array}{l}
\mathrm{n}\left(\lambda=1550, \Theta=0^{\circ}\right)=1.647 \\
\mathrm{n}\left(\lambda=800, \Theta=0^{\circ}\right)=1.661 \\
\mathrm{n}\left(\lambda=528, \Theta=0^{\circ}\right)=1.656
\end{array} \\
n^{e}(\Theta)=n_{0} \sqrt{\frac{1+\tan ^{2}(\Theta)}{1+\left(n_{o} / n_{e}\right)^{2} \tan ^{2}(\Theta)}}
\end{aligned}
$$

Group velocities in BBO

$$
\begin{aligned}
u_{g}(\lambda, \theta)=\frac{1}{k^{\prime}}=\frac{c}{\widetilde{n}(\lambda, \theta)} & k^{\prime}=\frac{d k}{d \omega}=\frac{1}{c}\left[n(\lambda, \theta)-\lambda \frac{d n(\lambda, \theta)}{d \lambda}\right] \\
\text { Type I(-)(0oe): } & \widetilde{n}\left(\lambda=1550,0^{\circ}\right)=1.671 \\
& \widetilde{n}\left(\lambda=800,0^{\circ}\right)=1.684 \\
& \widetilde{n}\left(\lambda=528,22.2^{\circ}\right)=1.702
\end{aligned}
$$

Relative group delay:

$$
\tau_{g}\left(\lambda_{1}, \lambda_{2}, \theta_{1}, \theta_{2}\right)=L_{q s}\left(\frac{1}{u_{g}\left(\lambda_{1}, \theta_{1}\right)}-\frac{1}{u_{g}\left(\lambda_{2}, \theta_{2}\right)}\right)
$$

Type I(-)(ooe):

$$
\tau_{g}\left(\lambda_{1}=1550, \lambda_{2}=800\right)=-0.44 \quad \mathrm{fs} / \mathrm{mm}
$$

Walk-off angles for BBO

linear walk-off:

$$
\delta=L \tan \rho
$$

S - direction of propagation of the energy
K - direction of propagation of the phase

$$
\rho(\lambda, \theta)=-\frac{1}{n_{e}(\lambda, \theta)} \frac{\partial n_{e}(\lambda, \theta)}{\partial \theta}
$$

Type I(-)(ooe):

$$
\rho\left(528,22.2^{\circ}\right)=54.7 \quad \mathrm{mrad}
$$

Type II(-)(eoe):

$$
\begin{aligned}
& \rho\left(1550,27.2^{\circ}\right)=61.7 \quad \mathrm{mrad} \\
& \rho\left(528,27.2^{\circ}\right)=62.9 \quad \mathrm{mrad}
\end{aligned}
$$

Type II(-)(oee):

$$
\begin{aligned}
& \rho\left(800,38.8^{\circ}\right)=71.8 \quad \mathrm{mrad} \\
& \rho\left(528,38.8^{\circ}\right)=73.4 \quad \mathrm{mrad}
\end{aligned}
$$

Beam walk-off

$$
\begin{array}{lll}
& \rho=54.7 & \mathrm{mrad} \\
\text { Type I }(-)(\text { ooe }): & \delta=54.7 & \mu \mathrm{~m} / \mathrm{mm} \\
\lambda=528 \mathrm{~nm}, & \alpha=5^{\circ} & \\
\Theta=22.2^{\circ} & \delta_{1}=100 \quad \mu \mathrm{~m} / \mathrm{mm}
\end{array}
$$

Reflection at the crystal surface

- normal incidence
- the crystal is not coated $\sim 6 \%$ losses
- difficult to simultaneously satisfy the requirements for high bandwidth for all three wavelengths

Effective nonlinear coefficients deff [pm/V] for point group 3m

Type I

$$
\begin{aligned}
& d_{\text {ooe }}^{\text {eff }}=d_{31} \sin (\theta+\rho)-d_{22} \cos (\theta+\rho) \sin (3 \phi) \\
& d_{\text {eoe }}^{\text {eff }}=d_{\text {oee }}^{\text {eff }}=d_{22} \cos ^{2}(\theta+\rho) \cos (3 \phi)
\end{aligned}
$$

Type II
Available values for BBO (a negative 3m crystal) :

1) Handbook of nonlinear optical crystals, Dimitriev V.G., Gurzadyan G.G., Nikogosyan D.N., Springer Series of Optical Sciences, vol 64 (1999) $\mathrm{d}_{22}=2.3 \mathrm{pm} / \mathrm{V} ; \mathrm{d}_{31}=0.16 \mathrm{pm} / \mathrm{V}$;
2) Eimerl et al, J.Appl.Phys. 62(5), pp.1968-1983 (1967)

$$
d_{22}=1.6 \mathrm{pm} / \mathrm{V} ; \mathrm{d}_{31}=0.08 \mathrm{pm} / \mathrm{V}
$$

