SPARC_LAB – EuSPARC status

Massimo.Ferrario@LNF.INFN.IT On behalf of the SPARC_LAB – EuSPARC collaboration

EOS

Ext-LWFA

LNF Scientific Committee Meeting, November 21, 2016

FEL

PWFA

THZ

Highlights

- TNSA: results published by Nature Scientific Reports
 - PWFA: active plasma lens results submitted to PRL
- LWFA: self-injected beam accelerated up to > 200 MeV, betatron radiation detected, accelerated charge measured
- EuSPARC design study in progress, layout, linac and FEL studies

Accepted. 22 September 2016 A. Curcio¹, M. Ferrario¹, M. Galletti¹, Z. Henis², M. Petrarca⁴, E. Schleifer² & A. Zigler

OPEN Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions R. Pompili', M. P. Anania', F. Bisesto', M. Botton', M. Castellano', E. Chiadroni', A. Clanchi',

Lowlights

• A fire accident has stopped suddenly FLAME operations: a pump laser completely burned, no interlocks on laser temperature provided by the company.

Severe discharges on the C-band Modulator/Klystron socket produced a big hole in the inner transparent basement (the one that holds the electrical joint to Klystron)

Active Plasma Lens experiments

PWFA experimental layout :

PWFA – plasma target

April - December 2016

	Nome dell'attività		T2			Т3	201	16 T4 T1								
		apr	mag	giu	lug	ago	set	ott	nov	dic	gen	feb	mar	apr		
}	Preliminary plasma lens studies	Preli	minary p	lasma le	ens studie	S										
	Beam based alignment to optimize charge transport		Beam b	ased ali	gnment t	o optimi	ze charg	e transp	ort							
Į	Re-Alignment of the whole linac: shutdown		Re Re	e-Alignm	ent of the	e whole	linac: sh	utdown								
)	Beam based alignment after mechanical alignment		ē B	Beam ba	sed align	ment af	ter mech	anical a	ignment							
	Plasma lens experiment, I part: High focusing gradient		-		_	Plasma	lens ex	perimen	t, I part:	High foc	using gra	dient				
1	Installation of new attenuator on Kly2: RF, Linac and vacuum services						Install	ation of	new atte	nuator o	n Kly2: F	RF, Lina	c and va	cuum		
2	Sub-systems start-up after Summer shutdown: Electric, water and cooling plants; RF high power tests in the attenuator							Sub-sy	stems st	art-up af	îter Sumr	mer shu	itdown: E	lectric		
3	Installation of new capillary (fully 3D printed)							nstalla	ation of r	new capi	llary (fully	y 3D pri	nted)			
1	Conditioning of gun and S-band accelerating structures							Co	nditionin	ig of gun	and S-b	and acc	celerating	struct		
5	C-band Klystron: installation, test and conditioning				·			ľ.	-	-	C-band K	lystron	: installat	ion, te		
3	Plasma lens experiment, II part: Emittance preservation										Plasma le	ens exp	eriment,	II part:		

Courtesy of M. P. Anania, A. Biagioni, D. Di Giovenale, F. Filippi, S. Pella

Active plasma lens

- Focusing field produced by electric discharge in a plasma-filled capillary
 - Focusing field produced, according to Ampere's law, by the discharge current

$$B_{\phi}(r) = \frac{1}{2} \int_{0}^{r} \mu_{0} J(r') dr'$$

- Radial focusing
 - X/Y planes are not dependent as in quads
- Weak chromaticity
 - Focusing force scales linearly with energy
- Compactness
 - Higher integrated field than quad triplets
- Independent from beam distribution
 - Not sensitive to longitudinal/transverse charge profile as in passive plasma lenses

Van Tilborg, J., et al. "Active plasma lensing for relativistic laser-plasmaaccelerated electron beams." Physical review letters 115.18 (2015): 184802.

