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INTRODUCTION

*Most of cosmology is based on observing &
interpreting light (or light-like) signals.

*Such signals travel on null geodesics lying
on our past light cone (PLC).

*In a FLRW space-time it's easy to define
our PLC and describe geodesics therein.



*In the presence of inhomogeneities our
PLC and its null geodesics become messy.

*Q: Can we simplify our life by a suitable
choice of coordinates?

*And, if yes: What can we do with them?



OUTLINE
®The GLC gauge & its properties

®Light-cone averaging in GLC coordinates

® Average (and dispersion in the) Hubble
diagram for a "realistic” Universe
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®Other applications:
* Determination of local Ho
* Number counts
* Higher order deflection & CMB lensing
*TOF of UR particles



The geodetic light cone (6LC) gauge
(Gasperini, Marozzi, Nugier & GV, 1104.1167)



A more "constructive” approach
(P. Fleury, F. Nugier, 6. Fanizza, 1602.04461 )

(a) Definition of the GLC coordinates 7, w, 6°. (b) Basis vector 8; is tangent to the w, #% = cst
The curve %4, is the observer’s worldline. lines, hence parsllel to k.

T=c8t

(c) Basis vector 8, is tangent to the 7, #* = cst (d) Basis vectors 8, are tangent to the
lines. It defines a notion of radial direction. 7, w, B2 — cst lines.



The geodetic light cone (6LC) gauge
(Gasperini, Marozzi, Nugier & GV, 1104.1167)

An almost fully gauge-fixed variant of the
“observational coordinates” of G. Ellis et al.
The metric w.r.t. the coordinates (z, w, 64):
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[dﬁ = Y2dw? — 2YdwdT + Yap(d0* — U%dw)(d8® — Udw) ; a,b=1,2
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Flat-FRW limit (a(n)dn = dt, n = conformal time):

T =1, w=r+n, T =a(t)
U® =0, Yapd02dB° = a?(t)r?(d6? + sin® 6d¢?).



Two residual gauge freedoms

*w -> w'(w) allows to relabel the light cones and to set
Y =1 along Lo

«0% —>0’%w, 6°) allows to relabel the angles and to set
« = 1 along Lo



Generic properties of GLC coordinates

*w =(<) wo defines our past light cone (causal past)
‘w = constant hypers. provide a null-foliation

*1 can be identified with synchronous-gauge time
*Static geodetic observers in SG have u, = 0,7

*Photons travel at fixed w and 6¢° :
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Other nice properties of the 6LCG

1. A simple, exact expression for the redshift

In FRW cosmology z is simple (& factorizes) in
terms of entries of the standard FRW meftric

a (7o)

a(ns)

In the GLC gauge this property remains true:
(k'uu,u)s L To (U’T)S . To
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Ratio depends in general from the
¢« coordinates



2. An exact & factorized expression

for the Jacobi Map
(Fanizza, Gasperini, Marozzi, GV, 1308.4935)



Recall deviation equation for null geodesics:
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projected along the Sachs basis:
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FGMV: exact expression for J in GLCG!
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Again (bi)local and factorized (s.* = zweibeins for yab)
in this gauge (NB: expression is NOT covariantl!)




3. Area & luminosity distance (da, di)
(Ben-Dayan, Gasperini, Marozzi, Nugier & GV,
1202.1247 & FGMV 1308,4935)

Much easier if one has the Jacobi map!

Y(As)

d% = det (JA(As, \y)) =
y ( B )) det (u?lﬁTsf)

, Y = det Yab
A=A,

1

det (u;l(‘%sf))\:% =7 [det (u;l(‘)Ty“b) 73/2}

(0]

Using residual gauge freedom in GLCG:

2 =YL &findly:  dp = (1+2)%d,

sin @



I: The inhomogeneous Hubble diagram
in a realistic cosmology

For a complete summary of our (and related)
work see: F. Nugier's thesis: 1309.65420



The concordance model:
3 sets of data pointing at Dark Energy
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Two arguments for DE are based on
inhomogeneities/structures
The 3rd (SNIa) ignores them completely!

Basic tool: the famous Hubble diagram of
redshift vs. luminosity-distance

A short reminder (for FLRW)



Definition of luminosity distance d.:

L
b= drd3
where L is the absolute luminosity and @ the flux.
. _ %0 _ G,
For FLRW: 1+ Z(t) - a(t) qo = -3 (t — t())
For a spatially flat ACDM Universe (for simplicity):
FLRW, v 1+2z [7 dz’
dr, (2) = Hy /0 [QAO‘|‘QmO(1+Z/)3]1/2

If expanded to 2" order in z:

dr(z) = H'! {z — %(1 —qo)2° + O(2°)

In FLRW cosmology: ¢y = 4mG(po + 3po) = %(Qm,o —2Q70)

3H?
Hubble law beyond linear order => information about eq. of statel




Using Type Ia supernovae as standard candles: evidence
for negative qo, DE...
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The Universe is fairly homogeneous only on very
large scales (> few 100 Mpc?).

