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•Most of cosmology is based on observing & 
interpreting light (or light-like) signals. 
!

•Such signals travel on null geodesics lying 
on our past light cone (PLC). 
!

•In a FLRW space-time it’s easy to define 
our PLC and describe geodesics therein.

INTRODUCTION



  
•In the presence of inhomogeneities our 
PLC and its null geodesics become messy. 
!

•Q: Can we simplify our life by a suitable 
choice of coordinates? 
!

•And, if yes: What can we do with them?



  
The GLC gauge & its properties 
!
Light-cone averaging in GLC coordinates 
!
Average (and dispersion in the) Hubble 

diagram for a “realistic” Universe 
!

********************** 
Other applications: 
✴ Determination of local H0 
✴ Number counts 
✴ Higher order deflection & CMB lensing 
✴TOF of UR particles

OUTLINE



  

The geodetic light cone (GLC) gauge  
(Gasperini, Marozzi, Nugier & GV, 1104.1167)



  

 A more “constructive” approach 
(P. Fleury, F. Nugier, G. Fanizza, 1602.04461 ) 
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The geodetic light cone (GLC) gauge  
(Gasperini, Marozzi, Nugier & GV, 1104.1167)  

An almost fully gauge-fixed variant of the 
“observational coordinates” of G. Ellis et al.  
The metric w.r.t. the coordinates (τ, w, θa):

In matrix form, the metric and its inverse are then given by:

gGLC
µ� =

⇤

⇧
0 ��  0

�� �2 + U2 �Ub
 0T �UT

a �ab

⌅

⌃ , gµ�GLC =

⇤

⇧
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���1 0  0
�(Ua)T /�  0T �ab

⌅

⌃ , (2.2)

where  0 = (0, 0), Ub = (U1, U2), while the 2 ⇥ 2 matrices �ab and �ab lower and raise the
two-dimensional indices. Clearly w is a null coordinate (i.e. �µw�µw = 0), and a past light-
cone hypersurface is specified by the condition w = const. We can also easily check that
�µ⌃ defines a geodesic flow, i.e. that (��⌃)⇤� (�µ⌃) = 0 (as a consequence of the relation
g⌅⌅ = �1).

In the limiting case of a spatially flat FLRW geometry, with scale factor a, cosmic time
t, and conformal time parameter ⇤ such that d⇤ = dt/a, the transformations to the GLC
coordinates and the meaning of the new metric components are easily found as follows [10]:

⌃ = t, w = r + ⇤, � = a(t),

Ua = 0, �abd⌅
ad⌅b = a2(t)r2(d⌅2 + sin2 ⌅d⌥2). (2.3)

Even though we will be mainly using the GLC gauge for a perturbed FLRW metric in the
Newtonian gauge, it is important to stress that the equality between the coordinate ⌃ and
the proper time t of the synchronous gauge holds at the exact, non perturbative level: it
is always possible, in fact, to choose the GLC coordinates in such a way that ⌃ and t are
identified like in the above FLRW limit.

In order to illustrate this point let us consider an arbitrary space-time metric written in
the synchronous gauge (with coordinates Xµ = (t,Xi), i, j = 1, 2, 3), where the line element
takes the form:

ds2SG = �dt2 + hijdX
idXj . (2.4)

Let us impose the condition t = ⌃ , and check whether we run into any contradiction with
the exact metric transformation

g⇥⇤SG(X) =
�X⇥

�xµ
�X⇤

�x�
gµ�GLC(x). (2.5)

Using eq. (2.2) for the GLC metric, and considering the transformation for the gtµSG compo-
nents, we then obtain the conditions

gtµSG = {�1, 0} = �
�
�⌅ +��1(�w + Ua�a)

⇥
Xµ = u���X

µ =
dXµ

d⇧
, (2.6)

where uµ = ��µ⌃ is the four-velocity of the geodesic GLC observer, and where ⇧ denotes
an a⇥ne parameter along the observer world-line. So the requirement ⌃ = t boils down
to the statement that along the geodesic flow of the vector field uµ the SG coordinates Xi

are constant. This clearly defines the coordinate transformation in a non-perturbative way,
and also shows that the geodesic observer uµ = ��µ⌃ of the GLC gauge corresponds to a
static (and geodesic) observer in the synchronous gauge. It follows that the identification
t = ⌃ can always be taken for any space-time metric, and that this simple connection be-
tween GLC and synchronous gauge has validity far beyond the particular FLRW case or its
perturbed generalizations.

We also remark that, in GLC coordinates, the null geodesics connecting sources and
observer are characterized by the simple tangent vector kµ = gµ���w = gµw = �⇥µ⌅��1,
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 Flat-FRW limit (a(η)dη = dt, η = conformal time):



  
•w -> w’(w) allows to relabel the light cones and to set 
Y =1 along L0 
!
•θa  _> θ’a(w, θa) allows to relabel the angles and to set      
Ua = 1 along L0 

!
!
!