Experimental layout

Preliminary results

Preliminary results

Gaussian current profiles

Over focusing (max current)

100 um offset

Head-tail instability induced by dielectric wakefield

The tail is moving with respect to the head

$$eE_r \cong -\frac{2N_b r_e m_e c^2}{\sqrt{2\pi}\sigma_z a} \exp\left(-\xi^2/2\sigma_z^2\right)$$

SPARC

Induced energy spread

$$E_z / E_r = \tan(\theta_c) = \sqrt{\varepsilon - 1}$$

Dielectric Wakefield

SPARC

-I-AB

1 cm long, 1 mm diameter, fully 3D printed capillary

Electron beam parameters

50 pC (at the cathode) 85% transmission through the capillary 126 MeV (0.3‰ energy spread) 1 ps rms bunch length

Milestones achieved so far

- 31-05-2016
 - Alignment of accelerating sections and solenoid magnets
 - Full transport of the beam charge through the 1 mm capillary diameter
 - Characterization of permanent quadrupole magnets (PMQ) at ENEA (C. Ronsivalle and L. Picardi)
- 31-07-2016
 - Active plasma lens experiment
 - Preliminary measurement to demonstrate symmetric strong focusing effect

• 30-09-2016

- New RF power distribution line to unbalance forward power in S-band structures
- Installation of EM quadrupole triplet at the end of the 2nd S-band structure to control beam matching at the plasma
- 21-11-2016
 - Systematic study of active plasma lens with different capillary geometries and materials
 - Better control of emittance

January - August 2016

Nome dell'attività		Т1			T2				
	gen	feb	mar	apr	mag	giu	lug	ago	set.
New cathode studies: QE map and intrinsic emittance characterization	i i	New ca	thode st	udies: Q	E map a	and intrir	nsic emit	tance cha	iracteriza
C-band structure conditioning	1. 7	C-ba	nd struct	ure cond	litioning			.l	
 Beam dynamics experimental studies for PWFA without plasma 		-	Beam	dynamio	s exper	imental	studies f	or PWFA	without p
Single high charge, high current bunch		Sin	gle high	charge,	high cur	rent bun	ich		
PMQ tests for final focusing	İ	P	MQ test:	for fina	focusin	g	1		
Multi-bunch train with ramp charge			Multi-I	unch tra	in with	ramp ch	arge		
 Plasma acceleration experiments 			-					Plas	ma accel
 Two bunch interaction with plasma structure 						Two bu	nch inter	action wi	th plasma
Driver and witness beam matching with plasma				priver ar	d witne	ss beam	matchin	g with pla	asma
Beam-plasma interaction			1	Be	am-plas	ma inter	action		
Witness beam characterization out of plasma: Single shot emittance measurement					VVitne	ess bear	n charac	terization	out of pl
FEL driven by plasma structure					-	FEL dri	en by p	lasma str	ucture
Active and adiabatic plasma lens studies for plasma-based transport lines							Active a	nd adliabe	ntic plasm
Multi-bunch interaction with plasma: resonant PWFA efficiency optimization								Multi-bu	nch inter
 Hollow beam setup 	1							Holle	w beam
Experimental beam dynamics studies without plasma							3	Exper	imental b
Experimental beam dynamics studies with plasma							8	Exp	erimental

Program weakness : Discharges on the socket

Very big hole in the inner transparent basement (the one that holds the electrical joint to Klystron), but we cannot understand where from and to the discharge comes.

We run at nominal parameters monitoring all signals from the system without particular alarms and interlocks.

Actions

We asked to Scandinova a rapid intervention on the modulator to replace (upgrade) the broken parts and to definitively solve the problem.

This obviously drive to the conclusion that there were critical components in the modulator we bought from Scandinova.

FLAME Laser

FLAME activities since last SciCom

From May to now...

Activity	Start date	End date
LWFA experiments	01/05/2016	03/08/2016
Restart after summer	05/09/2016	03/10/2016
YAG 9 updated, installed and tested	03/10/2016	17/10/2016
Fire accident on YAG 6	17/10/2016	
New FLAME interaction chamber design and ordering	04/07/2016	Order will be placed in March

Experimental set-up

By scanning the plasma density, electron energy has been varied from 50 MeV, to 175 MeV and up to 300 MeV.