Q: What's the effect of smaller scale
inhomogeneities?

A. Not obvious! Averages of physical quantities do
not obey the homogeneous EEs (Buchert & Ehlers,
Buchert,...).

There are extra, so-called "backreaction”, terms.
This "averaging problem” has been a rather hot
topic in recent years.



Hopes have been raised that inhomogeneities might
“explain” cosmic acceleration and give a natural
resolution of the famous coincidence (why now?)
problem (Buchert, Rasanen, Kolb-Matarrese-Riotto...)

Too optimistic (given other evidence for DE)? Yet
still important to take inhomogeneities into account

for (future) precision cosmology and/or for testing
the concordance model itself.



Most of previous work deals with spatial averages
and with formal definitions of acceleration.

Not clear what's the relation between such

averages and the averaged d -z relation (Hubble
diagram)

We therefore looked at how to average directly
that relation.



Gauge-invariant light-cone averages
(Gasperini, Marozzi, Nugier & GV, 1104.1167)



WHATS THE CORRECT MEASURE?

(6. Marozzi, 6. Veneziano et al, unpublished,
P. Fleury, C. Clarkson, R. Maartens, 1612.03726)

An important issue is whether one should average the
physical quantity (e.g. d.™?) with a non trivial measure.
In our SNe papers we took as measure the proper area
of the 2-D (fixed-z) surface element. If the proper
number density of SNe is constant on a fixed-z hyper
surface our procedure gives the measured average!
Kaiser & Hudson discuss other measures as well (e.g. a
“galaxy-averaged bias").

FCM argue in favor of a number-count weighting.

For CMB averaging on the last-scattering surface one
may argue that the correct measure is yet different.



Averaging the flux at 2"%-order
(BGMNV,1207.1286, 1302.0740; BGNV 1209.4326)

Considering < @ > ~ <d. %> (not <d>¢) simplifies
life further. In GLCG (w/ our measure):

(@) erwo) = (U 27| [ 00 7o, 6),69) |

where ts(zs, 6°) is the solution of:

T(w(), 70, 6’&)
T(wo, Ts, Qa)

Intersection of w = wo and z = zs hypersurfaces is a
2-surface (topologically a sphere) on which SNe of
given redshift zs are located.

(1+25) =



truncated light cone causally connected sphere
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This is exact: can be used for any specific (fixed-geometry)
inhomogeneous model (e.g. LTB with us at center)

A more realistic (and Copernican) model is the one produced
by inflation: a stochastic background of perturbations with
statistical isotropy and homogeneity.

Vanishing effects at 1st order, need 2nd order (at least)

Unfortunately, perturbations are normally studied in other

gauges (e.g. Newtonian or Poisson, synchronous): we need to
find the coordinate transformation taking us from that
gauge to the GLC up 2nd order.

Quite a lot of work, see F. Nugier's thesis, yet easier than

starting directly in the Poisson Gauge (see e.g. Bernardeau,
Bonvin, Vernizzi 0911.2244).



The calculation proceeds in two steps:

1. Calculation of di%2to 2" order in the Poisson gauge
(BGNV,1209.4326) via coordinate transformation.
Independent result by Umeh, Clarkson & Maartens
(1207.2109, 1402.1933) being compared to ours (6.
Marozzi, 1406.1135 and in progress).

2. Performing the appropriate LC integrals to
compute the effect on different averages and on
the corresponding dispersions. Part of the
calculation is analytic, part is numerical using
realistic power spectra (BGMNV,1302.0740).

See BGMNV 1207.1286 (prl) for a summary of both
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Fortunately, many terms are very small/negligible.
The most important ones pick up some moments
(2nd and 3rd at most) of the power spectrum.

Their contribution is enhanced, relative to a very
nhaive estimate of 10°, by powers of k*/Ho, where

k* is a characteristic scale of the power spectrum.

Yet the overall effect is small...



Different observables suffer different
corrections (here with area measure)
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Flux turns out to be the least affected observable
No leading lensing contribution for our average!
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Conclusions on DE application

Inhomogeneities (of a stochastic inflationary type)
cannot mimic DE.

Averaging gives hegligible corrections to the FLRW
results. Particularly true for the flux.

In principle 10 precision attainable, however...

Effects on the variance/dispersion are much
larger and may limit the determination of DE
parameters (via SNIa data) to the few % level
because of limited statistics.