  

 Two residual gauge freedoms



  
•w =(<) w0 defines our past light cone (causal past) 
!
•w = constant hypers. provide a null-foliation 
!
•τ can be identified with synchronous-gauge time 
!

•Static geodetic observers in SG have  
!

•Photons travel at fixed w and θa :

uµ = ⇥µ�

kµ = ⇥µw ) ẋµ ⇠ �µ�

  

 Generic properties of GLC coordinates
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 Other nice properties of the GLCG 
!

 1. A simple, exact expression for the redshift 
  
 In FRW cosmology z is simple (& factorizes) in 
terms of entries of the standard FRW metric

  
 In the GLC gauge this property remains true:

  
 Ratio depends in general from the 

  θa  coordinates



2. An exact & factorized expression 
for the Jacobi Map  

(Fanizza, Gasperini, Marozzi, GV, 1308.4935)
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 Recall deviation equation for null geodesics:

  

 projected along the Sachs basis:
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FGMV: exact expression for J in GLCG!
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  Again (bi)local and factorized (saA = zweibeins for γab)   
in this gauge (NB: expression is NOT covariant!) 

!

Def. of J:  JAB obeys:
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 3. Area & luminosity distance (dA, dL) 
(Ben-Dayan, Gasperini, Marozzi, Nugier & GV, 

1202.1247 & FGMV 1308.4935)

which means that photons reach the observer travelling at constant w and ⇥⌅a. This makes
the calculation of the area distance and of the redshift particularly easy. Consider, for
instance, a light ray emitted by a static geodesic source at the intersection between the past
light-cone of our observer, w = w0, and the spatial hypersurface ⇧ = ⇧s, and received by such
static geodesic observer at ⇧ = ⇧0 > ⇧s. The associated redshift zs is then given by [10]:

(1 + zs) =
(kµuµ)s
(kµuµ)o

=
(⌃µw⌃µ⇧)s
(⌃µw⌃µ⇧)o

=
⇥(w0, ⇧0, ⇥⌅a)
⇥(w0, ⇧s, ⇥⌅a)

, (2.7)

where the subscripts “o” and “s” denote, respectively, a quantity evaluated at the observer
and source space-time position. The expression for the angular distance will be explicitly
derived in section 2.2.

Let us finally recall that, in GLC coordinates, the covariant average of a scalar quantity
S(⇧, w, ⇥⌅a) over the compact two-dimensional surface �, defined by the intersection of our
past light-cone w = w0 with the spacelike hypersurface ⇧ = ⇧s, is simply given by [10]:

⇥S⇤w0,�s =

�
� d4x

⌅
�g ⇥(w � w0)⇥(⇧ � ⇧s)S(⇧, w, ⇥⌅a) |⌃µ⇧⌃µw|�
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�
d2⇥⌅

⇤
�(w0, ⇧s, ⇥⌅a)

, (2.8)

where � = det �ab. In the case of interest for this paper, namely light-cone averages on
surfaces of constant redshift z = zs, one then obtains [10]

⇥S⇤w0,zs =

�
d2⇥⌅

⇤
�(w0, ⇧(zs, w0, ⇥⌅a), ⇥⌅b)S(w0, ⇧(zs, w0, ⇥⌅a), ⇥⌅b)

�
d2⇥⌅

⇤
�(w0, ⇧(zs, w0, ⇥⌅a), ⇥⌅b)

, (2.9)

where ⇧(zs, w0, ⇥⌅a) has to be determined by solving the redshift equation (2.7) for ⇧s as a
function of w0, ⇧0, zs and ⇥⌅a. This general result will now be applied to the case in which S
is identified with the luminosity distance dL.

2.2 Light-cone average of the luminosity distance

Let us first recall that the luminosity distance dL of a source at redshift z is related in
general to the angular distance dA of the source (as seen from the observer) by the so-called
Etherington (or reciprocity) law [17]:

dL = (1 + z)2dA . (2.10)

In the particular case of an unperturbed, spatially flat FLRW background, and for a source
with redshift zs, the distance dA is simply given by

dFLRWA (zs) = asrs = as(⇤0 � ⇤s), (2.11)

where as = a(⇤s), while ⇤0 � ⇤s denotes the conformal time interval between the emission
and observation of the light signal. For the unperturbed metric, on the other hand, we have
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  Much easier if one has the Jacobi map!

  

  & finally:

  

  Using residual gauge freedom in GLCG:



  
  

I: The inhomogeneous Hubble diagram 
in a realistic cosmology 

!
For a complete summary of our (and related) 

work see: F. Nugier’s thesis: 1309.65420



  
  

The concordance model: 
3 sets of data pointing at Dark Energy



Cosmic Concordance



  
  

Two arguments for DE are based on 
inhomogeneities/structures  

The 3rd (SNIa) ignores them completely! 
!

