

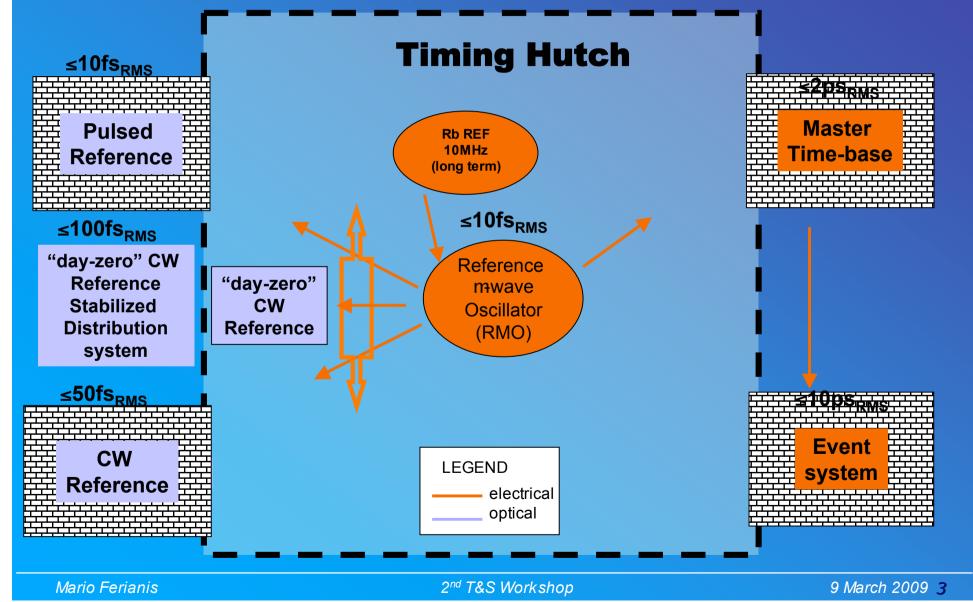
Specifications of the FERMI@*Elettra* optical hybrid timing system

