

SIDDHARTA - 2 STATUS REPORT

Johann Zmeskal for the SIDDHARTA-2 Collaboration

52nd LNF-INFN SCIENTIFIC COMMITTEE November 21, 2016

WWW.OEAW.AC.AT/SMI

CONTENT

Scientific Motivation

SIDDHARTA-2 apparatus – status with time lines:

vacuum chamber
cryogenic target
X-ray detector system + calibration
veto counters
luminosity detector

MC simulation

synchronous – background asynchronous – background

Overall time schedule

Beam time request

SIDDHARTA-2 Collaboration

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

- LNF- INFN, Frascati, Italy
- SMI- ÖAW, Vienna, Austria
- IFIN HH, Bucharest, Romania
- Politecnico, Milano, Italy
- TUM, Munchen, Germany, Germany
- RIKEN, Japan
- Univ. Tokyo, Japan
- Victoria Univ., Canada
- Univ. Zagreb, Croatia
- Helmhotlz Inst. Mainz, Germany

⁵²nd LNF Scientific Committee Meeting, November 21, 2016

The scientific aim of SIDDHARTA-2

To perform precision measurements of kaonic atoms X-ray transitions

unique information about QCD in the non-perturbative regime in the strangeness sector not obtainable otherwise

Precision measurement *of shift* and *width*

- ➢ of the 1s level of kaonic hydrogen SIDDHARTA
- *first measurement* of kaonic deuterium SIDDHARTA-2

to extract the antikaon-nucleon isospin dependent scattering lengths

chiral symmetry breaking, EOS for neutron stars

X-RAY TRANSITIONS TO THE 1s STATE

TECHNICAL REPORT

SIDDHARTA-2 - kaonic deuterium measurement

May 2016

The SIDDHARTA-2 Collaboration: LNF- INFN, Frascati, Italy; SMI- ÖAW, Vienna, Austria; IFIN – HH, Bucharest, Romania; Politecnico and INFN, Milano, Italy; TUM Muenchen, Germany; RIKEN, Japan; Univ. Tokyo, Japan; Victoria Univ., Canada; Univ. Zagreb, Croatia

THE VETO SYSTEM FOR SIDDHARTA - 2 TECHNICAL REPORT

August 2016 SIDDHARTA-2 Collaboration

SIDDHARTA-2 ➤ Cooling systems ➤ Cryogenic target

The SIDDHARTA-2 vacuum chamber

New SIDDHARTA-2 cooling design

Target cooling: 1 Leybold – 16 W @ 20 K new target cell cooling via ultra pure aluminum bars

SDD cooling:

4 CryoTiger – 60 W @ 120 K Liquid argon cooling lines: SDD cooling to 90 – 110 K

✓ cryo coolers available/tested

SIDDHARTA-2 target prototype

Gantt chart: SIDDHARTA-2 target

SIDDHARTA-2 ➤ X-ray detectors: SDDs

The "new" Silicon Drift Detector

> SIDDHARTA

- JFET integrated on SDD
- lowest total anode capacitance
- limited JFET performance
- sophisticated SDD+JFET technology

- external CUBE preamplifier (MOSFET input transistor)
 - larger total anode capacitance
 - better than FET performances
 - standard SDD technology

radiation entrance window

The 4x2 SDDs array for K⁻d

SDD-chip back side with bonding pads

SDD-chip glued to ceramic board, bonded to CUBE preamplifier

The CUBE preamplifier

- A full CMOS preamplifier is mounted on ceramic board connected via bonding
- The **CUBE** replaces the JFET, which was direct implanted on the anode side on the SIDDHARTA type SDDs
- Short bonding lines from CUBE to SDD, no difference in the detector performance
- Advantage, the preamplifier is connected close to the SDD and not only the FET → ASIC of analogue processing can be placed relatively up to ~100 cm away