Basic tool: the famous Hubble diagram of 
redshift vs. luminosity-distance 

!
A short reminder (for FLRW) 



q0 ⇥ �
aä

ȧ2
(t = t0)

dL(z) = H�1
0

�
z +

1
2
(1� q0)z2 + O(z3)

⇥

� =
L

4�d2L

For FLRW:

 For a spatially flat ΛCDM Universe (for simplicity):

In FLRW cosmology:

Hubble law beyond linear order => information about eq. of state!

Other probes & assumptions
SM of cosmology has 2 assumptions :

GR is valid to all observed scales

Isotropy and Homogeneity
� FLRW :

ds2FLRW = �dt2 + dR2 +

�
1

⇥
k
sin(

⇥
kR)

⇥2

d�2

= �dt2 +
1

1 � kr2
dr2 + r2d�2,

d�2 = d�2 + sin(�)2d⇥2 , k = �1, 0, 1 .

Luminosity Distance (for k = 0):

dFLRW
L (z) =

1 + z
H0

� z

0

dz�

[��0 + �m0(1 + z�)3]1/2

� Distance Modulus : µ = 5 log10(dL) + cst

Redshift :

Fabien Nugier (LPTENS) Structures & dL in FLRW APC, 5 March 2013 4 / 42

Definition of luminosity distance dL:

where L is the absolute luminosity and Φ the flux. 

If expanded to 2nd order in z:
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 The Universe is fairly homogeneous only on very 
large scales   (> few 100 Mpc?).  
!
Q: What’s the effect of smaller scale 
inhomogeneities? 
!
A.  Not obvious! Averages of physical quantities do 
not obey the homogeneous EEs (Buchert & Ehlers, 
Buchert,…).  
!
There are extra, so-called “backreaction”, terms. 
This “averaging problem” has been a rather hot 
topic in recent years. 
!



  
 Hopes have been raised that inhomogeneities might 
“explain” cosmic acceleration and give a natural 
resolution of the famous coincidence (why now?) 
problem (Buchert, Rasanen, Kolb-Matarrese-Riotto...) 
!
Too optimistic (given other evidence for DE)? Yet 
still important to take inhomogeneities into account 
for (future) precision cosmology and/or for testing 
the concordance model itself. 
!



  
!
Not clear what’s the relation between such 
averages and the averaged dL-z relation (Hubble 
diagram) 
!
We therefore looked at how to average directly 
that relation.

Most of previous work deals with spatial averages 
and with formal definitions of acceleration. 



  

Gauge-invariant light-cone averages 
(Gasperini, Marozzi, Nugier & GV, 1104.1167) 



 WHAT’S THE CORRECT MEASURE? 
(G. Marozzi, G. Veneziano et al, unpublished, 

P. Fleury, C. Clarkson, R. Maartens, 1612.03726) 
An important issue is whether one should average the 
physical quantity (e.g. dL-2) with a non trivial measure. 
In our SNe papers we took as measure the proper area 
of the 2-D (fixed-z) surface element. If the proper 
number density of SNe is constant on a fixed-z hyper 
surface our procedure gives the measured average!  
Kaiser & Hudson discuss other measures as well (e.g. a 
“galaxy-averaged bias”). 
FCM argue in favor of a number-count weighting. 
For CMB averaging on the last-scattering surface one 
may argue that the correct measure is yet different.
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Averaging the flux at 2nd-order 
(BGMNV,1207.1286, 1302.0740; BGNV,1209.4326)
  

Considering < Φ > ~ <dL-2>  (not <dL>-2) simplifies 
life further. In GLCG (w/ our measure):

where τs(zs, θa) is the solution of:

  

 Intersection of w = w0  and z = zs hypersurfaces is a 
2-surface (topologically a sphere) on which SNe of 

given redshift zs  are located. 
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This is exact: can be used for any specific (fixed-geometry) 
inhomogeneous model (e.g. LTB with us at center)

  
Unfortunately, perturbations are normally studied in other 
gauges (e.g. Newtonian or Poisson, synchronous): we need to 
find the coordinate transformation taking us from that 
gauge to the GLC up 2nd order. 
!
 Quite a lot of work, see F. Nugier’s thesis, yet easier than 
starting directly in the Poisson Gauge (see e.g. Bernardeau, 
Bonvin, Vernizzi 0911.2244). 