Mario Ferianis on behalf of the FERMI Area *Timing*

Mario Ferianis

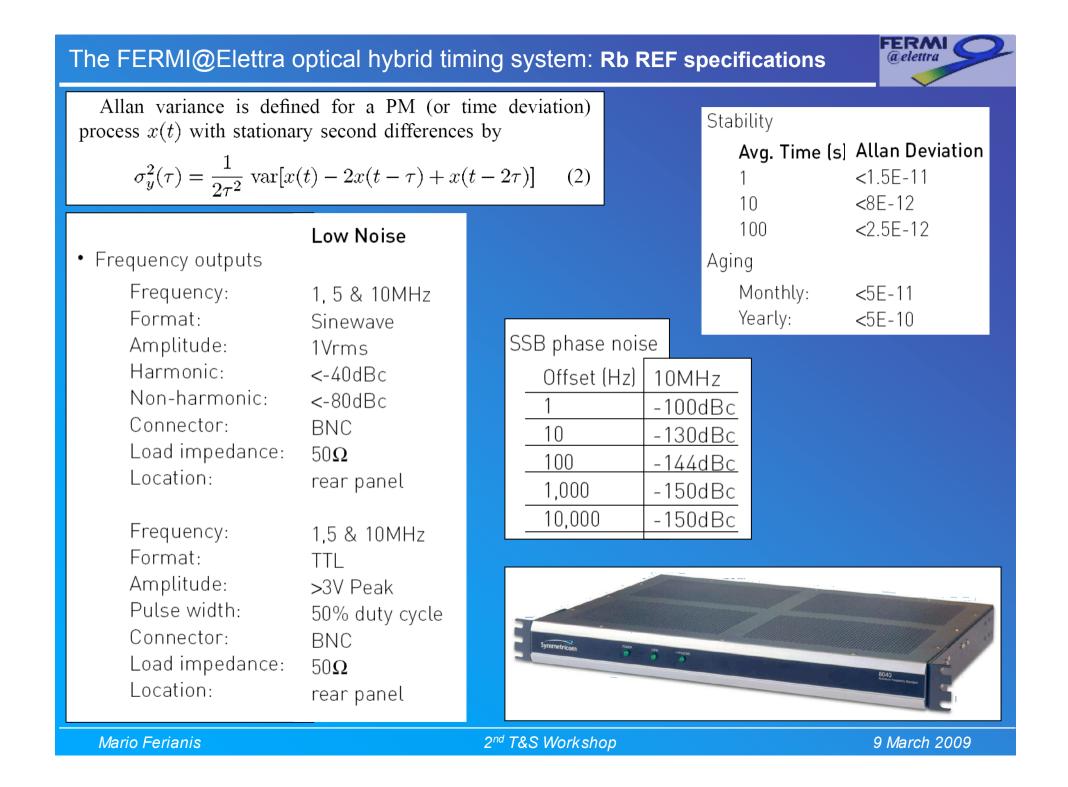
2nd T&S Workshop

9 March 2009


> The FERMI timing project has been split into the following tasks:

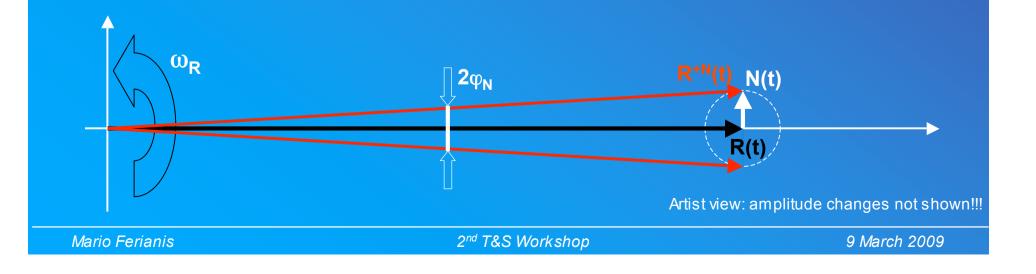
- Pulsed Clock (phase reference)
 - 2-link test bed implemented at ST (June '08, MIT Contract)
 - Pulsed Clock specifications (FESD #022 et al.)
 - Purchase Order (PO) issued to MENLOSystems gmbh
 - Ref. mwave Oscillator (RMO): to be delivered soon
 - Rb 10MHz reference: PO issued
- CW Clock (phase reference)
 - > LBNL CW
 - contract signed last september '08
 - test bed for 2 CW stabilized links
 - Day Zero CW/back-up system
- Trigger generation
 - >Event System (by Micro Research Fin.) integrated into FERMI Timing
- Distribution system
 - blown SM fiber bundle solution adopted
 - Iayout defined; PO under preparation
- Timing Hutch
 - Iayout & racks defined

The FERMI@Elettra optical hybrid timing system


To provide the Phase Reference at ≤10fs phase noise level (seed / user laser osc) To provide the Bunch Clock (50Hz)

