

Machine Background in Fast
Simulation

Gabriele Simi
(UMD)

●Introduction
●Update since last meeting
●Sensitive window
●Performance

Introduction

● The background from the accelerator is
important aspect to make the fast simulation
results more realistic:
– It can be significant in benchmark analyses: which

ones?

– It affects the optimization of some sub-detectors

● Fast Sim geometry not detailed enough =>
need Full GEANT4 Simulation

Plans at Warwick meeting

✔ Define which volume to use
– Probably an iterative process

✔ Refine the exchange format:
– Should store additional information in the root file

on the type of background
● Brehmstrahlung, beam gas, Touscek, hadronic or EM

shower, material where shower was initiated...

– Add this to Gvertex::Cause

✔ Ensure conventions are the same:
– Axes, B Field, definition of the time

Sensitive window

● Need to consider tracks in a time interval
corresponding to the window in which the
detector is sensitive to background, usually the
L1 accept window ~ 1s

● Sub-detectors need to implement specific filters
based on their reconstruction

– For example SVT applies a cut on the time of
the hots of ~50ns, the EMC applies a cut of
~100ns

● DCH max drift time is ~0.5 s

● =>Set window to 1 s

Background mixing

● Baseline is that Full Simulation provides events
that correspond to one bunch crossing

● Fast Sim input module adds a number of
events corresponding to the whole sensitive
window

● Each particle has its time shifted by the time of
the bunch relative to the center of the window

● Touscek needs special treatment, not
contemplated yet in Fast Sim

Performance

● With window=1us, bunch crossing=400MHz

– 400 bunch crossings/event, 380 /b. crossing

– PmcBkgInput: ~650 ms/event, ~150k /event

– PmcSimulate: ~250 ms/event, ~150k /event

● =>Try to select improbable particles

cos()<-0.99
0.99<cos()<-0.99
cos()>0.99

Bkg distributions

Most of the photons are parallel
to the beams (+/-30mrad) and
originate from z=+/-300 cm (the
endcaps of the scoring volume)

Performance II

● zmin=-299cm, zmax=299cm

– PmcBkgInput: ~400 ms, ~150k /event

– PmcSimulate: 2.3ms, 300 /event

● overhead from reading each particle into
memory~2.5 s/particle

● =>need to read only the branch used to select
– Can it be done with TClonesArray??

Conclusions/Plans

● Synchronized units with Bruno
● Using updated scoring volume
● Defined sensitive window
● Background events added in the sensitive

window to build background frame.

BACKUP

Outlook
● Can we use this format to save a subset of the

generated events and process them later ?
– The code to build GTracks in PmcEventConverter base

class can be re-used

– We need to write code to read the decay tree from the
root file

● Idea: save a selected list of generated events for
later processing: useful?
– Could be useful to optimize an analysis with a small

background without re-running all the events

● Problem: when re-processing events the results will
be different because of different random numbers

Conclusion

● Defined a preliminary exchange format
● Produced a test Full Sim background file
● Read into fast-sim and overlaid to generator

event
● Need more information to define scoring

volume
● Work can be expanded to store events selected

in an analysis if useful

BACKUP

Test Full Sim Output (technical info)

● Output format is a TTree with three branches:
– an array of TParticle

– an event weight

– an event number

● Particles have no mother but have an origin
vertex

● The origin vertex is the point where the particle
crossed the scoring volume

● Time is referred to the primary vertex

Fast Sim Input (technical info)
● Use the same code that converts StdHep

events (those typically returned by generators)
● Produce a list of GTrack, Gvertex and add it to

the existing one (or create a new one)
– PmcEventConverter : base class implementing

conversion from internal data to GTrack, GVertex
objects

● PmcStdHepConverter: uses as input a StdHep event
● PmcTParticleConverter: uses as input an array of

TParticle

– PmcBuildGTracks: base module of framework to
build GTrack and GVertex lists and save then into
the event.

Questions

● How is the origin of the axes defined in full
sim ? What abut axes direction ?

● What is the meaning of the time ? unit ?
– Time is referred to origin of the particle, unit is 10ns

● How do we use the event weight ?
– Filter on it using it as a prescale probability

● Should we loop on the events over and over
again ?
– Yes after reaching the end of the event-list

Questions(cont.)

● What Gvertex:cause to set ?
– Using preassignedDecay for now

● Should we store additional information on the
type of background?
– Brehmstrahlung, beam gas, Touscek, hadronic or

EM shower, material where shower was initiated...

– Should we add items to Gvertex::Cause?

● Geant can produce unphysical particles (like
geantino) that could be useful for testing.
– Currently fast sim crashes using those particles.

Should we try to fix this ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