A more realistic (and Copernican) model is the one produced 
by inflation: a stochastic background of perturbations with 
statistical isotropy and homogeneity. 
Vanishing effects at 1st order, need 2nd order (at least)



  
The calculation proceeds in two steps: 
!
1. Calculation of dL-2 to 2nd order in the Poisson gauge 
(BGNV,1209.4326) via coordinate transformation. 
Independent result by Umeh, Clarkson & Maartens 
(1207.2109, 1402.1933) being compared to ours (G. 
Marozzi, 1406.1135 and in progress). 
!
2. Performing the appropriate LC integrals to 
compute the effect on different averages and on 
the corresponding dispersions. Part of the 
calculation is analytic, part is numerical using 
realistic power spectra (BGMNV,1302.0740). 
!
See BGMNV 1207.1286 (prl) for a summary of both 



peculiar velocity e⇤ects with all others. Their explicit expressions are:

⇥̄(2)path = ⇥s

↵
� 1

4

⇤
⇧(2)
s � ⇧(2)

o

⌅
+

1

4

⇤
⌃(2)
s � ⌃(2)

o

⌅
+

1

2
⌃2
s �

1

2
⌃2
o � (⌃s + J (1)

2 )�+Qs

+
1

4
(�ab0 )s�aQs�bQs +Qs

�
��2

+Qs + �+⌃s
⇥
+

1

Hs
�+Qs ��⌃s

+
1

4

� �
(0)�
s

�o

dx �+
�
⇧(2) + ⌃(2) + 4⌃ �+Q+ �ab0 �aQ �bQ

✏
(⇤(0)+s , x, ⌅̃a)

� 1

2
�a(�+Qs)

 � �
(0)�
s

�o

dx
�
�ab0 �bQ

✏
(⇤(0)+s , x, ⌅̃a)

⌦�

� 1

2
⌃(2)
s � 1

2
⌃2
s �K2 + ⌃sJ

(1)
2 +

1

2
(J (1)

2 )2 + J (1)
2

Qs

�⇤
� 1

Hs�⇤

⇧
1� H�

s

H2
s

⌃
1

2
(�+Qs)

2

� 2

Hs�⇤
⌃s�+Qs +

1

2
�a

⇧
⌃s + J (1)

2 +
Qs

�⇤

⌃ � �
(0)�
s

�o

dx
�
�ab0 �bQ

✏
(⇤(0)+s , x, ⌅̃a)

⌦

+
1

4
�aQs�+

 � �
(0)�
s

�o

dx
�
�ab0 �bQ

✏
(⇤(0)+s , x, ⌅̃a)

⌦

+
1

16
�a

 � �
(0)�
s

�o

dx
�
�bc0 �cQ

✏
(⇤(0)+s , x, ⌅̃a)

⌦
�b

 � �
(0)�
s

�o

dx̄
�
�ad0 �dQ

✏
(⇤(0)+s , x̄, ⌅̃a)

⌦

� 1

4�⇤

� �
(0)�
s

�o

dx
�
⇧(2) + ⌃(2) + 4⌃ �+Q+ �ab0 �aQ �bQ

✏
(⇤(0)+s , x, ⌅̃a)

+
1

Hs
�+Qs

⌥
���⌃s + �r⌃s +

1

�⇤2

� �o

�
(0)
s

d⇤��2⌃(⇤
�, ⇤o � ⇤�, ⌅̃a)

�

+ Qs

↵
�r⌃s + �+

 � �
(0)�
s

�o

dx
1

(⇤(0)+s � x)2

� x

�o

dy�2⌃(⇤
(0)+
s , y, ⌅̃a)

⌦

+
1

2�⇤2

� �o

�
(0)
s

d⇤��2⌃(⇤
�, ⇤o � ⇤�, ⌅̃a)

�

+
1

16 sin2 ⌅̃

 � �
(0)�
s

�o

dx
�
�1b0 �bQ

✏
(⇤(0)+s , x, ⌅̃a)

⌦2

, (B.18)

23

comments in Sect. 5). However, we underline that such improvements a⌅ect in a totally negligible

way the backreaction e⌅ects calculated in [3, 5].

Writing the result in the following concise form
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�, ⇥o � ⇥�, ⇤̃a) (B.14)

are Sachs-Wolfe (SW) and integrated Sachs-Wolfe (ISW) e⌅ects,

⌥rP =

� �

�in

d⇥�
a(⇥�)

a(⇥)
⌥r⌅(⇥

�, r, ⇤̃a) = ⌘v · n̂ (B.15)

are Doppler e⌅ects (see also Eq.(5.19)), and

J (1)
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1

2

⇥
cot ⇤ ⇤̃(1) + ⌥a⇤̃

a(1)
⇤
=

1

2
⌅a⇤̃

a(1) =
1
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� �o

�
(0)
s

d⇥�
⇥� � ⇥(0)s

⇥o � ⇥�
�2⌅(⇥

�, ⇥o � ⇥�, ⇤̃a) , (B.16)

is the first order lensing e⌅ect.

Following the pioneering work of [22], dL has been already computed to first order in the

longitudinal gauge, for a CDM model in [23] and for CDM and ⇥CDM in [24]. In particular, we

have verified that the first order result in Eq.(B.12), for the case of a CDM-dominated Universe, is

in full agreement with the result of [23].