The FERMI@Elettra optical hybrid timing system: RMO specifications

parameter	symbol	value	units	notes				
Output frequency	f_{RF}	2998.010	MHz	five outpu	ıts			
Factory set accuracy	f_{RF}	0.1	ppm	manual				
Frequency Stability	$\Delta f_{\text{RF FREE}}$	± 10	ppm	free runni	ing, over 8h			
Frequency Stability	$\Delta f_{\text{RF REF}}$	±1	ppm	with exter over 8h	rnal reference			
Frequency tuning rang	e	±1	ppm	manual				
Frequency Temperatur	re stability	<0.2	ppm/0	С				
Frequency stability bet	tween outputs	0.01	ppm		and with ext. ref.			
Output power	P _{fRF} (i)	≥15	dBm	i=15				
Output connector			SMA, f	emale				
Phase noise		-80@10Hz	dBc/H	z (respect t	o the carrier)			
Phase noise (in time un Phase noise (in time un Phase noise between o	nits) utputs (i, j)	-130@1kHz -140@10kHz -145@100kHz -150@1MHz -160@10MHz <20fsRMS <10fsRMS <10	[100Hz fs _{pk-pk}	10MHz] z-10MHz] i, j=15	ADJUST	AR MONITOR OUT TEMP MC	2998.010 MHz LEVEL: 15dBm 3 4 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RMO 2998.OIO MHz
Reference in, Frequence	cy F _{REF IN}	10	MHz					
Reference in, Level		1	V _{RMS}	· · · · 1			FE	elettra
Reference in, connecto			SMA, f		1.		a	elettra
Monitor output connec	ctor	DB 15 pin	KS-232 VAC	or analogu	le voltages			\checkmark
Power Supply	. 1	220	vac ∘C	50Hz		iment		I
Operating environmen	IC	24 10" mail: march		±1 bish <4U		ment	Revision: 1.2	Date: 20-Feb-09
Size		19", rack-moun	lt	high ≤4U		_		
					Reference	e microwave M	laster Oscillator	
Mario Ferianis 2 nd T&S Workshop							9 March 2009	


The FERMI@Elettra optical hybrid timing system: some notes on phase noise...

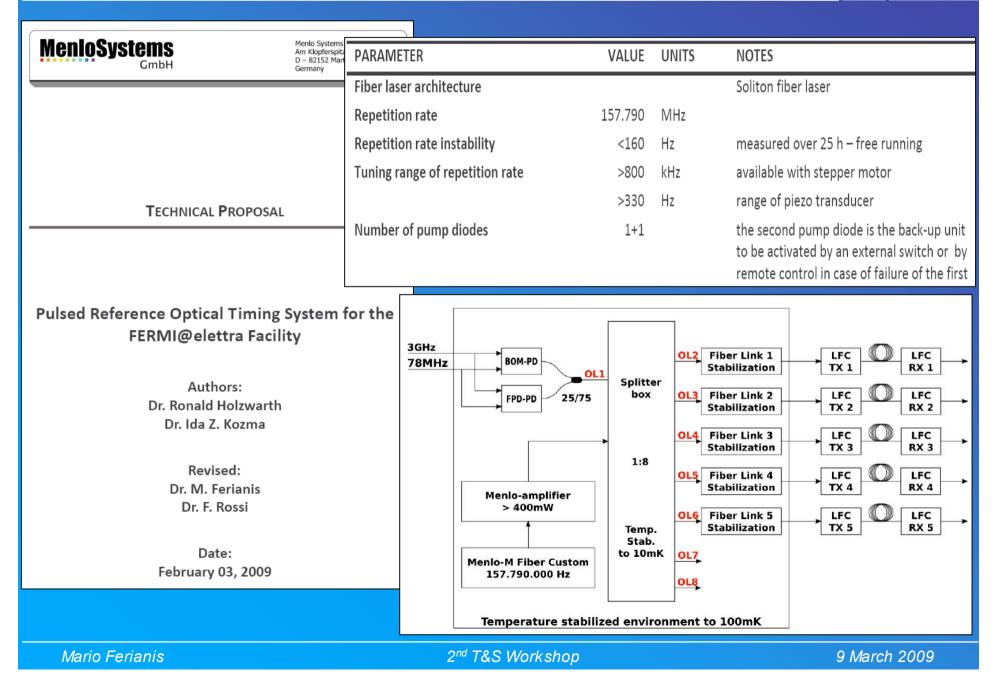
Which is the physical meaning of a phase noise component for a high frequency carrier (i.e the Reference)

> Let's represent the reference signal R(t)= $A_R sin(2pf_R t+\phi_R)$ by using the vector notation

