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Outline
!
• Old (< 1980) Hot Big Bang cosmology 
• Puzzles of HBB cosmology and inflation 
• The importance of QM in inflation 
• Which Big Bang are we talking about? 
!

************** 
• Classical vs. quantum perturbations 
• The example of tensor perturbations 
• Perturbations in slow-roll inflationary models. 
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Hot Big Bang cosmology (a reminder)
Einstein’s equations, together with the cosmological principle 
(assumption of a homogeneous, isotropic Universe at large 
scales) and present observations (e.g. the redshift), lead to a 
very simple model known as Hot Big Bang (HBB) cosmology. 
Its geometry is described by the Friedman-Lemaître- 
Robertson-Walker (FLRW) metric:

It contains a scale-factor a(t), telling us how physical 
distances depend on (cosmic-proper) time, and a discrete 
parameter (K = 0, 1, -1) giving, at any given time, a constant 
curvature (flat, closed, open) spatial geometry: 
(3)R ~ K/a2(t).

ds2 = gµ⇥dxµdx⇥ = �dt2 + a2(t)
�

dr2

1�Kr2
+ r2d�2

⇥

d�2 = d�2 + sin2�d⇥2 ; K = 0,±1



�̇ = �3H(�+ p) = �3H�(1 + w) ; w ⌘ p

�
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a(t) is related to the redshift by (1+z) = a(t0)/a(ts). Its 
evolution is determined by the energy & pressure content of 
the universe via the two Friedman equations:

For standard matter with ρ + 3 p > 0 this leads to a scale factor 
that goes to zero at a finite time in our past, conventionally 
called t=0.  
At t=0, curvature and energy density diverge, forcing the 
physical interpretation of t=0 as the beginning of time. This 
singular event has been dubbed the BIG BANG

H(t) � ȧ

a
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K

a2
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8�G
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a
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Critical density and fractions

The 1st Friedman equation:

can be rewritten in the simple form:

Introducing

NB: A spatially flat Universe is equivalent to  Ω = 1. 

NB. Non rel. matter (dust) has w=0, radiation has w = 
+1/3; Spatial curvature behaves as a fluid with w = -1/3
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Successes of HBB cosmology
1. The cosmic microwave background  

(Penzias and Wilson 1965)

Since the 1940s, Gamow and coll. realized that the Universe 
should now be filled with a black-body spectrum of 
electromagnetic radiation.  
The first theoretical estimate (~1950) for the present 
temperature was 5K in quite good agreement with the first 
determination of 3.5±1.0 K.  
Today, the CMB spectrum is the best Planck spectrum 
known in Nature. Its average temperature is 2.725±0.002K. 
Predicting the CMBR and its temperature was the first clear 
success of HBB cosmology!
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dn(�) =
8⇥�2d�

exp(h�/kBT )� 1
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2. Primordial (BB) nucleosynthesis

A second big success of HBB cosmology is that it provides a 
mechanism (BBN) for producing light nuclei*) (d, He, Li, ..) out 
of protons and neutrons.  
Temperatures of order 1010K (~ 1 MeV) are needed for this 
to happen. The success of BBN is not just qualitative: we 
know the physics of the underlying processes, we can 
calculate the relative abundances of those light elements and 
compare them with the data.

 *) Ηeavy elements are believed to be produced much later in 
very hot and dense stars, like supernovae.
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Horizontal bands 
correspond to 
experimental bounds; 
Vertical band  to 
allowed range for  
ΩB ~ 0.021 h-2

Comparison with data

H(t0) ⇥ H0 = 100 h km s�1Mpc�1 ; h ⇤ 0.72± 0.05
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1. Flatness problem
We know that, today, |ΩK| cannot exceed 0.1. On the other 
hand ΩK evolves in time according to:

and increases with t for a decelerated expansion (w > -1/3).  
=> |ΩK| < 10-32 at BBN & < 10-60 at t = tP ~ 10-43 sec.     
Q: Why should the Universe start with such a small spatial 
curvature w.r.t. the total space-time curvature? 
NB: A similar result holds for the contribution of spatial 
gradients. It had to be infinitesimal in the early Universe in 
order not to dominate today.

Shortcomings of HBB cosmology
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2. Homogeneity problem

The CMB comes to us today, basically undisturbed (just 
redshifted) from the time of recombination (or last scattering, 
when atoms formed and the Universe became transparent to 
photons). This happened at z = zrec ~ 1100 i.e. when the 
Universe we can observe today was 1100 times smaller.