Tuning plasma density, energy spread has been reduced from 100% to 20%.

MachZender interferometer.

Density has been varied (with gas pressure) from $\approx 5^{*}10^{18}$ to $\approx 2^{*}10^{19}$, and electron energy has varied consequently.

In collaboration with ENEA (ABC group) we have been able to measure the charge of the bunches using image plates. Charge up to 10 pC in the core has been measured.

Using both x-ray lanex (to measure the divergence) and an x-ray camera, we have been able to characterize the betatron radiation.

Measured x-rays up to 20KeV.

- 1. LASER–CAPILLARY INTERACTION FOR THE EXIN PROJECT, F.G. Bisesto et al., NIM A (2016)
- 2. CHARACTERIZATION OF X-RAY RADIATION FROM SOLID SN TARGET IRRADIATED BY FEMTOSECOND LASER PULSES IN THE PRESENCE OF AIR PLASMA SPARKS, A. Curcio et al., Laser and particle beams (2016)
- 3. THE SPARC_LAB THOMSON SOURCE, C. Vaccarezza et al., NIM A (2016)
- 4. FEMTOSECOND DYNAMICS OF ENERGETIC ELECTRONS IN HIGH INTENSITY LASER-MATTER INTERACTIONS, R. Pompili et al., Nature Scientific Reports (2016)
- 5. AN ULTRASHORT-PULSE RECONSTRUCTION SOFTWARE: GROG, APPLIED TO THE FLAME LASER SYSTEM, M. Galletti, **Il Nuovo Cimento (2016)**
- 6. SUB-PICOSECOND SNAPSHOTS OF FAST ELECTRONS FROM HIGH INTENSITY LASER-MATTER INTERACTIONS, R. Pompiliet al., **Optics Express (2016)**

FLAME status

The first YAG has been upgraded, installed and checked. The beam profile has been highly improved and after 2 weeks of work no damages have been recorded.

YAG profile after the upgrade

FLAME status

Order for the upgrade has been placed and we will have al the laser upgraded, installed and working by the summer (and hopefully also before, even if the upgrade of the 1st YAG has taken much longer then expected – from May to October, much more than the 1 week firstly promised from Amplitude!).

The new interaction chamber has been designed: it guarantees the maximum flexibility and space for diagnostic. With this new design, we will also be able to change parabola's focal length in order to have higher intensity.

The order for the new interaction chamber will be placed in march and the camera will be installed before summer.

FLAME status

A fire accident has stopped suddenly FLAME operations....

FLAME @ SPARC_LAB

FLAME recovery roadmap

To restart the laser seems to be a very long path, since all the plastic burned during the fire have dirty not only the clean room, but also the air conditioning system, all the optics... Lot of time will be spent to clean optics one by one (even if from a 1st fast look at the laser optics they seem to be safe) and to realign all the laser from the beginning (consider that air conditioning has been working far from the normal conditions for 2 weeks to let the smoke and the smell out of the room).

FLAME status: program

From now on.

Activity	Start date	End date
YAGs update – first 5 YAGs (upgrade, installation and test)	09/01/2017	23/01/2017
YAGs update – last 5 YAGs (upgrade, installation and test)	30/01/2017	13/02/2017
Laser restart	05/12/2016	03/02/2017
EOS experiment – phase 2 – set-up	09/01/2017	03/02/2017
1 st Amplitude visit for YAG installation	06/02/2017	10/02/2017
2 nd Amplitude visit for YAG installation	13/03/2017	17/03/2017
EOS experiment – phase 2 – experiment	13/02/2017	28/04/2017
Installation of the new interaction chamber	01/05/2017	12/05/2017
LWFA experiment – phase 2 – set-up	15/05/2017	09/06/2017
LWFA experiment – phase 2 – experiment	12/06/2017	04/08/2017
Capillary guiding and acceleration for EXIN @ FLAME – set-up	04/09/2017	30/09/2017
Capillary guiding and acceleration for EXIN @ FLAME – experiment	02/10/2017	22/12/2017