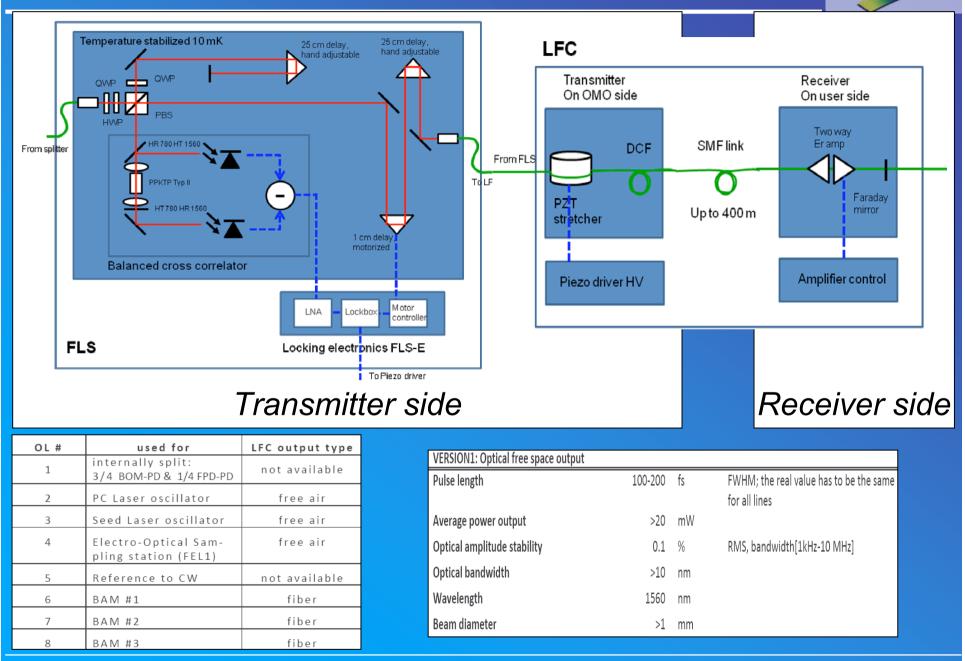
- \succ It is rotating at w_R=2pf_R; being the Reference we keep it in place
- > Let's add to it a phase noise components $N(t)=A_N sin(2pf_N t)$
- \succ For each value of N(t) we obtain the resultant R^{+N}(t) by applying vector sum
- > As a consequence, R(t) is oscillating around its nominal angle at f_N and by ϕ_N
- > The value of φ_N depends on the ratio A_N / A_R ; pk-pk jitter of R(t)
- > The rate at which R(t) moves depends on f_N ; i.e. the offset frequency in the phase noise spectrum

> One good question:

how much does a 100Hz phase noise component affect the Reference signal?