This size should be compared with another scale, the horizon, 
which is the distance traveled by light from t=0 till trec.  
For standard HBB cosmology this second length scale is much 
smaller than the former one. The ratio is about 30 at 
recombination and can be as large as 1030 if we go back to t = tP 
~ 10-43 sec (see picture). 
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!
By causality (finite c), primordial inhomogeneities can only be 
washed out over distances shorter than the horizon.  
Thus, at recombination our Universe consisted of about 104-105 

causally disconnected regions. 
The puzzle is that the CMB temperature was(is) the same in 
each one of those causally disconnected region (directions). 
The reason why in the past the Universe was (much) larger 
than the horizon is, again, that w > -1/3: 
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3. Origin of large-scale structure (LSS)

The Universe, even if homogeneous on very large scales, 
has large (and to an even larger extent small) scale 
structures: clusters of galaxies, galaxies, stars, ... 
In HBB cosmology there is no explanation for LSS. In 
order to explain today’s structures one has to start 
with some tiny inhomogeneities to be put by hand on top 
of the LFRW Universe. 
In other words the HBB model tends to give either too 
much or too little LSS. Another fine-tuning problem. 



(afHf )
(aiHi)

=
ȧf

ȧi
� eNmin
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The obvious solution: acceleration! 
From the preceding discussion it is clear that an obvious 
solution to our puzzles is to insert a sufficiently long period of 
accelerated expansion, called inflation.  One demands:

If N > Nmin ~ 60 inflation turns a generic initial Universe into a 
very (spatially) flat one since a-2 goes down faster than H2.  
Thus, Ω = 1 is a generic prediction of inflation. Also, initial 
inhomogeneities are stretched to scales larger than our present 
Horizon. 
The homogeneity problem is also solved since, in the far past, 
our visible Universe was inside a single Hubble patch (picture).



big-bang singularity?
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Who provides the acceleration? 

 Ordinary matter, thanks to gravitational attraction, resists the 
expansion, decelerates it. In order to accelerate the expansion 
we need a “fluid” with ρ + 3 p < 0 (negative enough pressure).  
Quite amazingly it is relatively easy to “invent” such fluids. A 
positive cosmological constant is the simplest example (in fact 
was invented by Einstein for a similar purpose) but it’s hard to 
get rid of. A more interesting choice is the potential energy of a 
nearly homogeneous and constant scalar field, called the 
inflaton. It has almost the same equation of state as a 
cosmological constant:  w ~ -1 (p ~ - ρ). 
At some point the inflaton starts changing rapidly in time and 
inflation stops. The inflaton’s potential energy has to be 
dissipated, heating up the Universe (otherwise no BBN!) and w 
becomes positive (w ~ +1/3 presumably).
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Inflation’s bonus: a quantum origin of LSS

One of the greatest bonuses of inflation is that, besides 
providing a mechanism for erasing initial inhomogeneities 
and spatial curvature, it can also generate a calculable 
(within a given inflationary model) amount of primordial 
perturbations. 
As we shall discuss the reason for this “miracle” is quantum 
mechanics. Indeed, while the wavelength of any primordial 
classical perturbation gets stretched beyond our horizon by 
inflation, quantum mechanics keeps acting throughout 
inflation continuously generating new short-scale 
perturbations. When amplified and stretched to present 
cosmological scales by inflation they may well give rise to all 
the structures we see in the sky.



!
  
Since a few decades we have a good 
cosmological model combining the 
inflationary paradigm with that of a  
“dark” sector in the energy budget of the 
Universe.

The “concordance model” 
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 Without QM: inflation produces a perfectly 
homogeneous Universe: initial inhomogeneities are 
erased and the structures we see in the sky could not 
have formed. 

  

With QM: classical initial inhomogeneities are erased, 
but they replaced by calculable quantum fluctuations 
produced, amplified and stretched throughout the 
inflationary epoch. 
!
The CMB we observe today carries an imprint of those 
primordial fluctuations. 
!

Importance of QM in cosmology: 
1. Origin of structure
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points in the sky at which it is possible to perform measurements. This so-called cosmic variance is an
unavoidable effect that becomes most significant at larger angular scales.

The green curve represents the best fit of the 'standard model of cosmology' – currently the most widely
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around the curve shows the predictions of all the variations of the standard model that best agree with
the data.
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Inflation cools the Universe practically down to zero 
temperature. How can we generate a hot Universe after 
inflation? If not, no CMB, BBN!! 
NB: after inflation the U is still expanding! 
Second intervention of QM: dissipative, non adiabatic 
conversion of potential energy into a hot thermal soup of 
elementary particles. 

This reheating plays the role of 
the old hot BB! 

     …but: 1. has no associated singularity and 
 2. It is certainly NOT the beginning of time! 

!

!

