

M. Bellaveglia, A. Drago, A. Gallo, C. Vicario

System overview

System specifications

Client	Jitter spec [fs]	Lock-in stability [fs]	Client Lock- i n Bandwidth	Technology	
Photoinjector Laser	200	240	5 kHz	SynchroLock (electro-opt or full opt.)	
Laser Heater	150	130	5 kHz	SynchroLock (electro-opt or full opt.)	
RF S-Band	150	130	1 MHz	Klystron Fast Phase Lock (LLRF)	
RF X-Band	100	70	4 MHz	Klystron Fast Phase Lock (LLRF)	
S e e d i n g Lasers	100	70	5 kHz	SynchroLock (electro-opt or full opt.)	
Streak Cameras	500	500	Full	Direct Seeding	
Bunch Arrival Monitors	100	70	Full	Direct Seeding	
Pump Lasers	100	70	5 kHz	SynchroLock (electro-opt or full opt.)	
Triggers	10000	10000		Electronic event generator and receivers	

A 70fs jitter between reference oscillator and users due to propagation in fiber is assumed

Reference Master Oscillator

- Used to long term stabilize OMO frequency avoiding slow drifts
- > No extreme performances needed
- Choice of commercial products (jitter <50fs from 10Hz to 10kHz)</p>

67 GHz

40 GHz

20 GHz

- 10 GHz

10 M 100 M

Optical Master Oscillator

A call for tenders for a OMO prototype has been won by OneFive Gmbh

The laser oscillator is now under construction

		1 · · · · ·			A25 9
➤ We are p	We are pl	Pulse width	tpulse	< 200 fs	ork progress
		Wavelength 1	11	1560 nm	Characterisck are
	Wavelength 2	12	780 nm		
	Ĩ	Pulse rep rate	frep	89.250 MHz	
		Pulse energy	Epulse	> 2 nJ (~ 180 mW)	
		Phase iitter	trms	< 100 fs rms	
		Filase jillei	<i>u</i> 1115	(SSB Df > 1 kHz)	
		Amplitude jitter	(D A/A)rms	< 0.05 % rms	
		Synchrolock BW	fcutoff	> 5 kHz	
		Phase jitter relative	to trol	< 10 fs rm s	
		reference	lrei	(dc – 1 kHz)	

Reference signal generation

- Choice of a PLL operating directly at the 2856MHz main frequency
- In-fiber instead of in-air optical splitting
 - Avoid signal attenuation in fiber-air interfaces
 - Minimize mechanical noise added by optical components (vibrations, thermal elongation)

We plan to keep the devices in a temperature controlled and mechanical stabilized environment

Timing generation and distribution

Reference signal distribution

Clients synchronization

RF power station clients

Diagnostics (1/2)

Diagnostics (2/2)

SPARC implementation in collaboration with CNR Pisa

FERMI test bench @SPARC in collaboration with

ST

March 9 2009, Timing and Synchronization Workshop

RF deflector

the beam centroid vertical jitter $Dt \approx 400 \text{ fs}_{\text{RMS}}$

System layout

- Optical master oscillator and optical fiber signal transmitter
- Optical fiber reference signal receiver for transduction
- Electric master oscillator
- Demodulation board for phase information extraction
- Trigger, event and time stamp generator and transmitter
- R Trigger, event and time stamp signal receiver
- Optical cross-correlation

- Laser arrival monitor
- Bunch arrival monitor
- ----> Photo-injector laser
- → Seeding lasers
- IR photo-detector
- T&S main rack
 - T&S local rack

Bringing SPARC to LIFE (1/3)

Bringing SPARC to LIFE (2/3)

Bringing SPARC to LIFE (3/3)

Magnet

plasma wave.

Off-Axis Parabola

Magnet

Mirro

Plasma acceleration experiment: SPARC and

Flame pulses injected in a gas jet, requires

synchronization at the level of the period of the

Gas-Jet

<u>Thomson scattering experiment</u>: requires physical overlapping of SPARC and FLAME beams within the depth of focus of the laser focusing optics.

Stability required <1 ps (PLASMON–X, MAMBO)

Conclusion

- Part of the client side of the SPARX synchronization system tested at SPARC
- Cavity resonant diagnostics tested at SPARC
- Resonant BAM ready to be installed at SPARC

- Synchronization lab is in preparation
- SPARC upgrade towards LIFE is under way
- SPARX synchronization system to be built and tested
- Electro Marchio 2009, Timing and Synchonization Workshaped