To second order we have a much more involved result. For example, several terms arise from the

fact that some of the first order terms in Eq.(B.12) have now to be integrated along the perturbed

line of sight (see [4]). This gives rise to new terms which are given by the old ones multiplied by

Doppler, SW and ISW e⌅ects. As in [4] we choose to split the second order result in three di⌅erent

parts:

�̄(2)S (zs, ⇤̃
a) = �̄(2)path + �̄(2)pos + �̄(2)mixed , (B.17)

where �̄(2)path denotes terms connected to the photon path and captures all the second order result in

the absence of peculiar velocity e⌅ects; �̄(2)pos is for the terms generated by the source and observer

peculiar velocity and captures all the second order pure Doppler e⌅ects. Finally, �̄(2)mixed mixes
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The physical interpretation of the terms above is more tricky with respect to the first order

case. Let us give here only two simple examples (but see also [4]),

K2 =
1

2

�
cot ⌅ ⌅̃(2) + ⌦a⌅̃

a(2)
✏
=

1

2
⇤a⌅̃

a(2) (B.21)

is the pure second order lensing e⌅ect, while, from Eq.(5.19), we have that

�⌦i⇧
(2)ni =

� �

�in

d⇤⇥
a(⇤⇥)

a(⇤(0)s )
⌦r
�
⌃(2) � ⌥2 + (⌦rP )2 + �ab0 ⌦aP⌦bP

✏
(⇤⇥, r, ⌅̃a) (B.22)

is the second order Doppler e⌅ect coming from the second order peculiar velocity (at the observer

or at the source). More about the physical interpretation of the second order contribution to dL
can be also found in [25], where a summary of another second order calculation of dL in the PG,

but only for the particular case of ⇥CDM model, is presented.
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longitudinal) gauge beyond first order. Neglecting vector and tensor contributions (see [5] for the

motivations), the PG metric takes the following form:

ds2PG = a2(⇤)
�
�(1 + 2�)d⇤2 + (1� 2⇥)⇥ijdx

idxj
⇥

= a2(⇤)
�
�(1 + 2�)d⇤2 + (1� 2⇥)(dr2 + r2d2⇤)

⇥
(5.1)

where � and ⇥ are scalar perturbations defined, up to second order, as:

� ⇥ ⌃+
1

2
⌃(2) , ⇥ ⇥ ⌥ +

1

2
⌥(2) , (5.2)

and, in principle, we don’t need to make any assumption about their possible dynamical sources.

In order to compute the area distance in terms of standard PG perturbations we have to

transform the GLC gauge quantities appearing in Eq. (3.15) to quantities of the PG. This has

already been done in [2, 4] for the particular case of no-anisotropic stress (where ⌃ = ⌥). Here we

extend the analysis to the more general case (but only for the first order) and take care of a small,

inconsistency present in those analysis. The point is that we have to impose suitable boundary

conditions and, as in the previous section, we impose that i) the transformation is non singular

around r = 0, and that ii) the two-dimensional spatial section r = const are locally parametrized

at the observer position by standard spherical coordinates. However, unlike the case of the SG,

for the PG these conditions can only be imposed at the observer’s space-time position (defined as

⇤ = ⇤o and r = 0) since, as a consequence of the dynamical motion of the PG free-falling observer,

the observer is no longer at the origin (r = 0) of our coordinates system for ⇤ ⇤= ⇤o.

By considering such a physical property of the PG we obtain slightly di⌅erent results with

respect to those in [2, 4] 8, where such condition was imposed improperly at any ⇤. To first order,

in particular, we find (see Appendix B for the full second order transformation):

⇧ = ⇧ (0) + ⇧ (1) =

⇤ �

�in

d⇤⇥a(⇤⇥) + a(⇤)P (⇤, r, ⌅a) , (5.3)

w = w(0) + w(1) = ⇤+ +Q(⇤+, ⇤�, ⌅
a) , (5.4)

⌅̃a = ⌅̃a(0) + ⌅̃a(1) = ⌅a +
1

2

⇤ ��
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dx
⌅
�ab0  bQ

⇧
(⇤+, x, ⌅

a) , (5.5)

where we have defined:

P (⇤, r, ⌅a) =

⇤ �

�in

d⇤⇥
a(⇤⇥)

a(⇤)
⌃(⇤⇥, r, ⌅a) , Q(⇤+, ⇤�, ⌅

a) =

⇤ ��

�o

dx
1

2
(⌥ + ⌃) (⇤+, x, ⌅

a) , (5.6)

and where the superscripts (0), (1) denote, respectively, the background and first-order values of

the given quantity. Finally, ⇤in represents an early enough time when the perturbation (or better

the integrand) was negligible: this means that the integrals over all relevant perturbation scales

are insensitive to the actual value of ⇤in. To first order we can then use Eqs. (5.3), (5.4) and (5.5)

8In practice, all the integrals between �+ and ��, present in [2, 4], become integrals between �o and ��. The same

applies to the vector and tensor perturbations considered in [4].
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Fortunately, many terms are very small/negligible. 
The most important ones pick up some moments 
(2nd and 3rd at most) of the power spectrum. 
!
Their contribution is enhanced, relative to a very 
naive estimate of 10-10, by powers of k*/H0, where 
k* is a characteristic scale of the power spectrum. 
!
Yet the overall effect is small... 
!