The ASIC - the SFERA-chip

Specifications

- CMOS AMS 0.35µm technology
- 16 input channels
- shaper amplifier topology: 9
 order semi-gaussian
- input dynamic ranges:
 2800 e⁻ (10 keV), 4420 e⁻ (16 keV),
 9950 e⁻ (36 keV)
- shaper amplifier peaking times:
 200 ns, 500 ns, 1 μs, 2 μs, 4 μs

The SFERA test board

SA output pulses at different peaking times (0.2, 0.5, 2, 3, 4 and 6 µs) Channel 1: Scale 500 mV/ Channel 2: Scale 500 mV/

new optimised electronics:

- more robust allows to work during injection
- fast timing
- stability/linearity improved
- excellent energy resolution

Channel 3:

Channel 4:

Horizontal

Scale 500 mV/. Scale 500 mV/.

Scale 1.00 us/

The "new" SDD technology: CUBE + SFERA

4x2 SDD ceramic + bonding device

4x2 SDD array – layout + arrangement

4x2 SDD array cooling test

- 3 cooling cycles
- Cryostat set to 65 K
- Ceramic temperature 73 K
- No visual damage of SDD/ceramic

Fig. 5. Eight X-ray spectra acquired by irradiating a 2×4 SDD array with an un-collimated ^{55}Fe X-ray source at a temperature of -30 °C with 3 μs shaping time using.

Fig. 4. Experimental setup employing thermoelectric (Peltier) cooling stage to characterize Siddharta-II arrays at a temperature of -30 °C.

4x2 SDD array around the cryogenic target

4x2 SDD array BC-408 Scintillator tile

SDD arrays delivery and qualification

48 SDDs arrays neededDelivery status:40 arrays received16 ordered (to be deliveredwithin January 2017)

Batch	Wafer	Matrix	Q-index	Batch	Wafer	Matrix	Q-index
SIDDHARTA1b	W01	1,2	8.080	SIDDHARTA1b	W03	1,4	8.080
SIDDHARTA1b	W01	2,1	8.080	SIDDHARTA1b	W03	1,1	8.620
SIDDHARTA1b	W01	3,2	8.080	SIDDHARTA1b	W04	3,2	8.260
SIDDHARTA1b	W01	3,3	8.530	SIDDHARTA1b	W04	2,1	8.611
SIDDHARTA1b	W02	1,4	8.161	SIDDHARTA1b	W04	1,2	8.710
SIDDHARTA1b	W02	3,1	8.800	SIDDHARTA1b	W05	3,4	8.710
SIDDHARTA1b	W02	3,3	8.530	SIDDHARTA1d	W14	3,1	8.080
SIDDHARTA1c	W12	2,1	8.440	SIDDHARTA1d	W14	3,2	8.440
SIDDHARTA1c	W17	1,1	8.080	SIDDHARTA1d	W14	2,1	8.521
Q-index: N.D.	GS		SIDDHARTA1d	W14	3,3	8.620	
N = number o	f functionir	na chan	nels	SIDDHARTA1d	W15	3,4	8.170
(with $1 < 2nA/cm^2$)			m ²)	SIDDHARTA1d	W15	3,1	8.251
D = number o	f "diamond	l" chanı	nels	SIDDHARTA1d	W15	3,3	8.260
2 name (w	/ith Januar <	80nA/	cm^2)	SIDDHARTA1d	W15	2,1	8.440
G = number of "gold" channels (with $J_{anode} < 250 pA/cm^2$) S = number of "silver" channels (with $J_{anode} < 600 pA/cm^2$)				SIDDHARTA1d	W19	1,2	8.260
				SIDDHARTA1d	W19	3,1	8.260
				SIDDHARTA1d	W19	1,1	8.350
				SIDDHARTA1d	W19	1,4	8.350

Table 1: Q-index classification based on anode leakage current density

Gantt chart: SIDDHARTA-2 X-ray detector

52nd LNF Scientific Committee Meeting, November 21, 2016

The SIDDHARTA-2 setup – Veto-1 + Veto-2

The veto-1 system

To achieve a good timing resolution, (independent of the "hit" position) < 600 ps (FWHM), the scintillator has to be read out on both side.