EUSPARC Design Study

SOME EXISTING C-BAND ACCELERATING STRUCTURES

L=1.4 m, Tested to > 50 MV/m (20 cells prototype) Not efficient for high-gradient operation (too large RF output power)

L=2m, Tested to > 33 MV/m, long pulse HOM damped, unsuitable for single bunch operation

L=2m, short prototype tested to > 55 MV/m

Possible RF modules for an EUSparc C-band linac

- 4 Klystrons, 4 SLEDs, 8 sections
- \approx 16 m active length
- \approx 720 MeV RF linac energy

- 8 Klystrons, 8 SLEDs, 8 sections
- \approx 16 m active length
- \approx 1010 MeV RF linac energy

Possible configurations for an EUSparc C-band linac

HIGH-GRADIENT RF DEVELOPMENT AND APPLICATIONS

LINAC16, East Lansing, September 2016

W. Wuensch, CERN, Geneva, Switzerland

In the CLIC baseline designs for all energy stages, the approximately **200 MW/m** of required peak 12 GHz power for the main linac is produced by decelerating a high-current, bunched drive beam.

TD26 accelerating structure

Average loaded accelerating gradient	100 MV/m					
Frequency	12 GHz					
RF phase advance per cell	2π/3 rad					
Input, Output iris radii	3.15, 2.35 mm					
Input, Output iris thickness	1.67, 1.00 mm					
Input, Output group velocity	1.65, 0.83 % of c					
First and last cell Q-factor (Cu)	5536, 5738					
First and last cell shunt impedance	81, 103 MΩ/m					
Number of regular cells	26					
Structure length including couplers	230 mm (active)					
Filling time	67 ns					
Peak input power	61.3 MW					

	T24- open	CLIC-G T24
Unloaded Gradient [MV/m]	100	100
Input/output radii [mm]	3.15/2.35	3.15/2.35
Group velocity [%c]	1.99/1.06	1.79/0.91
Shunt impedance [MQ/m]	107/137	116/150
Peak input power [MW]	44.5	37.5
Filling time [ns]	49	57
Maximum E-field [MV/m]	268	222
Maximum Sc [MW/mm ²]	5.16	3.51
Maximum pulse heating temperature [K]	25	14

Proceedings of FEL2015, Daejeon, Republic of Korea

THE X-BAND FEL COLLABORATION

EUSPARC scenario based on "X-band FEL collaboration" RF module

C band: pros

- technology well established, background of various projects (SFEL, SPARC, ELI-NP, ...);
- synergic with other internal activities;
- all components already industrialized, well known suppliers;
- medium gradients (50 MV/m) already demonstrated.
- linearization possible (X band)

C band: cons

- relatively long pulses (300 400 ns);
- higher gradients require some R&D efforts;
- ultimate gradients realistically limited (< 80 MV/m)

X band: pros

- short RF pulses (< 200 ns);
- about 40% larger efficiency;
- ultimate gradients in the > 100 MV/m range
- synergic with other european (CERN) and international efforts

X band: cons

- klystron availability and cost;
- more complicated pulse compressors;
- critical RF transport and distribution;
- not all components industrialized;
- no LLRF commercially available;
- in general any part of the system requires
 R&D effort and a lot of manpower