Importance of observable : Flux vs Distance (III)

Using the non-linear power spectrum, we can have higher cuto�s.

Plot for :
kUV = 10 hMpc�1 (solid)

kUV = 30 hMpc�1 (dashed)

Remark : results are free
from UV or IR divergences
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Observations :

fd, f� at small z are slightly changed,

fd ⇥ f� at large z due to lensing is strongly enhanced : � 1%.
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Different observables suffer different 
corrections (here with area measure)

Flux turns out to be the least affected observable 
No leading lensing contribution for our average!



We then determine k� by normalizing to 1 the fractional density variance :
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Results somewhat sensitive to the power 
spectrum used (but no IR or UV divergence)

linear
non-linear



E�ect on DE measurements (II)

Linear Spectrum :

Plot kUV = 1 Mpc�1 �

µM = 5 log10[
(2+z)z
2H0

] is
µ for Milne Universe
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⌅µ⇧ � µM with ⇥� = 0.73
⇥� = 0.75
⇥� = 0.77

Observations :

Negligible average at large z (⇥ 0.1� 0.01%)

only a small average shift and big standard deviation at z ⇤ 1 (Doppler)

BUT standard deviation due to lensing terms is ⇥ 1% !

Reference : B.M.N.V. 1209.4326 & paper in preparation.
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E�ect on DE measurements (III)

Non-linear Spectrum :
kUV = 30 hMpc�1 �

µM = 5 log10[
(2+z)z
2H0

] is
µ for Milne Universe

Again : no UV or IR
divergences 0.02 0.05 0.10 0.20 0.50 1.00 2.00
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�CDM plot
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⇥� = 0.69
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⇤µ⌅ � µM with ⇥� = 0.73
⇥� = 0.75
⇥� = 0.77

Observations :

Average at large z still small (⇥ 0.1%)

lensing dispersion bigger : ⇥ 10% !
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Comments on the dispersion

(�obs
µ )2 = (�fit

µ )2 + (�z
µ)

2 +
⇥
(��int

µ )2 + (�lens
µ )2

⇤
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Jönsson et al.(2010)

�lens
µ = (0.055+0.039

�0.041)z

Kronborg et al.(2010)

�lens
µ = (0.05± 0.022)z

The total e�ect is well fitted by Doppler (z ⇥ 0.2) + Lensing (z > 0.5),

Doppler prediction is a bit bigger than in the literature,

Lensing prediction is in great agreement with experiments so far !
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Lensing dominatedDoppler dominated



Conclusions on DE application  
  

Inhomogeneities (of a stochastic inflationary type) 
cannot mimic DE.  
!
Averaging gives negligible corrections to the FLRW 
results. Particularly true for the flux. 
!
 In principle 10-4 precision attainable, however... 
  

  
Effects on the variance/dispersion are much 
larger and may limit the determination of DE 
parameters (via SNIa data) to the few % level 
because of limited statistics.



!

 Short Break



  
  
!

Trying to make use of our simple, exact 
result on the Jacobi Map for 

gravitational lensing 
(G. Fanizza and F. Nugier, 1408.1604 & work in 

progress) 
!



⇥As = JA
B (s, o)

✓
kµ⇤µ⇥B

k�u�

◆

o

= JA
a (s, o)�ao

  
 The Jacobi map is a basic ingredient in gr. lensing 
(see “Gravitational Lensing” by Schneider, Ehlers 
& Falco). By its definition, J(s,o) connects 
lengths at the source to angles at the observer:

  
Its determinant gives the so-called area distance: 

dA2 = dAs/dΩo = det J. 



⇥Ao = JA
B (o, s)

✓
kµ⇤µ⇥B

k�u�

◆

s

= JA
a (o, s)�as

  
 Another map,  J(o,s), connects angles at the 
source to lengths at the observer:

  
 Its determinant gives the so-called corrected 
luminosity distance d’L. 
The two Jacobi maps (hence the two distances) are 
related by Etherington’s (exact) reciprocity relation:  

J(o,s) = - (1+z) J(s,o). 
!

The (uncorrected) luminosity distance  is given by: 
dL = (1+z) d’L = (1+z)2 dA 



3.5 Distances based on light rays. Caustics 

Luminosity distance and angular-diameter distance. In cosmology, "dis-
tance" is not a simple, directly measurable quantity. Instead, several 
theory-dependent distance concepts have been defined, whose values can 
be determined only indirectly. Two kinds of distances which are intimately 
linked with the propagation of radiation are defined as follows. Consider a 
thin beam of light rays emanating from a source-event 8 and reaching an 
observation-event 0 and its neighborhood (see Fig. 3.4). We know from the 
previous subsection that the area dAo of the cross-section of the beam at 
o is well-defined independently of an assignment of a 4-velocity at O. On 
the other hand, in order to measure the size of the beam at 8 in terms of 
a solid angle dDs, it is necessary to take into account a 4-velocity Us at 
8, and to measure dDs in the tangent 3-space orthogonal to Us' The cor-
rected luminosity distance of the source-at-8-with-4-velocity-Us from the 
observation-event 0 is defined as 

o 
dAo 

Fig. 3.4. A light beam from the source event S to the observation event 0 

( dA )1/2 
D(US'O):= (3.65) 