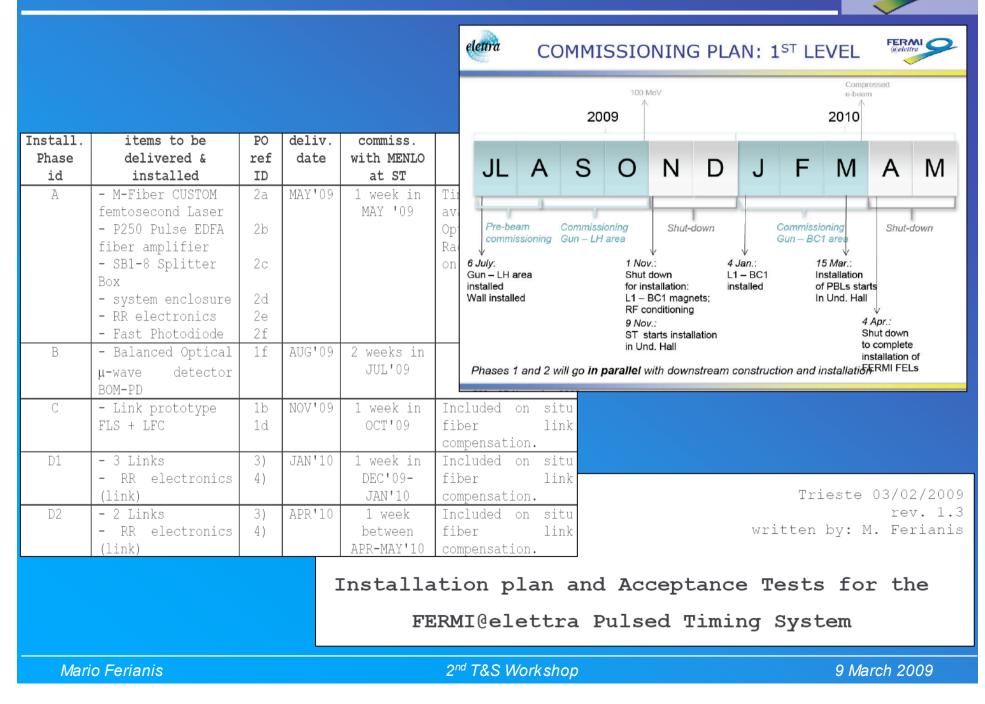

- > let's plug in some numbers... $f_R = 3 \text{ GHz}$; $f_N = 100 \text{ Hz}$;
- > from phase noise plots, we get relative amplitudes: $A_R / A_N = 80$ dB (?)

 \succ φ_N [rad] ≅ A_N / A_R = 0.0001 rad \succ t_R = 330ps; φ_N = 0.0057 deg = **5.309fs**


but, the time of flight of FERMI isfew ns		j	F _N	t	f(t)
so the 2 nd question is: by how much does	[fs]	[Hz]	[sec]	[fs]	
the phase of the Reference signal	5,308686	100	0,000000	0,000000	
<u>change in few ns?</u>	5,308686	100	0,000002	0,006671	
> t _N = 10ms; considering 2ms around zero crossin	5,308686	100	0,002000	5,048861	
(max slope) ⇒ 0.00667fs!!!	5,308686	100	0,002500	5,308686	
The peak value (5.309fs) is reached after	5,308686	100	0,005000	0,000000	
	5,308686	100	0,007500	-5,308686	
	5,308686	100	0,010000	0,000000	
			9 <i>M</i> a	rch 2009	

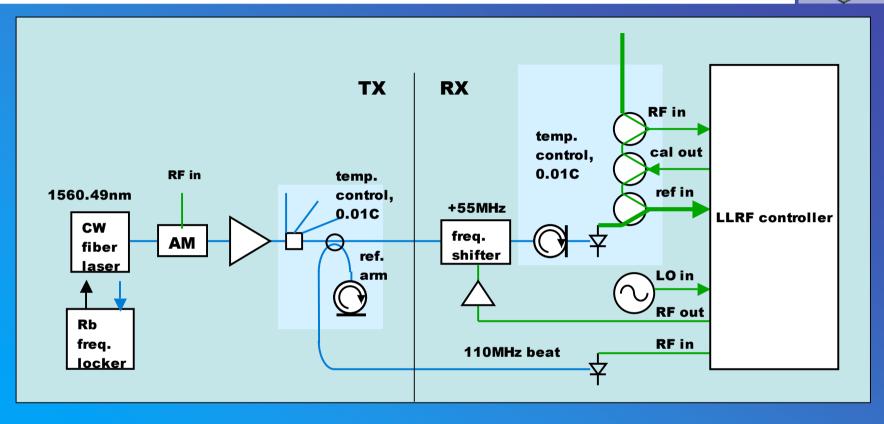
The FERMI@Elettra optical hybrid timing system: Pulsed Reference specifications