2. Reheating after inflation



Which Big Bang are we talking about?
• For many decades we have taught the general public (and 

not only!) a simple equation:  
!

Big Bang = Beginning of Time 
!

But, according to modern cosmology, we must distinguish:  
1. The  “physical”, non singular BB, at the end of inflation, 

that left measurable relics (CMB, BBN…) and:  
2. A “theoretical” singular(?) BB, that could have 

preceded inflation (without leaving relics?). 
In any case: the BB we know something about has 
nothing to do with a beginning of time.



An often shown (yet misleading) picture



!

 Short Break



Comparing cosmological perturbations

One of the most important virtues of inflation is that it 
provides a mechanism for generating an interesting spectrum of 
cosmological perturbations. 
This is also regarded as the best way to test the inflationary 
paradigm, to select among its many different realizations, and 
to compare it against alternative cosmologies.  
We shall first review how this amazing phenomenon comes 
about and which are the characteristic properties of the 
perturbations produced by standard slow-roll inflation. 
Tomorrow we will compare these predictions with those 
obtained in the context of (a particular example of) string 
cosmology. 

30
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Theory of cosmological perturbations 
A distinctive property of any inflationary epoch is that, all 
along its duration, physical scales are continuously pushed 
outside the horizon. This a direct consequence of the growth 
of the ratio

during inflation. 
During a decelerated expansion, physical scales “re-enter the 
horizon”. The amplification of fluctuations has a lot to do 
with this basic kinematical fact: scales initially inside the 
horizon go out during inflation and reenter after inflation.
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λphys~ a(t)

exits

reentries

??

length scales

Kinematics of slow-roll inflation
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Classical considerations
Let’s assume that we have a homogeneous solution of the 
classical cosmological field equations. Let us look for the a 
general solution describing non-homogeneous small 
perturbations by expanding every field (the metric as well 
as the matter fields) around their homogeneous values.

The action describing the dynamics of these perturbations 
will be quadratic in them (since the action is stationary on the 
unperturbed solution) but in general is not diagonal. One can 
diagonalize the kinetic terms of the perturbations and make 
them canonically normalized.  
At lowest order in the derivatives a generic perturbation ψ 
will enter the action in the form:



Seff =
1

2

Z
d3xd� P�(�)

⇥
(⇥0)2 � (⇤i⇥)

2
⇤
=

1

2

X

�k

P (�)
⇥
|⇥0

k|2 � |k⇥k|2
⇤

Seff = �1

2

Z
d4x

p
�g Q�(x)

⇥
⇥µ�⇥

µ� +m2(x)�2
⇤

Seff =
1

2

Z
d3xd� P⇥(�)

⇥
(⇥0)2 � (⇤i⇥)

2 �m2a2⇥2
⇤
; ⇥0 ⌘ ⇤�⇥ = a⇤t⇥
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where Qψ is a ψ-dependent scalar field. If the background 
metric is conformally flat (it soon becomes in ordinary 
inflation) we can go over to conformal time and the action 
takes an even simpler form:

Pψ(η) = a2 Qψ is called the “pump field” for ψ. Introducing 
Fourier modes ψk wrt the space coordinates different modes 
decouple and each mode obeys a very simple linear dynamics. 
We will be mainly concerned with massless perturbations for 
which: 



H =
1

2

X

�k

⇥
P�1(�)|�k|2 + P (�)|k⇥k|2

⇤
; �k = P⇥0

k
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Comment: the comoving wave vector k is related to the 
physical wave vector p and wavelength λphys by:

k is constant in time and has to be compared to aH (the 
comoving Hubble parameter). A perturbation is inside the 
horizon if k > (>>) aH = a’/a and is outside if k < (<<) aH. During 
inflation aH grows, while it decreases afterwards => this is 
how exits & reentries are seen in comoving variables. 
The time evolution of each mode depends crucially on its 
relation (in or out) wrt the horizon. 
It is convenient (also in view of discussing the quantum case) 
to go over to a Hamiltonian formalism:

p =
k

a
; �phys =

1

p
=

a

k
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The one-mode Hamiltonian

Hamilton’s equations:

�̂k = P 1/2�k ; �̂k = P�1/2�k

�̂00
k +

 
k2 � (

p
P )00p
P

!
�̂k = 0 ; �̂00

k +

 
k2 �

(
p

1/P )00p
1/P

!
�̂k = 0

can be rewritten in terms of some rescaled “canonical 
variables” as Schroedinger-like equations: 

and we can distinguish two opposite regimes:



�k � const. ; �k =� const. ; H � Max(P, P�1) ; Ḣ > 0

 ̂k ⇠ const ; �̂k ⇠ const
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2.  When the perturbation is deeply outside the horizon its 
evolution corresponds to an over-damped oscillator and the 
amplitude freezes. This corresponds to an increase in H 
which can be due either to the freezing of the perturbation 
or of its conjugate momentum. In both cases H grows.