Because the available space is limited due to shielding material, the photomultiplier tubes have to be on the same side (a special light-guide mirror design was used).

MC simulation veto-1 system

Timing (< ns) of veto-1 scintillators. The peak in green corresponds to particles from K^- absorption on gas nuclei. The red distribution is the time spectrum of events correlated to a K^+ ; no peak is present because there is no nuclear absorption, the shape follows the K^+ decay. In blue, the bottom kaon detector detects neither a K^+ nor a K^- .

The veto-1 system

The veto-2 system

Charged particle veto – veto2

K ⁻ N reaction products	Subsequent decay mode	Finally produced particles	Branching ratio (%)
$\Sigma^+ \pi^-$	$\Sigma^{+} \rightarrow \pi^{0} p; \pi^{0} \rightarrow 2 \gamma$	π⁻ 2γp	11.1
Σ+ π-	$\Sigma^{+} \rightarrow \pi^{+} n$	π ⁻ π ⁺ n	11.1
Σ- π+	$\Sigma^{-} \rightarrow \pi^{-} n$	π- π+ n	10.0
$\Sigma^0 \pi^0$	$\Sigma^0 \rightarrow \Lambda \gamma; \Lambda \rightarrow \pi^- p$	π- Зγр	7.6
$\Sigma^0 \pi^0$	$\Sigma^0 \rightarrow \Lambda \gamma$; $\Lambda \rightarrow \pi^0 n$; $\pi^0 \rightarrow 2 \gamma$	5 γ n	7.6
$\Lambda \pi^{-}$	$\Lambda \rightarrow \pi^{-} p$	2π ⁻ p	14.2
$\Lambda \pi^{-}$	$\Lambda \rightarrow \ \pi^0 \ \mbox{n} \ ; \ \ \pi^0 \rightarrow 2 \ \gamma, \ \pi^0 \rightarrow 2 \ \gamma$	π- 4 γ n	14.2
$\Sigma^0 \pi^-$	$\Sigma^0 \rightarrow \Lambda \gamma; \Lambda \rightarrow \pi^- p$	2π ⁻ p	5.4
$\Sigma^0 \pi^-$	$\Sigma^0 \rightarrow \Lambda \gamma; \Lambda \rightarrow \pi^0 n$	π-2γ n	5.4
$\Sigma^{-} \pi^{0}$	$\Sigma^{-} \rightarrow \pi^{-} n$	π-2γ n	10.8
K⁻decay	Branching ratio (%)		
$\mu^{-} \nu_{\mu}$	63.5		
π- π ⁰	21.2		

 $\pi^ \pi^{-+} \pi^0$

 $\pi^0 \; \textbf{e}^{\scriptscriptstyle -} \, \nu_e$

 $\pi^0 \ \mu^{\scriptscriptstyle -} \ \nu_\mu$

5.6

4.8

3.2

MC simulation: Correlation between SDDs and back-mounted scintillators for charged particles

SIPM read-out: Intelligent front-end electronics for silicon photo detectors - IFES

SiPM read-out: the IFES board

Analogue differential out

Bias voltage boards

LVDS digital ToT output

Veto-1 and veto-2 are an essential part of the
SIDDHARTA-2 apparatus. A signal to background enhancement by a factor ~ 3 will be achieved.
Veto-1 also will be used to optimize the kaons stopping distribution inside the target.