The FERMI@Elettra optical hybrid timing system: Pulsed Reference specifications

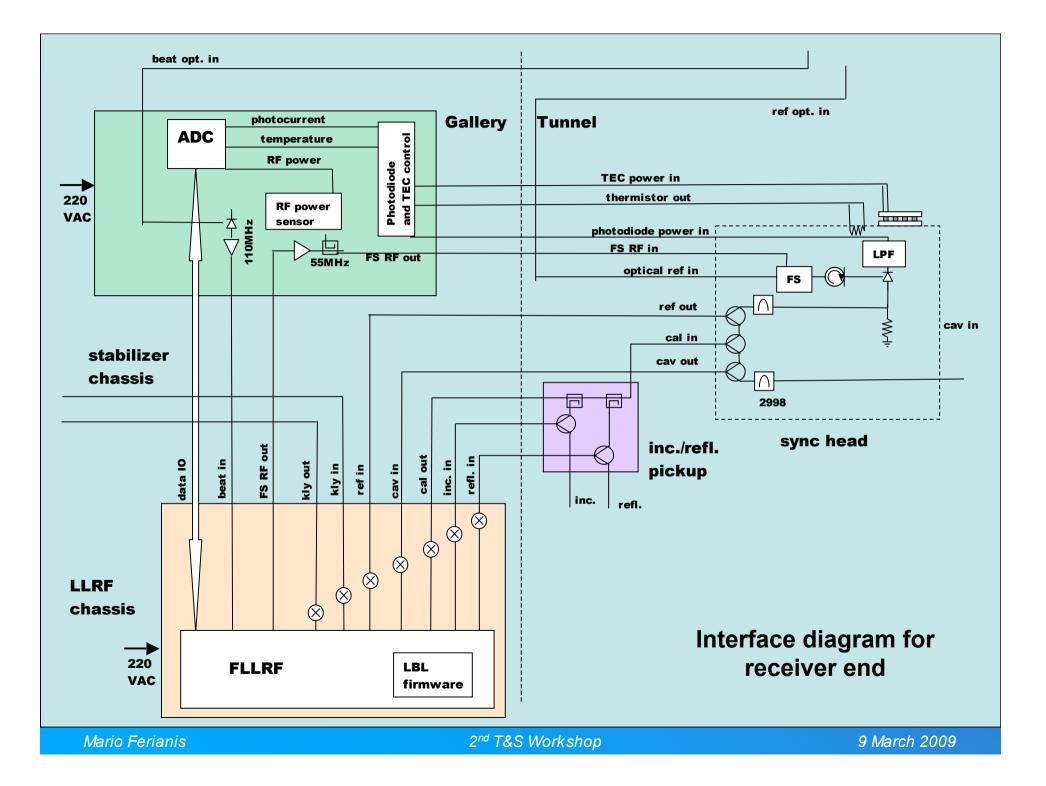


Mario Ferianis

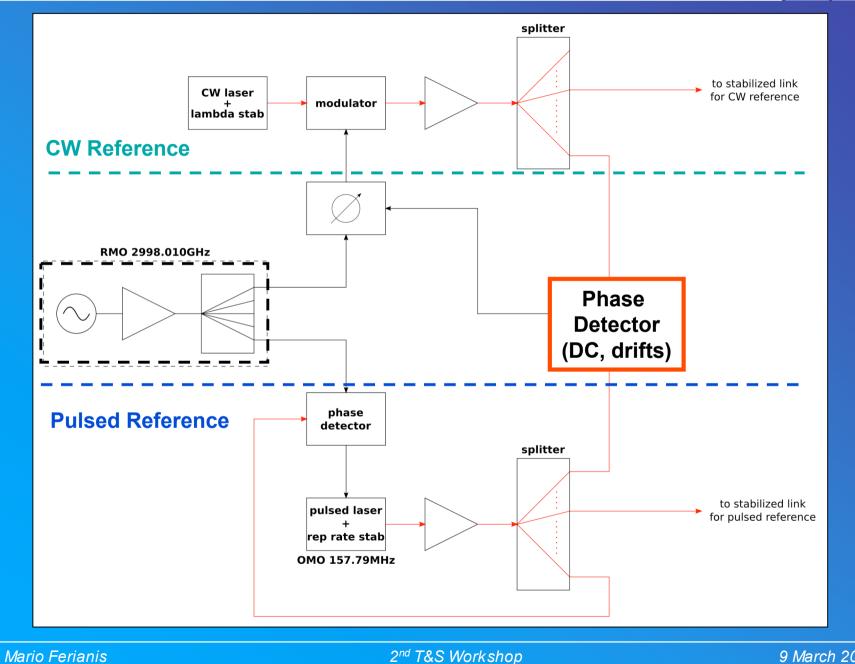
2nd T&S Workshop


FERMI The FERMI@Elettra optical hybrid timing system: Pulsed Reference specifications