3) Eckard et al, IEEE-QE, vol 26, Nr.5, pp.922-933 (1990)

$$
\mathrm{d}_{22}=2.2 \mathrm{pm} / \mathrm{V} ; \mathrm{d}_{31}=\text { ??? pm/V }
$$

4) SNLO

$$
d_{22}=2.2 \mathrm{pm} / \mathrm{V} ; \mathrm{d}_{31}=0.08 \mathrm{pm} / \mathrm{V}
$$

Type I $d_{\text {ooe }}^{\text {eff }}\left(2.3 \mathrm{pm} / V, 0.16 \mathrm{pm} / V, 22.2^{\circ}, 528 \mathrm{~nm}\right)=2.15 \mathrm{pm} / \mathrm{V}$

$$
d_{\text {ooe }}^{\text {eff }}\left(2.2 \mathrm{pm} / V, 0.08 \mathrm{pm} / V, 22.2^{\circ}, 528 \mathrm{~nm}\right)=2.02 \mathrm{pm} / \mathrm{V}
$$

Type II $d_{\text {eoe }}^{\text {eff }}\left(2.2 \mathrm{pm} / V, 27.2^{\circ}, 528 \mathrm{~nm}\right)=1.62 \mathrm{pm} / \mathrm{V}$
$d_{\text {oee }}^{\text {eff }}\left(2.2 \mathrm{pm} / V, 38.8^{\circ}, 528 \mathrm{~nm}\right)=1.18 \mathrm{pm} / \mathrm{V}$

Design of the two-wavelength optical cross-correlator: influence of the crystal thickness on the bandwidth (mix acceptance bandwidth)

Tables 2.20 and 2.21, Handbook of nonlinear optical crystals, Dimitriev V.G., Gurzadyan G.G., Nikogosyan D.N., Springer Series of Optical Sciences, vol 64 (1999)

Example: Type I (ooe)

$$
\Delta v_{2}=\frac{0.886}{L}\left|n_{o 2}-n_{3}^{e}(\theta)-\lambda_{2} \frac{\partial n_{o 2}}{\partial \lambda_{2}}+\lambda_{3} \frac{\partial n_{3}^{e}(\theta)}{\partial \lambda_{3}}\right|^{-1}
$$

Mix acceptance BW for 0.5 mm BBO

	$\lambda=1550 \mathrm{~nm}$	$\lambda=800 \mathrm{~nm}$
ooe	$\Delta \lambda=139 \mathrm{~nm}$	$\Delta \lambda=65 \mathrm{~nm}$
eoe	$\Delta \lambda=91 \mathrm{~nm}$	$\Delta \lambda=161 \mathrm{~nm}$
oee	$\Delta \lambda=631 \mathrm{~nm}$	$\Delta \lambda=35 \mathrm{~nm}$

Design of the two-wavelength optical cross-correlator

non-linear conversion efficiency for Type I (ooe) interaction between a Ti:Sa laser and EDFA
choice of the crystal thickness:

- $\eta(\mathrm{L})<1$
- $L<L_{\text {eff }}$

$$
\begin{aligned}
\lambda_{1} & =1550 \mathrm{~nm}, \tau_{1}=200 \mathrm{fs}, \mathrm{P}_{1}=15 \mathrm{~mW}, \mathrm{f}_{\text {rep }}=216 \mathrm{MHz} \\
\lambda_{2} & =800 \mathrm{~nm}, \tau_{2}=100 \mathrm{fs}, \mathrm{P}_{2}=50 \mathrm{~mW}, \mathrm{f}_{\text {rep }}=81 \mathrm{MHz} \\
& \rightarrow \eta=2 \% @ \mathrm{~d}_{0}=50 \mu \mathrm{~m}, \mathrm{~L}_{\text {BBO }}=0.5 \mathrm{~mm} \\
& \rightarrow \eta=0.5 \% @ d_{0}=100 \mu \mathrm{~m}, L_{\text {BBO }}=0.5 \mathrm{~mm}
\end{aligned}
$$

Layout of the two-wavelength OCC for Ti:Sapphire+EDFA

Two-wavelength OCC First setup and signals

Layout of the Ti:Sa RF and optical synchronization

First results from the optical cross-correlator

Emphasis on the technical issues

- 50 mW input from the Ti:Saphire
- Built-in piezo motors in commercial Ti:Sapphire might be "slow" for an optical lock: 50 kHz instead of 100 kHz
- The temporal overlap between the two wavelengths requires a tool for an automatic VM scan
- when the Ti:Sapphire is optically locked, the VM cannot be used anymore for temporal overlap with the machine \rightarrow an extra delay stage is required