Short Break



Trying to make use of our simple, exact
result on the Jacobi Map for

gravitational lensing

(6. Fanizza and F. Nugier, 1408.1604 & work in
progress)



The Jacobi map is a basic ingredient in gr. lensing
(see "Gravitational Lensing” by Schneider, Ehlers
& Falco). By its definition, J(s,0) connects
lengths at the source to angles at the observer:

k10, £8

kY u,,

A — Ji(s,0) ( ) — JA(s,0)6°

Its determinant gives the so-called area distance:
da® = dAs/dQ, = det J.



Another map, J(0,s), connects angles at the
source to lengths at the observer:

e = Th(o0, 5) (k“a“gB)

kY u,,

= J; (0, 5)0%

Its determinant gives the so-called corrected
luminosity distance d'L.

The two Jacobi maps (hence the two distances) are
related by Etherington’s (exact) reciprocity relation:

J(0,8) = - (1+2) J(s,0).

The (uncorrected) luminosity distance is given by:
d.= (1+Z) dL= (1+Z)2 da



From Schneider, Ehlers & Falco

0




In the lensing literature one relates more often
angles at the observers to angles at the source
through the so-called (2x2) amplification matrix,
containing both convergence x and shear y.

l—r—m 2
A =
( V2 1—/f+71>

The total magnification p is related to its
determinant:

pt=detA=(1-k)"—~°



Thin-lens example

% il e p = 95 JA(AS’ Ao)
ane a’ /
A 03\ ZL pl aeb )

O lens
plane dL,S
// FLRW area distance

l—K—m V2
A =
< V2 1—/434‘71)



1. In the GLCG it should be possible to give the
amplification matrix in a compact non-perturbative
form directly from the known Jacobi map.

In particular, once J is divided by da, the resulting
unimodular matrix turns out to be a group element
of SU(1,1) with the 3 parameters denoting rotation
and shear associated with lensing.



Another important issue

GLC coordinates become very tricky in the
presence of caustics (points where rank (Yab) < 2).

One project is o improve treatment of
gravitational lensing when a perturbative approach
is inadequate, e.g. in the presence of caustics.
This can only be done by putting together
different sets of GLC coordinates which join each
other along the caustic itself.

Remains to be properly donel



Other applications of GLC

*Determination of local Ho

* Number counts @ 2nd order

* 3rd order deflection & application to CMB
lensing

*TOF of UR particles



Determination of local Ho
(BMDS, 1401.7973)

Fluctuations introduce some uncertainty in the
extraction of the local Hubble expansion rate Ho.
Indeed, Hois not very well known and different
observations (e.g. SN and CMB) tend to give
different values for it.

It seems that taking into account perturbations
helps understanding the origin of the
discrepancy.



Number counts @ 2nd order
(DDMM, 1407.0376)

Galaxy Number Counts = # N of galaxies per solid
angle and redshift.

This quantity fluctuates and its fluctuations have
been computed up to second order in cosmological
perturbation theory.

This also allows to compute the so-called
bispectrum (i.e. the 3-point correlation)



Deflection @ 3rd order and

application to CMB lensing

(FGMV, 1506.02003)

We have studied the deflection of light-like
geodesics up to 3rd order in the approximation in
which some leading terms (in terms of the moment

k" of the power spectrum P(k) that contributes)
are kept. Validity of a lens equation?

This is relevant (MFDD, 1612.07263) for CMB
lensing and also for the accurate calculation of the
B-polarization induced by lensing (which has to be
subtracted in order to expose a primordial
contribution from Tensor perturbations)



TOF of UR particles
(FMGV 1512.08489, P. Fleury 1604.03543)

In a homogeneous Universe it is easy o compute
the TOF difference between two UR particles

m? m2 To dT
AT =T — 7o = 1 2
e (QE% 2E§> /T 1+ 2(7)

As pointed out by Zatsepin (1968) and later by
Stodolsky (2000) this can be used to measure
either cosmological or particle phys. parameters




m? ma Toodr
AT — L _ 1 2 /
T <2E% 2E%) . 14 2(7)

We have studied the TOF difference between UR
particles in a non-homogeneous Universe.

Working in the GLC gauge simplifies things (null
geodesics are very simple, almost null ones are
simple). The result (to leading order in m/E but
exact in cosm. pert. th.) is a simple generalization
of the homogeneous one:

m?2 m2 o dr
T — To — 12 22 =
2k 2R3 ) Jro 1+ 2(7,w,,02)

(BPuy)s  To (ur)s > T,

(krup)o Yo (ur)o s

(1+25) =



We have also studied the magnitude of TOF
fluctuations since these represent a limit with
which we can reconstruct either cosmological or
particle properties from measurements of TOF
differences.

All this, of course, assuming that we can find
suitable sources of such particles with very small
uncertainty on the relative emission times...



THANK YOU!