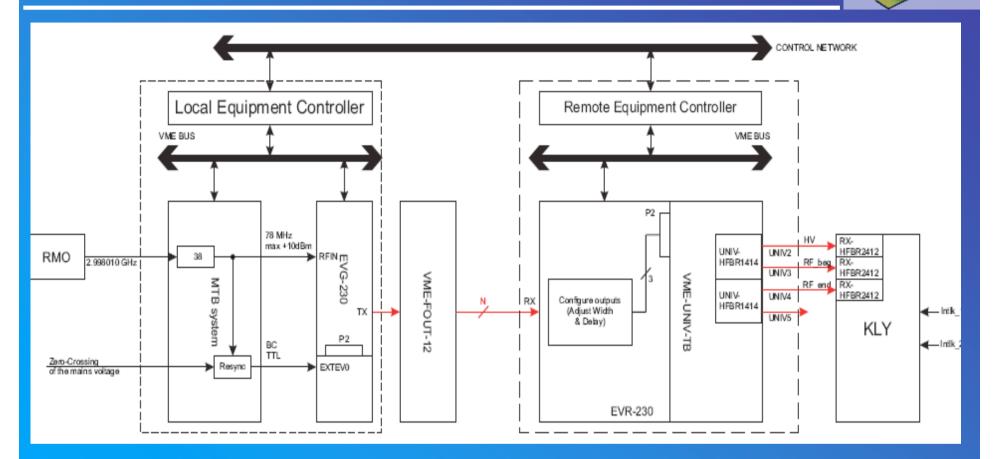
@elettra



The FERMI@Elettra optical hybrid timing system: CW Reference specifications



- Changes in line length are sensed by interferometer, signal sent to receiver
- Receiver applies phase shift to frequency shifter RF, stabilizing optical phase at end
- Optical phase correction is used to calculate RF phase shift, including group/phase correction
- >Thermal drift of beat fiber delay is ~1ns, becomes 0.5fs of optical phase error on main
- > Arbitrarily long delay range is possible, limited only by software


The FERMI@Elettra optical hybrid timing system: **CW to Pulsed Locking (DRIFTS)**

9 March 2009

FERMI @elettra

The FERMI@Elettra optical hybrid timing system: Event system integration

One EVR in each Equipment Controller of DIAGS, LLRF and Controls
Measured jitter on remotely generated trigger < 10ps_{RMS}
Also during commissioning phase 1 Klystrons will be triggered using the EVRs

2nd T&S Workshop

FERM

@elettra

The FERMI@Elettra optical hybrid timing system: **Optical Fiber layout**


CABLAGGIO OTTICO

OPTICAL TIMING SYSTEM

FERMI@elettra

			-						
	Fabio Rossi	Utenza	Punto di	Punto di	#	# Fibre	Note		
			PARTENZA	ARRIVO	Slot				
		Klystron Späre (TH)		Rack LLRF RLLRF_KGSP.01 (RLLRFSP)	2	8 fibre SMF 4 fibre MMF	Attraversamento foro penetrazione HL_KGSP.02		
	LOW FRICTION		Timing Hutch (TH)	Rack LLRF RLLRF_KG01.01 (RLLRF01)	2	8 fibre SMF 4 fibre MMF	Attraversamento foro		
	COATING	Impianto LLRF Klystron #1	Rack LLRF RLLRF_KG01.01 (RLLRF01)	Punto misura RF sezione PHJ nel LINAC Tunnel (MPRF01)	1	4 fibre SMF	penetrazione HL_KG01.03		
		Rack LLRF RLLRF_KG01.01 (RLLRF01)	Punto misura RF deflettore DF1 nel LINAC Tunnel (MPRF09)	1	4 fibre SMF	Attraversamento foro penetrazione HL_KG01.04			
			Timing Hutch (TH)	Rack LLRF RLLRF_KG02.01 (RLLRF02)	2	8 fibre SMF 4 fibre MMF	Attraversamento foro		
	FIBRE	Impianto LLRF Klystron #2	Rack LLRF RLLRF_KG02.01 (RLLRF02)	Punto misura RF sezione S0A nel LINAC Tunnel (MPRF02)	1	4 fibre SMF	penetrazione HL_KG02.01		
			Rack LLRF RLLRF_KG02.01 (RLLRF02)	Punto misura RF sezione S0B nel LINAC Tunnel (MPRF03)	1	4 fibre SMF	Attraversamento foro penetrazione HL_KG02.02		
	Mario Ferianis	9 March 2009							