�k � P�1/2 ; �k = P 1/2 ; H � const.

1. When the perturbation is deeply inside the horizon its 
evolution corresponds to an adiabatically damped oscillator 
and to a conserved Hamiltonian:
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Turning on Quantum Mechanics

The evolution of perturbations is basically the same in the 
classical and quantum theory. 
What really makes the difference is that classical 
perturbations are given “initially” and then evolve 
deterministically. In order to be called classical they 
involve physical lengths initially larger than lP. 
If inflation lasts long enough such initial perturbations 
have been stretched way beyond our present horizon H0-1. 
Instead, quantum fluctuations are produced all the time 
(we cannot turn off h!). 
Since they can be generated much later than the classical 
ones they can be still inside our horizon today. 
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We now turn to a specific example
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Tensor perturbations in slow-roll inflation
This is one of the most robust predictions of inflation. 
Consider a tensor perturbation of the FLRW metric:

The associated “pump field” turns out to be a2(η) so that 
the Fourier modes of ah satisfy:

At early enough times the scale 1/k is inside the horizon. 
(ah) oscillates like exp(i k η) with constant amplitude. In 
the ground state of this harmonic oscillator QM gives:

ĥk = lP k
�1/2 ) �h(⇥) = k3/2a�1ĥk =

lP
⇥

; ⇥ = ak�1 ; lP =

r
8⇤G~
c2
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At a later time the scale 1/k goes out of the horizon and h 
itself freezes. By matching the solution at exit we find:

ĥk = lP k
�1/2 ) �h(⇥) = k3/2a�1ĥk =

lP
⇥

; ⇥ = ak�1 ; lP =

r
8⇤G~
c2

Smaller wavelengths have a larger initial amplitude but they 
exit later and therefore are not amplified as much as 
longer wavelengths. These two competing effects produce a 
spectrum that depends on how H changes in time. For slow-
roll inflation H(t) is a slowly decreasing function of t and 
therefore the resulting spectrum is expected to be slightly 
red-tilted. The amplitude is fixed in terms of H/MP. 
An almost scale-invariant (Harrison-Zel’dovich) spectrum of 
tensor perturbations from slow-roll inflation!

�h(⇤) =
l
P

⇤(⇥
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)
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In slow-roll inflation this calculation can be repeated for 
“scalar” perturbations. These are coupled perturbations of 
the inflaton and of the metric (curvature perturbations). 
Because of this “mixing” the calculation is more complicated 
and one has to get rid of possible gauge artifacts. 
After the pioneering work of Bardeen several gauge-inv. 
scalar perturbations have been used. Besides the Bardeen 
potentials, popular ones are R / ζ, the curvature 
perturbation on comoving/constant density hypersurfaces. 
The end result is that also scalar perturbations have a 
flattish (and typically red-tilted) spectrum (ns ~ 1). 
Their amplitude is not fixed by H/MP since it is enhanced 
by 1/(slow-roll parameters).  
=> The S contribution to CMB anisotropies dominates over 
T, but its properties are model-dependent. 



43

We can only put some upper bound on the tensor 
perturbations in order not to exceed the observed ΔT/T. 
If large enough T (for tensor!) can be seen in the B-mode 
of the polarization of the CMB (after subtracting other 
possible sources). For the moment we only know (BICEP + 
PLANCK) that T/S < 0.12 @ 90 % c.l.

An important comment. 
The detection of primordial tensor perturbations would be 
a “prima facie” evidence for gravity to be quantized.  
However, given that gauge invariant scalar perturbations 
mix matter and metric perturbations, I claim that even the 
success of inflation in predicting scalar density/curvature 
perturbations strongly supports the claim that gravity, like 
all other interactions, ought to be quantized.



Summarizing: 
Perturbations in Conventional Inflation

• Tensor perturbations (GW) generated with nT ~ 0          
(approximately scale-invariant);   

• Scalar (Density/curvature) perturbations w/ nS ~ 1        
(also approx. scale-invariant); PLANCK: nS ~ 0.96            

• T/S = O(nT), smallish but perhaps observable in CMB 
polarization (PLANCK?), too small for direct GW searches; 

• Non Gaussian, isocurvature components: small, at least in 
single-field models; 

• EM perturbations: absent since, In D=4, an inflationary 
metric couples trivially to Maxwell’s term and α is constant 
(running is not enough).

44
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A typical inflationary prediction for temperature fluctuations
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