The name will be motivated in the next subsection. Similarly, interchanging 
the roles of source and observer, one defines (see Fig. 3.5a) 

( dAs )1/2 
D(Ub,8):= dDo (3.66) 

the distance from apparent solid-angular size of 8 from (0, Ub)' 
The dependence of this distance on the 4-velocity of the observer, given 

the events 8 and 0, is due to the phenomenon of aberration. In fact, one 
infers from Fig.3.5b that, if kCt. is any vector tangent to the ray 80 at 0 
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3.5 Distances based on light rays. Caustics 

Luminosity distance and angular-diameter distance. In cosmology, "dis-
tance" is not a simple, directly measurable quantity. Instead, several 
theory-dependent distance concepts have been defined, whose values can 
be determined only indirectly. Two kinds of distances which are intimately 
linked with the propagation of radiation are defined as follows. Consider a 
thin beam of light rays emanating from a source-event 8 and reaching an 
observation-event 0 and its neighborhood (see Fig. 3.4). We know from the 
previous subsection that the area dAo of the cross-section of the beam at 
o is well-defined independently of an assignment of a 4-velocity at O. On 
the other hand, in order to measure the size of the beam at 8 in terms of 
a solid angle dOs, it is necessary to take into account a 4-velocity at 
8, and to measure dOs in the tangent 3-space orthogonal to The cor-
rected luminosity distance of the from the 
observation-event 0 is defined as 

o 
dAO 

Fig. 3.4. A light beam from the source event S to the observation event 0 

( dAo)1/2 
dOs 

(3.65) 

The name will be motivated in the next subsection. Similarly, interchanging 
the roles of source and observer, one defines (see Fig. 3.5a) 

D(Ub, 8) := (dAs )1/2 
dOo 

the distance from apparent solid-angular size of 8 from (0, Ub). 

(3.66) 

The dependence of this distance on the 4-velocity of the observer, given 
the events 8 and 0, is due to the phenomenon of aberration. In fact, one 
infers from Fig.3.5b that, if k Ot is any vector tangent to the ray 80 at 0 

110 

Fig. 3.5. (a) A beam of light rays from a surface element dAs of the source at S with 
vertex at the observer 0, of size dno, used to define the angular diameter distance of 

S from (0, Ub)' solid angles dn, diJ of the beam reaching ° depend on the 

four-velocities Ub' Ub; "aberration", see text 

and UP, UP are two 4-velocities at 0 with corresponding solid angles dfl, 
- - (k U P)2 
dfl, then = An analogous formula holds for solid angles at S, 

of course. Needless to say, the "d's" (dAo etc.) in (3.65) and (3.66) are 
supposed to indicate that the limits of infinitely thin beams are to be taken. 

If two events S, 0 are connected by a light ray and 4-velocities Us, Ub 
are given, both distances (3.65) and (3.66) are defined. In any spacetime, 
they are related by the reciprocity-relation [ET33.1] 

D(Us,O) = (l+z)D(Ub'S) (3.67) 

here, z denotes the redshift of the source as seen by the observer, 1 + z 
= ws/wo. 

Next, we show how these distances can in principle be computed, and 
prove the remarkable law (3.67). 

Geodesic deviation, Jacobi vectors and distances. Near an event S, the 2-
parametric set of light rays starting at S generates a conical hypersurface, 
the future light (half-)cone ct. Let any smooth, one-parametric subfamily 
of these rays be given by x a = fa ( v, y), where y labels the rays and v is an 
affine parameter on each ray. We put 

ka = 8r 
8v 

ya= 8r 
8y 

(3.68) 

so that 8xa = 8y ya "connects nearby rays", as in (3.45). The same 
reasoning which led from (3.43) to (3.50) [where the second of (3.43) was 
not used] gives 
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uP o 

Fig. 3.5. (a) A beam of light rays from a surface element dAs of the source at S with 
vertex at the observer 0, of size drJo, used to define the angular diameter distance of 
S from (0, Ub). ('i. The solid angles drJ, drJ of the beam reaching ° depend on the 

four-velocities Ub' Ubi "aberration", see text 

and UP, UP are two 4-velocities at 0 with corresponding solid angles dJ?, 
- - (k UP)2 
dJ?, then = An analogous formula holds for solid angles at S, 
of course. Needless to say, the "d's" (dAo etc.) in (3.65) and (3.66) are 
supposed to indicate that the limits of infinitely thin beams are to be taken. 