Summary

- A balanced two-wavelength cross-correlator with a BBO crystal has been designed
- Collinear propagation of 1550 nm and 800 nm , normal incidence on the BBO
- SFG, Type I interaction (ooe)...
...not background free, but:
- has the highest efficiency
- has the least walk off
- BBO thicknesses up to 0.5 mm are possible
- bandwidths up to 140 nm for $\lambda=1550 \mathrm{~nm}$ and 65 nm for $\lambda=800 \mathrm{~nm}$ are supported
- Experimental characterization is ongoing
- A robust "cage" system (ThorLABS ${ }^{\text {TM }}$) retains the alignment over months
- Packaging is foreseen
- First error signals have been measured
- Short term ($\sim 5 \mathrm{~min}$) optical lock of the Ti:Saphhire has been achieved
- Out-of-loop measurements with two prototypes are ongoing

Thank you for your attention!

Layout of the two-wavelength OCC for the injector laser

Design of the two-wavelength optical cross-correlator: phase matching (some basics)

- optical axis (Z-axis)
- principal plane: containing Z and k
- ordinary (o) beam: with polarization normal to the principal plane
- extraordinary (e) beam: with polarization in the principal plane

Design of the two-wavelength optical cross-correlator: phase matching (some basics)

vector (noncollinear):
$\overrightarrow{k_{3}}=\overrightarrow{k_{2}} \pm \overrightarrow{k_{1}}$
$\left|\overrightarrow{\mathrm{k}}_{i}\right|=\frac{\omega_{i} n\left(\omega_{i}\right)}{c}=\frac{\omega_{i}}{\mathrm{v}\left(\omega_{i}\right)}=\frac{2 \pi n_{i}}{\lambda_{i}}=2 \pi n_{i}{ }^{{ }^{\prime}}$
scalar (collinear):
$\mathrm{k}_{3}=\mathrm{k}_{2} \pm \mathrm{k}_{1} \Leftrightarrow \omega_{3} n_{3}=\omega_{2} n_{2}+\omega_{1} n_{1}$

SFG, SHG
$\mathrm{k}_{3}=2 \mathrm{k}_{1}, \quad \omega_{3}=2 \omega_{1}, \quad n_{1}=n_{3}$
for isotropic crystals $n_{1}<n_{3}$ (normal dispersion) need an anisotropic crysatal and different polarizations

Design of the two-wavelength optical cross-correlator: types of phase matching in the uniaxial crystals

I. Interacting waves ||, result \perp

Type I(-)(ooe), negative crystals

$$
\mathrm{k}_{\mathrm{o} 1}+\mathrm{k}_{\mathrm{o} 2}=\mathrm{k}_{3}^{e}(\Theta)
$$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{o} 1}+\mathrm{k}_{2}^{e}(\Theta)=\mathrm{k}_{3}^{e}(\Theta) \\
& \mathrm{k}_{1}^{e}(\Theta)+\mathrm{k}_{o 2}=\mathrm{k}_{3}^{e}(\Theta)
\end{aligned}
$$

Type I(+)(eeo), positive crystals

$$
\mathrm{k}_{1}^{e}(\Theta)+\mathrm{k}_{2}^{e}(\Theta)=\mathrm{k}_{o 3}
$$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{o} 1}+\mathrm{k}_{2}^{e}(\Theta)=\mathrm{k}_{o 3} \\
& \mathrm{k}_{1}^{e}(\Theta)+\mathrm{k}_{o 2}=\mathrm{k}_{\mathrm{o} 3}
\end{aligned}
$$

works in both directions:
sum frequency generation (SFG) ↔ optical parametric luminescence (OPO)

$$
\omega_{1}(\text { idler })<\omega_{2}(\text { signal })<\omega_{3}(\text { pump })
$$
 \section*{Design of the two-wavelength optical cross-correlator:
 \section*{Design of the two-wavelength optical cross-correlator: choice of the crystal} choice of the crystal}

Geometric factors:cut angle

- the phase matching depends on Θ, but not on ϕ
- the conversion efficiency depends on both Θ and ϕ

Design of the two-wavelength optical cross-correlator: choice of the crystal

The refractive index of the extraordinary wave is a function of the polar angle Θ between the axis Z and the vector k

$$
n^{e}(\theta)=n_{0} \sqrt{\frac{1+\tan ^{2}(\theta)}{1+\left(n_{o} / n_{e}\right)^{2} \tan ^{2}(\theta)}}
$$