SASE FEL studies

1 GeV, 3 kA, 30 pC, 1 um, 0.1 %

1 GeV, 30 pC, 1.5 kA, 0.5 um, 0.01 %

 $\rho = 1.14 \ 10^{-3}$

1 GeV, 3 kA, 30 pC, 1 um, 0.1 %

1 GeV, 30 pC, 1.5 kA, 0.5 um, 0.01 %

1 GeV, 3 kA, 30 pC, 1 um, 0.1 %

1 GeV, 30 pC, 1.5 kA, 0.5 um, 0.01 %

EUSPARC CDR Working Group	ps
WG O – Project Management O.1 Executive summary	(M. Ferrario)
WG 1 – Electron beam design and optimization	
1.1 Advanced High Brightness Photo-injector	(E. Chiadroni)
1.2 HB Linac options, design and parameters 1.3 – Machine layout	(A. Gallo)
WG 2 – Laser design and optimization	
2.1 FLAME upgrade	(M. P. Anania)
2.2 Advanced Laser systems	(L. Gizzi)
WG 3 – Plasma Accelerator	
3.1 PWFA beam line	(A. Cianchi)
3.2 LWFA beam line	(A. R. Rossi)
3.3 Positron acceleration	
WG 4 - FEL pilot applications	
4.1 Plasma driven FEL	(F. Villa)
4.2 Advanced FEL schemes	(G. Dattoli)
4.3 FEL user applications	(M. Benfattoi)
WG 5 – Radiation sources and user beam lines	
5.1 Advanced dielectric THz source	
5.2 Compton source	(C. Vaccarezza)
5.3 User beam lines	
WG 6 – Low Energy Particle Physics	
6.1 Advanced positron sources	(A. Variola)
6.1 Advanced positron sources 6.2 Fundamental physics experiments , LabAstro	(A. variola) (C. Gatti)
6.1 Advanced positron sources 6.2 Fundamental physics experiments , LabAstro 6.3 Plasma driven photon collider	(A. Variola) (C. Gatti)
6.1 Advanced positron sources 6.2 Fundamental physics experiments , LabAstro 6.3 Plasma driven photon collider WG 7 – Infrastructure	(A. Variola) (C. Gatti)
6.1 Advanced positron sources 6.2 Fundamental physics experiments , LabAstro 6.3 Plasma driven photon collider WG 7 – Infrastructure 7.1 Civil Engineering and conventional plants	(A. Variola) (C. Gatti) (U. Rotundo)
6.1 Advanced positron sources 6.2 Fundamental physics experiments , LabAstro 6.3 Plasma driven photon collider WG 7 – Infrastructure 7.1 Civil Engineering and conventional plants 7.2 Control system	(A. Variola) (C. Gatti) (U. Rotundo) (G. Di Pirro)

EuSPARC GANTT CHART

1	2016					201	7	2018					L.	201	9			2.02	3		2021			
2 Month	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60	63	66	69	72
3		3							4															
4 SPARC_LAB Consolidation				-																				
= FLAME maintenance and consolidation	n up te	o 300 TW	Ř.																					
6 LWFA staging tests at FLAME			1			-																		1
 Thomson beam line final commissioning 	ng															1.1					-			
8 Exin beam line final commissioning an	nd ope	ration										1				1 1								
 LWFA with external injection 						-		- 1					-											
10 LWFA staging tests with external inject	tion	-																						
11 RF injector upgrade							1							_	_									
12 THz user beam line upgrade										_												_		
13 Plasma Lens	_			_																				
14 High quality Beam acceleration PWFA	1	QN																-						
13 Beam transport to FEL																								
16 Plasma driven FEL studies																								
17 Advanced undulators studies																								
18 SPARC LAB users operation																								
15			Į.						1					l l										
20 EUSPARC		-			_																			
21 Machine Conceptual Design Report			_																					
22 Machine Technical Design Report																								
23 New building design		8								_														
24 New building authorisation requests										-														
zo New building tender	_	S														i			_					
26 New building construction		8 6								_		1			-									
27 FLAME upgrade tender		ŝ li											-											
28 FLAME upgrade installation																			_					
29 FLAME commissioning to 1 PW												1												
30 FLAME installation in the new building	ıg																			_				
31 LINAC upgrade tender		Ú											1							_				
32 LINAC RF tests																								
33 LINAC and SPARC_LAB installation	n in the	c new bui	lding																					
34		d L			_																			
35 EuPRAXIA	_	8 - B					20	-														-		
36 Design Study												-									8			
37 Preparatory Phase										2						1			-			-		

Thanks for your attention