If two events S, 0 are connected by a light ray and 4-velocities Us, Ub 
are given, both distances (3.65) and (3.66) are defined. In any spacetime, 
they are related by the reciprocity-relation [ET33.1] 

D(Us,O) = (1 + z )D(Ub, S) (3.67) 

here, z denotes the redshift of the source as seen by the observer, 1 + z 
= ws/wo. 

Next, we show how these distances can in principle be computed, and 
prove the remarkable law (3.67). 

Geodesic deviation, Jacobi vectors and distances. Near an event S, the 2-
parametric set of light rays starting at S generates a conical hypersurface, 
the future light (half-)cone ct. Let any smooth, one-parametric subfamily 
of these rays be given by x'" = f'" (v, y), where y labels the rays and v is an 
affine parameter on each ray. We put 

k'" = 8f'" 
8v 

Y'" = 8f'" 
8y 

(3.68) 

so that fix'" = fiy Y'" "connects nearby rays", as in (3.45). The same 
reasoning which led from (3.43) to (3.50) [where the second of (3.43) was 
not used] gives 
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From Schneider, Ehlers & Falco
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 In the lensing literature one relates more often  
angles at the observers to angles at the source 
through the so-called (2x2) amplification matrix, 
containing both convergence κ and shear γ.

  
 The total magnification µ is related to its 
determinant: 
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1. In the GLCG it should be possible to give the 
amplification matrix in a compact non-perturbative 
form directly from the known Jacobi map. 
!
In particular, once J is divided by dA, the resulting 
unimodular matrix turns out to be a group element 
of SU(1,1) with the 3 parameters denoting rotation 
and shear associated with lensing. 



  
 GLC coordinates become very tricky in the 

presence of caustics (points where rank (γab) < 2). 
!

One project is to improve treatment of 
gravitational lensing when a perturbative approach 

is inadequate, e.g. in the presence of caustics. 
 This can only be done by putting together 

different sets of GLC coordinates which join each 
other along the caustic itself. 
Remains to be properly done! 

  
  

Another important issue



  
  

Other applications of GLC
✴Determination of local H0 
✴ Number counts @ 2nd order 
✴ 3rd order deflection & application to CMB 
lensing 
✴TOF of UR particles



  

Determination of local H0 
(BMDS, 1401.7973) 

  
 Fluctuations introduce some uncertainty in the 

extraction of the local Hubble expansion rate H0. 
Indeed, H0 is not very well known and different 

observations (e.g. SN and CMB) tend to give 
different values for it. 

It seems that taking into account perturbations 
helps understanding the origin of the 

discrepancy. 



  

Number counts @ 2nd order 
(DDMM, 1407.0376)

  
 Galaxy Number Counts = # N of galaxies per solid 

angle and redshift. 
This quantity fluctuates and its fluctuations have 
been computed up to second order in cosmological 

perturbation theory. 
This also allows to compute the so-called 
bispectrum (i.e. the 3-point correlation) 

!
!
!



  
Deflection @ 3rd order and 
application to CMB lensing 

(FGMV, 1506.02003)  
 We have studied the deflection of light-like 

geodesics up to 3rd order in the approximation in 
which some leading terms (in terms of the moment 
kn of the power spectrum P(k)  that contributes) 

are kept. Validity of a lens equation? 
!

This is relevant (MFDD, 1612.07263) for CMB 
lensing and also for the accurate calculation of the 
B-polarization induced by lensing (which has to be 

subtracted in order to expose a primordial 
contribution from Tensor perturbations) 

!



  

TOF of UR particles 
(FMGV 1512.08489, P. Fleury 1604.03543)

  
 In a homogeneous Universe it is easy to compute 

the TOF difference between two UR particles 
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 As pointed out by Zatsepin (1968) and later by 
Stodolsky (2000) this can be used to measure 

either cosmological or particle phys. parameters 



  
 Working in the GLC gauge simplifies things (null 
geodesics are very simple, almost null ones are 
simple). The result (to leading order in m/E but 
exact in cosm. pert. th.) is a simple generalization 
of the homogeneous one: 

�⌧ = ⌧1 � ⌧2 =

✓
m2

1

2E2
1

� m2
2

2E2
2

◆Z ⌧
o

⌧
s

d⌧

1 + z(⌧)

⌧1 � ⌧2=

✓
m2

1

2E2
1

� m2
2

2E2
2

◆Z
⌧

o

⌧

s

d⌧

1 + z(⌧, w
o

, ✓̃a
o

)

  
 We have studied the TOF difference between UR 
particles in a non-homogeneous Universe.  

(1 + zs) =
(kµuµ)s
(kµuµ)o

=
�o

�s

(u� )s
(u� )o

! �o

�s



  
 We have also studied the magnitude of TOF 

fluctuations since these represent a limit with 
which we can reconstruct either cosmological or 
particle properties from measurements of TOF 

differences. 
All this, of course, assuming that we can find 

suitable sources of such particles with very small 
uncertainty on the relative emission times… 

!
!
!
!



  
  

THANK YOU!