The FERMI@Elettra optical hybrid timing system: **Optical Fiber layout**

FERMI @elettra

The FERMI@Elettra optical hybrid timing system: Installation Plan

							45.6		<u>^</u>			-
	FERMI TIMING INSTALLATION & COMMISSIONIG PLAN resp. res.					_	15 fe				1,0	붜
ID	milestones		feb-09	mar	apr	may	giu	lug	ago	set	ott	n
M.1	start of COMM phase 1 (2 S-band ?)											Т
M.2	COMM phase 1 (+4 S-band ?)											L
M.3	end of COMM phase 1											Ι
M.4	shutdown	_										
M.5	LINAC tunnel (up to BC1): FINITO e PULITO	SN										П
M.6	art Installation timing hutch (civil work DONE; no more DUST; still YARD!!!)	SN										T
											\vdash	t
	PRE-INSTALLATION TASKS (still YARD)											t
T.1	false floor	DB, GM										Т
T.2	install HVAC & Chiller inside the Timing Hutch; cooling pipes to 2 racks	MM GM										Т
T.3	cable trays on floor & vs. laser hutch	FDB GM FR										П
T.4	install racks; connection to POWER & cooling	FDB GM										Т
T.5	install Optical Tables (done with ST personnel as usual in EXP HALL) GM FR posa racks (DIAGS CONTR e LLRF) GM Lpiv											Т
T.6												T
												T
	INSTALLATION TASKS (YARD ?)										Ι	
T.10	DELIVERY of RMO (& TESTING in fs meas laboratory)	MF FR										Г
T.11	Delivery & Installation of TEMP Monitoring System	MP										Г
T.12	FO 1st batch (from Timing Hutch to LINAC TUNNEL & KLYSTRON GALLER FR GM											Γ
T.13	PMD measurements from UNI PD FR+EXT											Г
T.14	Implementation of FO patch panel in timing hutch FR GM											Γ
T.15	Impl. of FO patch panels in RACKS in LINAC TUNNEL & KLYSTRON GALLIFR GM											Т
												Ť

	FERMI TIMING INSTALLATION & COMMISSIONIG PLAN	resp. res.				MF	15 fe	b 200	9	rev	1.0		
ID			feb-09	mar	apr					set		nov	
T.20	Instalaltion of RMO	FR											
T.21	Installation of RB OSC	FR											
T.22	Installation of TIMING EC;	MP											
T.23	Routing of cables / FO to C. ROOM; including Event system FO	GM Lpiv											
T.24	provisional Ref. Signal to PC laser osc. (coax)	FR											
T.25	DELIVERY & INSTALLATION OF OMO & SPLIT BOX	FR MF+EXT											
T.26	Move MIT Table Top stab links (2) HW	FR+EXT											
T.27	Installation of Day (-1) CW RF distribution (2 TX + 6 links)	AB TR											
T.28	Day Zero CW prototype ready (1link)	MF+EXT											
T.29	Mastertime base (10Hz bunch clock)	AB RM											
T.30	Installation of Event_Generator	AB MP											
T.31	Installation of Trigger BC TX units	AB RM											
T.32	Integration into CS of available sub-systems (RMO, OMO, SPLIT, Mastertime base, Ev_Gen												
T.40	CW FINAL Sender ready	FR+EXT											
T.41	development of CW to OMO locking unit, testing in fs lab	FR LB											

2nd T&S Workshop