Gantt chart: SIDDHARTA-2 veto systems

	4/20	16	1/	2017	2/	2017	7	3/2	017	4/	201	7
SIDDHARTA-2 veto systems												
Veto-1 – final tests		\rightarrow										
Veto-2 – construction phase												
Veto-2 – final tests												
Kaon trigger - construction												
Kaon trigger – final tests												

SIDDHARTA-2

- A new dedicated Al-beam pipe with carbon fibre reinforcement
- Luminosity monitor (Luminometer)

DAΦNE – SIDDHARTA-2 + KLOE-2 meetings

- installation of the SIDDHARTA-2 in the actual KLOE region (same as SIDDHARTA)
- DAFNE team checked the existence of beam pipe elements and of the platform of SIDDHARTA – done (OK)
- beam pipe: a new Al-beam pipe (with carbon fibre) necessary
- Luminometer necessary
- study feasibility of rolling out KLOE2 as a block new quadrupole magnets

SIDDHARTA interaction region

SIDDHARTA-2 beam pipe financed by INFN

A-A(1:2)

SIDDHARTA-2 - Luminosity monitor

SIDDHARTA-2 - Luminosity monitor (based on kaons)

Size: 8 x 8 cm² both side of the beam pipe distance $y = \pm 4$ cm off beam made of 2 pieces 8 x 4 cm²

Coincidence rate: 25.7 % per charged kaon pair single rate at the boost-side: 42.7 % single rate at the antiboost-side: 32.3 %

 $L = 10^{32} \rightarrow 37$ Hz (coincidence) / 62 Hz on boost-side

5 seconds: 185 counts (7%) / 310 counts (5.7%)

DEAR experiment – proof of luminometer concept:

In summary, the configuration selected for the Kaon Monitor consists of two fast NE104 scintillator slabs, each 2 mm thick. Both scintillators are 8 cm high (y-axis) and 15 cm long (z-axis) and are placed back-to-back at IP2, on the two sides of the beam pipe, with the longest side parallel to it and are referred as the "inner" and the "outer" scintillator with respect to the center of the machine. The slabs are perpendicular to the

Fig. 1. The Kaon Monitor experimental setup in the DEAR region at the DAΦNE interaction point (IP).

Available online at www.sciencedirect.com

ELSEVIER

Nuclear Instruments and Methods in Physics Research A 496 (2003) 315-324

Sector A www.elsevier.com/locate/nima

NUCLEAR INSTRUMENTS

> & METHODS IN PHYSICS RESEARCH

The DEAR Kaon Monitor at DAΦNE

V. Lucherini^{a,*}, A.M. Bragadireanu^{a,b}, G. Beer^c, C. Curceanu (Petrascu)^{a,b}, J.-P. Egge⁵², nCL/Guaienthie^a, CM:nTitesethe^eetirg, Plonea^{a,b}er D1L2.03frghi^{a,b},

37th LNF Sci

F. Sirghi^a, J. Zmeskal^e

Gantt chart: SIDDHARTA-2 beam pipe + luminosity monitor

	4/2016	1/2017	2/2017	3/2017	4/2017		
SIDDHARTA-2 beam pipe + luminosity monitor							
Beam pipe – final design							
Beam pipe – construction							
Beam pipe – final tests			\longleftrightarrow				
Luminosity monitor – construction		(
Luminosity monitor – final tests			\leftrightarrow				

SIDDHARTA-2 ➤ Geant4 MC simulation

MC simulation – SIDDHARTA-2

The following main improvements are included in the final GEANT 4 simulation for the SIDDHARTA-2 experiment at DAΦNE, LNF-INFN:

- Changed geometry and gas-density: closer distance between IP and target cell, doubled gas density (3%), distance centre to SDDs
- Trigger system: upper kaon monitor (smaller then entrance window) DIRECTLY in front of target
- Added kaon live time detector for K+- discrimination: identification of the K+ by ($\tau_{K} = 12.8 \text{ ns}$)
- Veto-1 and veto-2 system
- SDDs operation at lower temperature to improve timing resolution (~ 400 ns)