Sellmeier equations for $\beta-\mathrm{BaB}_{2} \mathrm{O}_{4}$ (BBO)

K. Kato IEEE-QE, vol.22, No7, pp.1013-1014 (1986)

$$
\begin{aligned}
& n_{o}^{2}=2.7359+\frac{0.01878}{\lambda^{2}-0.01822}-0.01354 \lambda^{2} \\
& n_{e}^{2}=2.3753+\frac{0.01224}{\lambda^{2}-0.01667}-0.01516 \lambda^{2}
\end{aligned}
$$

$\mathrm{n}_{\mathrm{o}}, \mathrm{n}_{\mathrm{e}}$ - principal values of the refractive index for $B B O n_{0}>n_{e}$ (a negative uniaxial crystal)

Calculation of the nonlinear conversion efficiency

$\Delta \vec{E}(\vec{r}, t)+\frac{\varepsilon_{0}}{c^{2}} \frac{\partial^{2} \vec{E}(\vec{r}, t)}{\partial t^{2}}=-\frac{4 \pi}{c^{2}} \frac{\partial^{2} \vec{P}_{N L}(\vec{r}, t)}{\partial t^{2}}$
with $\quad \vec{P}_{N L}(\vec{r}, t)=\chi^{(2)} \vec{E}^{2}(\vec{r}, t)$

$$
\chi_{i j k}=2 d_{i j k}=2 d_{i(9-j-k)} \quad i, j, k \in\left[\begin{array}{ccc}
X & Y & Z \\
1 & r & r
\end{array}\right]
$$

The field is a superposition of three interacting waves:
$\vec{E}(\vec{r}, t)=\frac{1}{2} \sum_{i=1}^{3}\left\{\vec{p}_{i} A_{i}(\vec{r}, t) \exp \left[j\left(\omega_{i} t-\vec{k}_{i} \cdot \vec{r}\right)\right]+C C\right\}$

Assume slowly varying amplitudes \rightarrow truncated equations:

$$
\begin{aligned}
& \hat{M}_{1} A_{1}=j \sigma_{1} A_{3} A_{2}^{*} \exp (j \Delta k z) \\
& \hat{M}_{2} A_{2}=j \sigma_{2} A_{3} A_{1}^{*} \exp (j \Delta k z) \\
& \hat{M}_{3} A_{3}=j \sigma_{3} A_{1} A_{2} \exp (-j \Delta k z)
\end{aligned}
$$

$$
\text { where } \sigma_{\xi}, \Delta k, \hat{M}_{\xi} \rightarrow
$$

Calculation of the nonlinear conversion efficiency

$$
\hat{M}_{\xi}=\frac{\partial}{\partial z}+\rho \frac{\partial}{\partial x}+\frac{j}{2 k_{\xi}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{1}{u_{g, \xi}} \frac{\partial}{\partial t}+2 g_{\xi}(\lambda, \theta) \frac{\partial^{2}}{\partial t^{2}}+\delta_{\xi}+Q_{\xi}(A)
$$

- σ - non-linear coupling coefficients
- $\quad \Delta k$ - wave mismatch (spatial, thermal self-focusing,

$$
\left\{\begin{array}{l}
\sigma_{1,2}=4 \pi k_{1,2} d_{e f f} / n_{1,2}^{2} \\
\sigma_{3}=2 \pi k_{3} d_{e f f} / n_{3}^{2}
\end{array}\right.
$$ non-linear absorption, etc.)

- $\quad \rho$ - walk-off angle
- u_{g} - group velocity
- $\quad g$ - group velocity dispersion (GVD)
- δ - linear absorption
- $\quad Q$ - nonlinear (e.g. two-photon) absorption

Non-linear conversion effective lengths $L_{\text {eff }}$

Fixed field approximation (FFA): $L<L_{\text {eff }}$

1. Aperture length (2nd term) (influence on the focal spot size)
2. Diffraction length (3rd term)
(the length over which a gaussian beam would spread by \sqrt{r})
3. Quasi-static length (4th term) (influence of the group velocity mismatch)

$$
L_{q s}=\frac{\tau}{u_{g, 1}-u_{g, 2}}
$$

4. Dispersive spread length (5th term) (influence of the dispersion on the pulse shape) $L_{d i s}=\tau^{2} / g(\lambda, \theta)$
5. Non-linear interaction length (influence of the input power and the nonlinear coupling)

$$
L_{N L}=\frac{1}{\sigma \sqrt{a_{1}^{2}(0)+a_{2}^{2}(0)+a_{3}^{2}(0)}}
$$