	Signal to background	Kα events						
SIDDHARTA	1:100	1280						
from SIDDHARTA to SIDDHARTA-2								
Improved setup: Cryogenic target new SDDs	1:18	5210						
Trigger 1	1:12	3865						
Veto-1	1:8.5	3074						
Veto-2	1:4.4	2686						
K+ discrimination	1:3.1	2664						
Drift time 400 ns	1:3.0	2664						
SIDDHARTA-2 final Monte Carlo results								
SIDDHARTA-2	1:3.0	2664						

52nd LNF Scientific Committee Meeting, November 21,

Geant4 simulated K⁻d X-ray spectrum for 800 pb⁻¹

signal: shift - 800 eV width 800 eV density: 3% (LHD) detector area: 246 cm² Kα yield: 0.1 % yield ratio as in K⁻p S/B ~ 1 : 3

charged particle vetoasynchronous BG

SIDDHARTA-2

➢ Assembling plan
➢ Installation at DAΦNE
➢ Beam time request

Gantt chart: SIDDHARTA-2 assembling

	4/2016	1/2017	2/2017	3/2017	4/2017
SIDDHARTA-2 assembling plan					
SDDs bonding/mounting					
SDDs tests					
Keadout ASIC					
Veto2 realisation testing					
Luminosity monitor realisation testing					
SIDDHARTA beam pipe			\longleftrightarrow		
Siddharta2 final mounting, debugging					
					1
					Rea insta

Gantt chart: SIDDHARTA-2 installation at DA Φ NE

	1 st day	2 nd day	3 rd day	4 th day	5 th day				
SIDDHARTA-2 installation									
Moving to DAFNE Apparatus setup at DAFNE Cabling									
Leak tests Test SDD connections Test kaon monitor and veto									
Start pumping system Start cooling of SDDs Start cooling target cell					•				
	6 th day	7 th day	8 th day	9 th day	10 th day				
SIDDHARTA-2 commissi	oning								
Kaon monitor + DAQ Veto system + DAQ	↓								
SDDs + DAQ		<							

SIDDHARTA-2 on DA Φ NE

The new SDD X-ray detector system will allow to run in "topping up" mode (*)

- ➤ 80% duty cycle (0.4 pb⁻¹/h)
- Possible due to CUBE preamplifier technology

(*) if background conditions are similar to the SIDDHARTA ones

SIDDHARTA-2 requests

200 pb⁻¹, to optimize the SIDDHARTA-2 apparatus

800 pb⁻¹, to perform the first measurement of the strong interaction induced

- energy shift and the width - for the konic deuterium ground state, which is a fundamental measurement in low-energy strangeness physics (QCD).

In running conditions similar to KLOE2 that means about 8 months of data taking (starting after machine optimization)

Financial support for SIDDHARTA-2 key-persons!

54

SIDDHARTA-2 future perspectives

- Kaonic helium transitions to the 1s level
- Kaon mass precision measurement at the level < 7 keV
- Other light kaonic atoms (K⁻O, K⁻C,...)
- Heavier kaonic atoms (K⁻Si, K⁻Pb...)
- Radiative kaon capture Λ(1405) study

Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic hydrogen ?)

Thank you !

Special thanks to the accelerator division, in particular to the DA Φ NE staff and to the KLOE-2 collaboration

2 pieces of 8 x 4 cm² BC-408 scintillator plates read-out by two PMs, each

52nd LNF Scientific Committee Meeting, November 21, 2016

6

SIDDHARTA-2 cryogenic target cell + X-ray detector

ig. 5. The TDC spectra of the inner and the outer Kaon Monitor scintillators. The lower spectra are a zoom of the upper ones.

Fig. 7. The TDC spectra of the inner and outer Kaon Monitor scintillators corresponding to kaon window selections in the time spectra of the other slab. It is worth noting that the higher MIPs contamination of the inner slab (upper plot), is related to the threefold higher single counting rate of the outer slab with respect to the inner one.

$$\mathscr{L} = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}, \quad R = 1.4 \text{ Hz}.$$